How to calculate slope with plus minus uncertainty in the value - python

Following code gives a specific value of slope but I want to calculate it with some uncertainty like (1.95+_ 0.03) . How can I do that?
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
x= np.arange(10)
y = np.array([2,4,25,8,10,30,14,16,28,20])
z = stats.linregress(x,y)
print (z)
slope = z[0]
intercept = z[1]
line = slope*x + intercept
plt.plot(x,y,'o', label='original data')
plt.plot(x,line,color='green', label='fitted line')
plt.xlabel("independent _variable")
plt.ylabel("dependentt_variable")
plt.savefig("./linear regression")

You can calculate the confidence interval for the slope using the formula described in detail here. From your code (assuming you are using the scipy.stats package), you can find the (1-α)% confidence interval as follows:
alpha = 0.05
CI = [z.slope+z.stderr*t for t in stats.t.interval(alpha/2, len(x)-2)]
print(CI)
# [1.9276895391491087, 1.9874619760024068]
To print the confidence interval in the form stated in your question:
halfwidth = z.stderr*stats.t.interval(alpha/2, len(x)-2)[1]
print('({} +/- {})'.format(z.slope, halfwidth))
# (1.9575757575757577 +/- 0.02988621842664903)
Alternatively, you could use the StatsModels package which has a built-in method to find the confidence interval. This is explained in the question found here.

Related

Numpy Linear Regression: Scatter Plot Works but Line of Best Fit Does Not

I am using numpy to perform linear regression on world countries' gender inequality index (x) and fertility rate (y). My scatter plot is correct, and my x mean, y mean, and correlation coefficient seem correct (seem because I would rather not calculate them by hand for 161 data points), but my intercept and slope are wrong, predicting between -13 and 19 children per woman (when the real data is between 1 and 7 children per woman). Which makes me think that my covariance and variance are wrong. Because I am using numpy to calculate them and am not keen on calculating them by hand, I don't know what numpy is doing "under the hood." Here is my code. I have tried checking my data and using print statements to isolate the problems.
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
data = pd.read_csv("GII Data.csv")
df = pd.DataFrame(data)
print(df, "\n")
xmean = np.mean(x)
ymean = np.mean(y)
x = data.GII
y = data.fertility_rate
print(f'xmean = {xmean}')
print(f'ymean = {ymean}\n')
covariance = np.cov(x, y)
print(f'covariance = {covariance}\n')
variance = (np.var(x))
print(f'variance = {variance}\n')
# Calculate beta and alpha
beta = covariance.sum() / variance.sum()
alpha = ymean - (beta * xmean)
print(f'alpha = {alpha}')
print(f'beta = {beta}\n')
correlation = np.corrcoef(x, y)
print(f'correlation coefficient = {correlation}\n')
ypred = alpha + beta * x
plt.figure(figsize=(8, 4))
plt.plot(x, y, 'ro') # scatter plot showing actual data
plt.title('Gender Inequality and Children per Woman: r = 0.78')
plt.xlabel('Gender Inequality Index (GII)')
plt.ylabel('Fertility Rate')
plt.plot(x, ypred) # regression line
plt.show()
You are calculating beta wrong.It should be
beta = covariance[0][1] / variance
because numpy calculates covariance as matrix, you should get right value

Python natural smoothing splines

I am trying to find a python package that would give an option to fit natural smoothing splines with user selectable smoothing factor. Is there an implementation for that? If not, how would you use what is available to implement it yourself?
By natural spline I mean that there should be a condition that the second derivative of the fitted function at the endpoints is zero (linear).
By smoothing spline I mean that the spline should not be 'interpolating' (passing through all the datapoints). I would like to decide the correct smoothing factor lambda (see the Wikipedia page for smoothing splines) myself.
What I have found
scipy.interpolate.CubicSpline [link]: Does natural (cubic) spline fitting. Does interpolation, and there is no way to smooth the data.
scipy.interpolate.UnivariateSpline [link]: Does spline fitting with user selectable smoothing factor. However, there is no option to make the splines natural.
After hours of investigation, I did not find any pip installable packages which could fit a natural cubic spline with user-controllable smoothness. However, after deciding to write one myself, while reading about the topic I stumbled upon a blog post by github user madrury. He has written python code capable of producing natural cubic spline models.
The model code is available here (NaturalCubicSpline) with a BSD-licence. He has also written some examples in an IPython notebook.
But since this is the Internet and links tend to die, I will copy the relevant parts of the source code here + a helper function (get_natural_cubic_spline_model) written by me, and show an example of how to use it. The smoothness of the fit can be controlled by using different number of knots. The position of the knots can be also specified by the user.
Example
from matplotlib import pyplot as plt
import numpy as np
def func(x):
return 1/(1+25*x**2)
# make example data
x = np.linspace(-1,1,300)
y = func(x) + np.random.normal(0, 0.2, len(x))
# The number of knots can be used to control the amount of smoothness
model_6 = get_natural_cubic_spline_model(x, y, minval=min(x), maxval=max(x), n_knots=6)
model_15 = get_natural_cubic_spline_model(x, y, minval=min(x), maxval=max(x), n_knots=15)
y_est_6 = model_6.predict(x)
y_est_15 = model_15.predict(x)
plt.plot(x, y, ls='', marker='.', label='originals')
plt.plot(x, y_est_6, marker='.', label='n_knots = 6')
plt.plot(x, y_est_15, marker='.', label='n_knots = 15')
plt.legend(); plt.show()
The source code for get_natural_cubic_spline_model
import numpy as np
import pandas as pd
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline
def get_natural_cubic_spline_model(x, y, minval=None, maxval=None, n_knots=None, knots=None):
"""
Get a natural cubic spline model for the data.
For the knots, give (a) `knots` (as an array) or (b) minval, maxval and n_knots.
If the knots are not directly specified, the resulting knots are equally
space within the *interior* of (max, min). That is, the endpoints are
*not* included as knots.
Parameters
----------
x: np.array of float
The input data
y: np.array of float
The outpur data
minval: float
Minimum of interval containing the knots.
maxval: float
Maximum of the interval containing the knots.
n_knots: positive integer
The number of knots to create.
knots: array or list of floats
The knots.
Returns
--------
model: a model object
The returned model will have following method:
- predict(x):
x is a numpy array. This will return the predicted y-values.
"""
if knots:
spline = NaturalCubicSpline(knots=knots)
else:
spline = NaturalCubicSpline(max=maxval, min=minval, n_knots=n_knots)
p = Pipeline([
('nat_cubic', spline),
('regression', LinearRegression(fit_intercept=True))
])
p.fit(x, y)
return p
class AbstractSpline(BaseEstimator, TransformerMixin):
"""Base class for all spline basis expansions."""
def __init__(self, max=None, min=None, n_knots=None, n_params=None, knots=None):
if knots is None:
if not n_knots:
n_knots = self._compute_n_knots(n_params)
knots = np.linspace(min, max, num=(n_knots + 2))[1:-1]
max, min = np.max(knots), np.min(knots)
self.knots = np.asarray(knots)
#property
def n_knots(self):
return len(self.knots)
def fit(self, *args, **kwargs):
return self
class NaturalCubicSpline(AbstractSpline):
"""Apply a natural cubic basis expansion to an array.
The features created with this basis expansion can be used to fit a
piecewise cubic function under the constraint that the fitted curve is
linear *outside* the range of the knots.. The fitted curve is continuously
differentiable to the second order at all of the knots.
This transformer can be created in two ways:
- By specifying the maximum, minimum, and number of knots.
- By specifying the cutpoints directly.
If the knots are not directly specified, the resulting knots are equally
space within the *interior* of (max, min). That is, the endpoints are
*not* included as knots.
Parameters
----------
min: float
Minimum of interval containing the knots.
max: float
Maximum of the interval containing the knots.
n_knots: positive integer
The number of knots to create.
knots: array or list of floats
The knots.
"""
def _compute_n_knots(self, n_params):
return n_params
#property
def n_params(self):
return self.n_knots - 1
def transform(self, X, **transform_params):
X_spl = self._transform_array(X)
if isinstance(X, pd.Series):
col_names = self._make_names(X)
X_spl = pd.DataFrame(X_spl, columns=col_names, index=X.index)
return X_spl
def _make_names(self, X):
first_name = "{}_spline_linear".format(X.name)
rest_names = ["{}_spline_{}".format(X.name, idx)
for idx in range(self.n_knots - 2)]
return [first_name] + rest_names
def _transform_array(self, X, **transform_params):
X = X.squeeze()
try:
X_spl = np.zeros((X.shape[0], self.n_knots - 1))
except IndexError: # For arrays with only one element
X_spl = np.zeros((1, self.n_knots - 1))
X_spl[:, 0] = X.squeeze()
def d(knot_idx, x):
def ppart(t): return np.maximum(0, t)
def cube(t): return t*t*t
numerator = (cube(ppart(x - self.knots[knot_idx]))
- cube(ppart(x - self.knots[self.n_knots - 1])))
denominator = self.knots[self.n_knots - 1] - self.knots[knot_idx]
return numerator / denominator
for i in range(0, self.n_knots - 2):
X_spl[:, i+1] = (d(i, X) - d(self.n_knots - 2, X)).squeeze()
return X_spl
You could use this numpy/scipy implementation of natural cubic smoothing spline for univariate/multivariate data smoothing. Smoothing parameter should be in range [0.0, 1.0]. If we use smoothing parameter equal to 1.0 we get natural cubic spline interpolant without data smoothing. Also the implementation supports vectorization for univariate data.
Univariate example:
import numpy as np
import matplotlib.pyplot as plt
import csaps
np.random.seed(1234)
x = np.linspace(-5., 5., 25)
y = np.exp(-(x/2.5)**2) + (np.random.rand(25) - 0.2) * 0.3
sp = csaps.UnivariateCubicSmoothingSpline(x, y, smooth=0.85)
xs = np.linspace(x[0], x[-1], 150)
ys = sp(xs)
plt.plot(x, y, 'o', xs, ys, '-')
plt.show()
Bivariate example:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import csaps
xdata = [np.linspace(-3, 3, 61), np.linspace(-3.5, 3.5, 51)]
i, j = np.meshgrid(*xdata, indexing='ij')
ydata = (3 * (1 - j)**2. * np.exp(-(j**2) - (i + 1)**2)
- 10 * (j / 5 - j**3 - i**5) * np.exp(-j**2 - i**2)
- 1 / 3 * np.exp(-(j + 1)**2 - i**2))
np.random.seed(12345)
noisy = ydata + (np.random.randn(*ydata.shape) * 0.75)
sp = csaps.MultivariateCubicSmoothingSpline(xdata, noisy, smooth=0.988)
ysmth = sp(xdata)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_wireframe(j, i, noisy, linewidths=0.5, color='r')
ax.scatter(j, i, noisy, s=5, c='r')
ax.plot_surface(j, i, ysmth, linewidth=0, alpha=1.0)
plt.show()
The python package patsy has functions for generating spline bases, including a natural cubic spline basis. Described in the documentation.
Any library can then be used for fitting a model, e.g. scikit-learn or statsmodels.
The df parameter for cr() can be used to control the "smoothness"
Note that too low df can result to underfit (see below).
A simple example using scikit-learn.
import numpy as np
from sklearn.linear_model import LinearRegression
from patsy import cr
import matplotlib.pyplot as plt
n_obs = 600
np.random.seed(0)
x = np.linspace(-3, 3, n_obs)
y = 1 / (x ** 2 + 1) * np.cos(np.pi * x) + np.random.normal(0, 0.2, size=n_obs)
def plot_smoothed(df=5):
# Generate spline basis with different degrees of freedom
x_basis = cr(x, df=df, constraints="center")
# Fit model to the data
model = LinearRegression().fit(x_basis, y)
# Get estimates
y_hat = model.predict(x_basis)
plt.plot(x, y_hat, label=f"df={df}")
plt.scatter(x, y, s=4, color="tab:blue")
for df in (5, 7, 10, 25):
plot_smoothed(df)
plt.legend()
plt.title(f"Natural cubic spline with varying degrees of freedom")
plt.show()
For a project of mine, I needed to create intervals for time-series modeling, and to make the procedure more efficient I created tsmoothie: A python library for time-series smoothing and outlier detection in a vectorized way.
It provides different smoothing algorithms together with the possibility to computes intervals.
In the case of SplineSmoother of natural cubic type:
import numpy as np
import matplotlib.pyplot as plt
from tsmoothie.smoother import *
def func(x):
return 1/(1+25*x**2)
# make example data
x = np.linspace(-1,1,300)
y = func(x) + np.random.normal(0, 0.2, len(x))
# operate smoothing
smoother = SplineSmoother(n_knots=10, spline_type='natural_cubic_spline')
smoother.smooth(y)
# generate intervals
low, up = smoother.get_intervals('prediction_interval', confidence=0.05)
# plot the first smoothed timeseries with intervals
plt.figure(figsize=(11,6))
plt.plot(smoother.smooth_data[0], linewidth=3, color='blue')
plt.plot(smoother.data[0], '.k')
plt.fill_between(range(len(smoother.data[0])), low[0], up[0], alpha=0.3)
I point out also that tsmoothie can carry out the smoothing of multiple time-series in a vectorized way
The programming language R offers a very good implementation of natural cubic smoothing splines. You can use R functions in Python with rpy2:
import rpy2.robjects as robjects
r_y = robjects.FloatVector(y_train)
r_x = robjects.FloatVector(x_train)
r_smooth_spline = robjects.r['smooth.spline'] #extract R function# run smoothing function
spline1 = r_smooth_spline(x=r_x, y=r_y, spar=0.7)
ySpline=np.array(robjects.r['predict'](spline1,robjects.FloatVector(x_smooth)).rx2('y'))
plt.plot(x_smooth,ySpline)
If you want to directly set lambda: spline1 = r_smooth_spline(x=r_x, y=r_y, lambda=42) doesn't work, because lambda has already another meaning in Python, but there is a solution: How to use the lambda argument of smooth.spline in RPy WITHOUT Python interprating it as lambda.
To get the code running you first need to define the data x_train and y_train and you can define x_smooth=np.array(np.linspace(-3,5,1920)). if you want to plot it between -3 and 5 in Full-HD-resolution.
Note that this code is not fully compatible with Jupyter-notebooks for the latest versions of rpy2. You can fix this by using !pip install -Iv rpy2==3.4.2 as described in NotImplementedError: Conversion 'rpy2py' not defined for objects of type '<class 'rpy2.rinterface.SexpClosure'>' only after I run the code twice

SciPy Curve Fit Fails Power Law

So, I'm trying to fit a set of data with a power law of the following kind:
def f(x,N,a): # Power law fit
if a >0:
return N*x**(-a)
else:
return 10.**300
par,cov = scipy.optimize.curve_fit(f,data,time,array([10**(-7),1.2]))
where the else condition is just to force a to be positive. Using scipy.optimize.curve_fit yields an awful fit (green line), returning values of 1.2e+04 and 1.9e0-7 for N and a, respectively, with absolutely no intersection with the data. From fits I've put in manually, the values should land around 1e-07 and 1.2 for N and a, respectively, though putting those into curve_fit as initial parameters doesn't change the result. Removing the condition for a to be positive results in a worse fit, as it chooses a negative, which leads to a fit with the wrong sign slope.
I can't figure out how to get a believable, let alone reliable, fit out of this routine, but I can't find any other good Python curve fitting routines. Do I need to write my own least-squares algorithm or is there something I'm doing wrong here?
UPDATE
In the original post, I showed a solution that uses lmfit which allows to assign bounds to your parameters. Starting with version 0.17, scipy also allows to assign bounds to your parameters directly (see documentation). Please find this solution below after the EDIT which can hopefully serve as a minimal example on how to use scipy's curve_fit with parameter bounds.
Original post
As suggested by #Warren Weckesser, you could use lmfit to get this task done, which allows you to assign bounds to your parameters and avoids this 'ugly' if-clause.
Since you do not provide any data, I created some which are shown here:
They follow the law f(x) = 10.5 * x ** (-0.08)
I fit them - as suggested by #roadrunner66 - by transforming the power law in a linear function:
y = N * x ** a
ln(y) = ln(N * x ** a)
ln(y) = a * ln(x) + ln(N)
So I first use np.log on the original data and then do the fit. When I now use lmfit, I get the following output:
[[Variables]]
lN: 2.35450302 +/- 0.019531 (0.83%) (init= 1.704748)
a: -0.08035342 +/- 0.005158 (6.42%) (init=-0.5)
So a is pretty close to the original value and np.exp(2.35450302) gives 10.53 which is also very close to the original value.
The plot then looks as follows; as you can see the fit describes the data very well:
Here is the entire code with a couple of inline comments:
import numpy as np
import matplotlib.pyplot as plt
from lmfit import minimize, Parameters, Parameter, report_fit
# generate some data with noise
xData = np.linspace(0.01, 100., 50.)
aOrg = 0.08
Norg = 10.5
yData = Norg * xData ** (-aOrg) + np.random.normal(0, 0.5, len(xData))
plt.plot(xData, yData, 'bo')
plt.show()
# transform data so that we can use a linear fit
lx = np.log(xData)
ly = np.log(yData)
plt.plot(lx, ly, 'bo')
plt.show()
def decay(params, x, data):
lN = params['lN'].value
a = params['a'].value
# our linear model
model = a * x + lN
return model - data # that's what you want to minimize
# create a set of Parameters
params = Parameters()
params.add('lN', value=np.log(5.5), min=0.01, max=100) # value is the initial value
params.add('a', value=-0.5, min=-1, max=-0.001) # min, max define parameter bounds
# do fit, here with leastsq model
result = minimize(decay, params, args=(lx, ly))
# write error report
report_fit(params)
# plot data
xnew = np.linspace(0., 100., 5000.)
# plot the data
plt.plot(xData, yData, 'bo')
plt.plot(xnew, np.exp(result.values['lN']) * xnew ** (result.values['a']), 'r')
plt.show()
EDIT
Assuming that you have scipy 0.17 installed, you can also do the following using curve_fit. I show it for your original definition of the power law (red line in the plot below) as well as for the logarithmic data (black line in the plot below). The data is generated in the same way as above. The plot the looks as follows:
As you can see, the data is described very well. If you print popt and popt_log, you obtain array([ 10.47463426, 0.07914812]) and array([ 2.35158653, -0.08045776]), respectively (note: for the letter one you will have to take the exponantial of the first argument - np.exp(popt_log[0]) = 10.502 which is close to the original data).
Here is the entire code:
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
# generate some data with noise
xData = np.linspace(0.01, 100., 50)
aOrg = 0.08
Norg = 10.5
yData = Norg * xData ** (-aOrg) + np.random.normal(0, 0.5, len(xData))
# get logarithmic data
lx = np.log(xData)
ly = np.log(yData)
def f(x, N, a):
return N * x ** (-a)
def f_log(x, lN, a):
return a * x + lN
# optimize using the appropriate bounds
popt, pcov = curve_fit(f, xData, yData, bounds=(0, [30., 20.]))
popt_log, pcov_log = curve_fit(f_log, lx, ly, bounds=([0, -10], [30., 20.]))
xnew = np.linspace(0.01, 100., 5000)
# plot the data
plt.plot(xData, yData, 'bo')
plt.plot(xnew, f(xnew, *popt), 'r')
plt.plot(xnew, f(xnew, np.exp(popt_log[0]), -popt_log[1]), 'k')
plt.show()

confidence and prediction intervals with StatsModels

I do this linear regression with StatsModels:
import numpy as np
import statsmodels.api as sm
from statsmodels.sandbox.regression.predstd import wls_prediction_std
n = 100
x = np.linspace(0, 10, n)
e = np.random.normal(size=n)
y = 1 + 0.5*x + 2*e
X = sm.add_constant(x)
re = sm.OLS(y, X).fit()
print(re.summary())
prstd, iv_l, iv_u = wls_prediction_std(re)
My questions are, iv_l and iv_u are the upper and lower confidence intervals or prediction intervals?
How I get others?
I need the confidence and prediction intervals for all points, to do a plot.
For test data you can try to use the following.
predictions = result.get_prediction(out_of_sample_df)
predictions.summary_frame(alpha=0.05)
I found the summary_frame() method buried here and you can find the get_prediction() method here. You can change the significance level of the confidence interval and prediction interval by modifying the "alpha" parameter.
I am posting this here because this was the first post that comes up when looking for a solution for confidence & prediction intervals – even though this concerns itself with test data rather.
Here's a function to take a model, new data, and an arbitrary quantile, using this approach:
def ols_quantile(m, X, q):
# m: OLS model.
# X: X matrix.
# q: Quantile.
#
# Set alpha based on q.
a = q * 2
if q > 0.5:
a = 2 * (1 - q)
predictions = m.get_prediction(X)
frame = predictions.summary_frame(alpha=a)
if q > 0.5:
return frame.obs_ci_upper
return frame.obs_ci_lower
update see the second answer which is more recent. Many of the models and results classes have now a get_prediction method that provides additional information including prediction intervals and/or confidence intervals for the predicted mean.
old answer:
iv_l and iv_u give you the limits of the prediction interval for each point.
Prediction interval is the confidence interval for an observation and includes the estimate of the error.
I think, confidence interval for the mean prediction is not yet available in statsmodels.
(Actually, the confidence interval for the fitted values is hiding inside the summary_table of influence_outlier, but I need to verify this.)
Proper prediction methods for statsmodels are on the TODO list.
Addition
Confidence intervals are there for OLS but the access is a bit clumsy.
To be included after running your script:
from statsmodels.stats.outliers_influence import summary_table
st, data, ss2 = summary_table(re, alpha=0.05)
fittedvalues = data[:, 2]
predict_mean_se = data[:, 3]
predict_mean_ci_low, predict_mean_ci_upp = data[:, 4:6].T
predict_ci_low, predict_ci_upp = data[:, 6:8].T
# Check we got the right things
print np.max(np.abs(re.fittedvalues - fittedvalues))
print np.max(np.abs(iv_l - predict_ci_low))
print np.max(np.abs(iv_u - predict_ci_upp))
plt.plot(x, y, 'o')
plt.plot(x, fittedvalues, '-', lw=2)
plt.plot(x, predict_ci_low, 'r--', lw=2)
plt.plot(x, predict_ci_upp, 'r--', lw=2)
plt.plot(x, predict_mean_ci_low, 'r--', lw=2)
plt.plot(x, predict_mean_ci_upp, 'r--', lw=2)
plt.show()
This should give the same results as SAS, http://jpktd.blogspot.ca/2012/01/nice-thing-about-seeing-zeros.html
With time series results, you get a much smoother plot using the get_forecast() method. An example of time series is below:
# Seasonal Arima Modeling, no exogenous variable
model = SARIMAX(train['MI'], order=(1,1,1), seasonal_order=(1,1,0,12), enforce_invertibility=True)
results = model.fit()
results.summary()
The next step is to make the predictions, this generates the confidence intervals.
# make the predictions for 11 steps ahead
predictions_int = results.get_forecast(steps=11)
predictions_int.predicted_mean
These can be put in a data frame but need some cleaning up:
# get a better view
predictions_int.conf_int()
Concatenate the data frame, but clean up the headers
conf_df = pd.concat([test['MI'],predictions_int.predicted_mean, predictions_int.conf_int()], axis = 1)
conf_df.head()
Then we rename the columns.
conf_df = conf_df.rename(columns={0: 'Predictions', 'lower MI': 'Lower CI', 'upper MI': 'Upper CI'})
conf_df.head()
Make the plot.
# make a plot of model fit
# color = 'skyblue'
fig = plt.figure(figsize = (16,8))
ax1 = fig.add_subplot(111)
x = conf_df.index.values
upper = conf_df['Upper CI']
lower = conf_df['Lower CI']
conf_df['MI'].plot(color = 'blue', label = 'Actual')
conf_df['Predictions'].plot(color = 'orange',label = 'Predicted' )
upper.plot(color = 'grey', label = 'Upper CI')
lower.plot(color = 'grey', label = 'Lower CI')
# plot the legend for the first plot
plt.legend(loc = 'lower left', fontsize = 12)
# fill between the conf intervals
plt.fill_between(x, lower, upper, color='grey', alpha='0.2')
plt.ylim(1000,3500)
plt.show()
You can get the prediction intervals by using LRPI() class from the Ipython notebook in my repo (https://github.com/shahejokarian/regression-prediction-interval).
You need to set the t value to get the desired confidence interval for the prediction values, otherwise the default is 95% conf. interval.
The LRPI class uses sklearn.linear_model's LinearRegression , numpy and pandas libraries.
There is an example shown in the notebook too.
summary_frame and summary_table work well when you need exact results for a single quantile, but don't vectorize well. This will provide a normal approximation of the prediction interval (not confidence interval) and works for a vector of quantiles:
def ols_quantile(m, X, q):
# m: Statsmodels OLS model.
# X: X matrix of data to predict.
# q: Quantile.
#
from scipy.stats import norm
mean_pred = m.predict(X)
se = np.sqrt(m.scale)
return mean_pred + norm.ppf(q) * se
To add to Max Ghenis' response here - you can use .get_prediction() to generate confidence intervals, not just prediction intervals, by using .conf_int() after.
predictions = result.get_prediction(out_of_sample_df)
predictions.conf_int(alpha = 0.05)
You can calculate them based on results given by statsmodel and the normality assumptions.
Here is an example for OLS and CI for the mean value:
import statsmodels.api as sm
import numpy as np
from scipy import stats
#Significance level:
sl = 0.05
#Evaluate mean value at a required point x0. Here, at the point (0.0,2.0) for N_model=2:
x0 = np.asarray([1.0, 0.0, 2.0])# If you have no constant in your model, remove the first 1.0. For more dimensions, add the desired values.
#Get an OLS model based on output y and the prepared vector X (as in your notation):
model = sm.OLS(endog = y, exog = X )
results = model.fit()
#Get two-tailed t-values:
(t_minus, t_plus) = stats.t.interval(alpha = (1.0 - sl), df = len(results.resid) - len(x0) )
y_value_at_x0 = np.dot(results.params, x0)
lower_bound = y_value_at_x0 + t_minus*np.sqrt(results.mse_resid*( np.dot(np.dot(x0.T,results.normalized_cov_params),x0) ))
upper_bound = y_value_at_x0 + t_plus*np.sqrt(results.mse_resid*( np.dot(np.dot(x0.T,results.normalized_cov_params),x0) ))
You can wrap a nice function around this with input results, point x0 and significance level sl.
I am unsure now if you can use this for WLS() since there are extra things happening there.
Ref: Ch3 in [D.C. Montgomery and E.A. Peck. “Introduction to Linear Regression Analysis.” 4th. Ed., Wiley, 1992].

Fitting a Weibull distribution using Scipy

I am trying to recreate maximum likelihood distribution fitting, I can already do this in Matlab and R, but now I want to use scipy. In particular, I would like to estimate the Weibull distribution parameters for my data set.
I have tried this:
import scipy.stats as s
import numpy as np
import matplotlib.pyplot as plt
def weib(x,n,a):
return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)
data = np.loadtxt("stack_data.csv")
(loc, scale) = s.exponweib.fit_loc_scale(data, 1, 1)
print loc, scale
x = np.linspace(data.min(), data.max(), 1000)
plt.plot(x, weib(x, loc, scale))
plt.hist(data, data.max(), density=True)
plt.show()
And get this:
(2.5827280639441961, 3.4955032285727947)
And a distribution that looks like this:
I have been using the exponweib after reading this http://www.johndcook.com/distributions_scipy.html. I have also tried the other Weibull functions in scipy (just in case!).
In Matlab (using the Distribution Fitting Tool - see screenshot) and in R (using both the MASS library function fitdistr and the GAMLSS package) I get a (loc) and b (scale) parameters more like 1.58463497 5.93030013. I believe all three methods use the maximum likelihood method for distribution fitting.
I have posted my data here if you would like to have a go! And for completeness I am using Python 2.7.5, Scipy 0.12.0, R 2.15.2 and Matlab 2012b.
Why am I getting a different result!?
My guess is that you want to estimate the shape parameter and the scale of the Weibull distribution while keeping the location fixed. Fixing loc assumes that the values of your data and of the distribution are positive with lower bound at zero.
floc=0 keeps the location fixed at zero, f0=1 keeps the first shape parameter of the exponential weibull fixed at one.
>>> stats.exponweib.fit(data, floc=0, f0=1)
[1, 1.8553346917584836, 0, 6.8820748596850905]
>>> stats.weibull_min.fit(data, floc=0)
[1.8553346917584836, 0, 6.8820748596850549]
The fit compared to the histogram looks ok, but not very good. The parameter estimates are a bit higher than the ones you mention are from R and matlab.
Update
The closest I can get to the plot that is now available is with unrestricted fit, but using starting values. The plot is still less peaked. Note values in fit that don't have an f in front are used as starting values.
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> plt.plot(data, stats.exponweib.pdf(data, *stats.exponweib.fit(data, 1, 1, scale=02, loc=0)))
>>> _ = plt.hist(data, bins=np.linspace(0, 16, 33), normed=True, alpha=0.5);
>>> plt.show()
It is easy to verify which result is the true MLE, just need a simple function to calculate log likelihood:
>>> def wb2LL(p, x): #log-likelihood
return sum(log(stats.weibull_min.pdf(x, p[1], 0., p[0])))
>>> adata=loadtxt('/home/user/stack_data.csv')
>>> wb2LL(array([6.8820748596850905, 1.8553346917584836]), adata)
-8290.1227946678173
>>> wb2LL(array([5.93030013, 1.57463497]), adata)
-8410.3327470347667
The result from fit method of exponweib and R fitdistr (#Warren) is better and has higher log likelihood. It is more likely to be the true MLE. It is not surprising that the result from GAMLSS is different. It is a complete different statistic model: Generalized Additive Model.
Still not convinced? We can draw a 2D confidence limit plot around MLE, see Meeker and Escobar's book for detail).
Again this verifies that array([6.8820748596850905, 1.8553346917584836]) is the right answer as loglikelihood is lower that any other point in the parameter space. Note:
>>> log(array([6.8820748596850905, 1.8553346917584836]))
array([ 1.92892018, 0.61806511])
BTW1, MLE fit may not appears to fit the distribution histogram tightly. An easy way to think about MLE is that MLE is the parameter estimate most probable given the observed data. It doesn't need to visually fit the histogram well, that will be something minimizing mean square error.
BTW2, your data appears to be leptokurtic and left-skewed, which means Weibull distribution may not fit your data well. Try, e.g. Gompertz-Logistic, which improves log-likelihood by another about 100.
Cheers!
I know it's an old post, but I just faced a similar problem and this thread helped me solve it. Thought my solution might be helpful for others like me:
# Fit Weibull function, some explanation below
params = stats.exponweib.fit(data, floc=0, f0=1)
shape = params[1]
scale = params[3]
print 'shape:',shape
print 'scale:',scale
#### Plotting
# Histogram first
values,bins,hist = plt.hist(data,bins=51,range=(0,25),normed=True)
center = (bins[:-1] + bins[1:]) / 2.
# Using all params and the stats function
plt.plot(center,stats.exponweib.pdf(center,*params),lw=4,label='scipy')
# Using my own Weibull function as a check
def weibull(u,shape,scale):
'''Weibull distribution for wind speed u with shape parameter k and scale parameter A'''
return (shape / scale) * (u / scale)**(shape-1) * np.exp(-(u/scale)**shape)
plt.plot(center,weibull(center,shape,scale),label='Wind analysis',lw=2)
plt.legend()
Some extra info that helped me understand:
Scipy Weibull function can take four input parameters: (a,c),loc and scale.
You want to fix the loc and the first shape parameter (a), this is done with floc=0,f0=1. Fitting will then give you params c and scale, where c corresponds to the shape parameter of the two-parameter Weibull distribution (often used in wind data analysis) and scale corresponds to its scale factor.
From docs:
exponweib.pdf(x, a, c) =
a * c * (1-exp(-x**c))**(a-1) * exp(-x**c)*x**(c-1)
If a is 1, then
exponweib.pdf(x, a, c) =
c * (1-exp(-x**c))**(0) * exp(-x**c)*x**(c-1)
= c * (1) * exp(-x**c)*x**(c-1)
= c * x **(c-1) * exp(-x**c)
From this, the relation to the 'wind analysis' Weibull function should be more clear
I was curious about your question and, despite this is not an answer, it compares the Matlab result with your result and with the result using leastsq, which showed the best correlation with the given data:
The code is as follows:
import scipy.stats as s
import numpy as np
import matplotlib.pyplot as plt
import numpy.random as mtrand
from scipy.integrate import quad
from scipy.optimize import leastsq
## my distribution (Inverse Normal with shape parameter mu=1.0)
def weib(x,n,a):
return (a / n) * (x / n)**(a-1) * np.exp(-(x/n)**a)
def residuals(p,x,y):
integral = quad( weib, 0, 16, args=(p[0],p[1]) )[0]
penalization = abs(1.-integral)*100000
return y - weib(x, p[0],p[1]) + penalization
#
data = np.loadtxt("stack_data.csv")
x = np.linspace(data.min(), data.max(), 100)
n, bins, patches = plt.hist(data,bins=x, normed=True)
binsm = (bins[1:]+bins[:-1])/2
popt, pcov = leastsq(func=residuals, x0=(1.,1.), args=(binsm,n))
loc, scale = 1.58463497, 5.93030013
plt.plot(binsm,n)
plt.plot(x, weib(x, loc, scale),
label='weib matlab, loc=%1.3f, scale=%1.3f' % (loc, scale), lw=4.)
loc, scale = s.exponweib.fit_loc_scale(data, 1, 1)
plt.plot(x, weib(x, loc, scale),
label='weib stack, loc=%1.3f, scale=%1.3f' % (loc, scale), lw=4.)
plt.plot(x, weib(x,*popt),
label='weib leastsq, loc=%1.3f, scale=%1.3f' % tuple(popt), lw=4.)
plt.legend(loc='upper right')
plt.show()
I had the same problem, but found that setting loc=0 in exponweib.fit primed the pump for the optimization. That was all that was needed from #user333700's answer. I couldn't load your data -- your data link points to an image, not data. So I ran a test on my data instead:
import scipy.stats as ss
import matplotlib.pyplot as plt
import numpy as np
N=30
counts, bins = np.histogram(x, bins=N)
bin_width = bins[1]-bins[0]
total_count = float(sum(counts))
f, ax = plt.subplots(1, 1)
f.suptitle(query_uri)
ax.bar(bins[:-1]+bin_width/2., counts, align='center', width=.85*bin_width)
ax.grid('on')
def fit_pdf(x, name='lognorm', color='r'):
dist = getattr(ss, name) # params = shape, loc, scale
# dist = ss.gamma # 3 params
params = dist.fit(x, loc=0) # 1-day lag minimum for shipping
y = dist.pdf(bins, *params)*total_count*bin_width
sqerror_sum = np.log(sum(ci*(yi - ci)**2. for (ci, yi) in zip(counts, y)))
ax.plot(bins, y, color, lw=3, alpha=0.6, label='%s err=%3.2f' % (name, sqerror_sum))
return y
colors = ['r-', 'g-', 'r:', 'g:']
for name, color in zip(['exponweib', 't', 'gamma'], colors): # 'lognorm', 'erlang', 'chi2', 'weibull_min',
y = fit_pdf(x, name=name, color=color)
ax.legend(loc='best', frameon=False)
plt.show()
There have been a few answers to this already here and in other places. likt in Weibull distribution and the data in the same figure (with numpy and scipy)
It still took me a while to come up with a clean toy example so I though it would be useful to post.
from scipy import stats
import matplotlib.pyplot as plt
#input for pseudo data
N = 10000
Kappa_in = 1.8
Lambda_in = 10
a_in = 1
loc_in = 0
#Generate data from given input
data = stats.exponweib.rvs(a=a_in,c=Kappa_in, loc=loc_in, scale=Lambda_in, size = N)
#The a and loc are fixed in the fit since it is standard to assume they are known
a_out, Kappa_out, loc_out, Lambda_out = stats.exponweib.fit(data, f0=a_in,floc=loc_in)
#Plot
bins = range(51)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(bins, stats.exponweib.pdf(bins, a=a_out,c=Kappa_out,loc=loc_out,scale = Lambda_out))
ax.hist(data, bins = bins , density=True, alpha=0.5)
ax.annotate("Shape: $k = %.2f$ \n Scale: $\lambda = %.2f$"%(Kappa_out,Lambda_out), xy=(0.7, 0.85), xycoords=ax.transAxes)
plt.show()
In the meantime, there is really good package out there: reliability. Here is the documentation: reliability # readthedocs.
Your code simply becomes:
from reliability.Fitters import Fit_Weibull_2P
...
wb = Fit_Weibull_2P(failures=data)
plt.show()
Saves a lot of headaches and makes beautiful plots, too.
the order of loc and scale is messed up in the code:
plt.plot(x, weib(x, scale, loc))
the scale parameter should come first.

Categories