how to calculate the sum of the values (1) and the sum of the values (0) contained in each date?
or
how to calculate the sum of the values (1) divided by the sum of the values (0) in each date.
sentiment_value = log10(count_of_(1)/count_of_(0)), this is the formula I am using for.
date new_sentiment
0 2017-04-28 1.0
1 2017-04-28 1.0
2 2017-04-28 1.0
3 2017-04-27 0.0
4 2017-04-27 1.0
5 2017-04-26 0.0
6 2017-04-26 1.0
7 2017-04-26 1.0
8 2017-04-26 0.0
9 2017-04-26 1.0
result_neg = date_df.appl
You need:
g = data.groupby(['date', 'new_sentiment']).size().unstack(fill_value=0).reset_index()
g['sentiment_value'] = np.log((g[1.0])/(g[0.0]))
Output:
new_sentiment date 0.0 1.0 sentiment_value
0 2017-04-26 2 3 0.405465
1 2017-04-27 1 1 0.000000
2 2017-04-28 0 3 inf
Related
I’ve a lot of DataFrames with 2 columns, like this:
Fecha
unidades
0
2020-01-01
2.0
84048
2020-09-01
4.0
149445
2020-10-01
11.0
532541
2020-11-01
4.0
660659
2020-12-01
2.0
1515682
2021-03-01
9.0
1563644
2021-04-01
2.0
1759823
2021-05-01
1.0
2226586
2021-07-01
1.0
As it can be seen, there are some months that are missing. Missing data depends on the DataFrame, I can have 2 months, 10, 100% complete, only one...I need to complete column "Fecha" with missing months (from 2020-01-01 to 2021-12-01) and when date is added into "Fecha", add "0" value to "unidades" column.
Each element in Fecha Column is a class 'pandas._libs.tslibs.timestamps.Timestamp
How could I fill the missing dates for each DataFrame??
You could create a date range and use "Fecha" column to set_index + reindex to add missing months. Then fillna + reset_index fetches the desired outcome:
df['Fecha'] = pd.to_datetime(df['Fecha'])
df = (df.set_index('Fecha')
.reindex(pd.date_range('2020-01-01', '2021-12-01', freq='MS'))
.rename_axis(['Fecha'])
.fillna(0)
.reset_index())
Output:
Fecha unidades
0 2020-01-01 2.0
1 2020-02-01 0.0
2 2020-03-01 0.0
3 2020-04-01 0.0
4 2020-05-01 0.0
5 2020-06-01 0.0
6 2020-07-01 0.0
7 2020-08-01 0.0
8 2020-09-01 4.0
9 2020-10-01 11.0
10 2020-11-01 4.0
11 2020-12-01 2.0
12 2021-01-01 0.0
13 2021-02-01 0.0
14 2021-03-01 9.0
15 2021-04-01 2.0
16 2021-05-01 1.0
17 2021-06-01 0.0
18 2021-07-01 1.0
19 2021-08-01 0.0
20 2021-09-01 0.0
21 2021-10-01 0.0
22 2021-11-01 0.0
23 2021-12-01 0.0
I am computing a DataFrame with weekly amounts and now I need to fill it with missing weeks from a provided date range.
This is how I'm generating the dataframe with the weekly amounts:
df['date'] = pd.to_datetime(df['date']) - timedelta(days=6)
weekly_data: pd.DataFrame = (df
.groupby([pd.Grouper(key='date', freq='W-SUN')])[data_type]
.sum()
.reset_index()
)
Which outputs:
date sum
0 2020-10-11 78
1 2020-10-18 673
If a date range is given as start='2020-08-30' and end='2020-10-30', then I would expect the following dataframe:
date sum
0 2020-08-30 0.0
1 2020-09-06 0.0
2 2020-09-13 0.0
3 2020-09-20 0.0
4 2020-09-27 0.0
5 2020-10-04 0.0
6 2020-10-11 78
7 2020-10-18 673
8 2020-10-25 0.0
So far, I have managed to just add the missing weeks and set the sum to 0, but it also replaces the existing values:
weekly_data = weekly_data.reindex(pd.date_range('2020-08-30', '2020-10-30', freq='W-SUN')).fillna(0)
Which outputs:
date sum
0 2020-08-30 0.0
1 2020-09-06 0.0
2 2020-09-13 0.0
3 2020-09-20 0.0
4 2020-09-27 0.0
5 2020-10-04 0.0
6 2020-10-11 0.0 # should be 78
7 2020-10-18 0.0 # should be 673
8 2020-10-25 0.0
Remove reset_index for DatetimeIndex, because reindex working with index and if RangeIndex get 0 values, because no match:
weekly_data = (df.groupby([pd.Grouper(key='date', freq='W-SUN')])[data_type]
.sum()
)
Then is possible use fill_value=0 parameter and last add reset_index:
r = pd.date_range('2020-08-30', '2020-10-30', freq='W-SUN', name='date')
weekly_data = weekly_data.reindex(r, fill_value=0).reset_index()
print (weekly_data)
date sum
0 2020-08-30 0
1 2020-09-06 0
2 2020-09-13 0
3 2020-09-20 0
4 2020-09-27 0
5 2020-10-04 0
6 2020-10-11 78
7 2020-10-18 673
8 2020-10-25 0
I need to subtract dates based on the progression of fault count.
Below is the table that has the two input columns Date and Fault_Count. The output columns I need are Option1 and Option2. The last two columns show the date difference calculations. Basically when the Fault_Count changes I need to count the number of days from when the Fault_Count changed to the initial start of fault count. For example the Fault_Count changed to 2 on 1/4/2020, I need to get the number of days from when the Fault_Count started at 0 and changed to 2 (i.e. 1/4/2020 - 1/1/2020 = 3).
Date Fault_Count Option1 Option2 Option1calc Option2calc
1/1/2020 0 0 0
1/2/2020 0 0 0
1/3/2020 0 0 0
1/4/2020 2 3 3 1/4/2020-1/1/2020 1/4/2020-1/1/2020
1/5/2020 2 0 0
1/6/2020 2 0 0
1/7/2020 4 3 3 1/7/2020-1/4/2020 1/7/2020-1/4/2020
1/8/2020 4 0 0
1/9/2020 5 2 2 1/9/2020-1/7/2020 1/9/2020-1/7/2020
1/10/2020 5 0 0
1/11/2020 0 2 -2 1/11/2020-1/9/2020 (1/11/2020-1/9/2020)*-1 as the fault resets
1/12/2020 1 1 1 1/12/2020-1/11/2020 1/12/2020-1/11/2020
Below is the code.
import pandas as pd
d = {'Date': ['1/1/2020', '1/2/2020', '1/3/2020', '1/4/2020', '1/5/2020', '1/6/2020', '1/7/2020', '1/8/2020', '1/9/2020', '1/10/2020', '1/11/2020', '1/12/2020'], 'Fault_Count' : [0, 0, 0, 2, 2, 2, 4, 4, 5, 5, 0, 1]}
df = pd.DataFrame(d)
df['Date'] = pd.to_datetime(df['Date'])
df['Fault_count_diff'] = df.Fault_Count.diff().fillna(0)
df['Cumlative_Sum'] = df.Fault_count_diff.cumsum()
I thought I could use cumulative sum and group by to get the groups and get the differences of the first value of groups. That's as far as I could get, also I noticed that using cumulative sum was not giving me ordered groups as some of the Fault_Count get reset.
Date Fault_Count Fault_count_diff Cumlative_Sum
0 2020-01-01 0 0.0 0.0
1 2020-01-02 0 0.0 0.0
2 2020-01-03 0 0.0 0.0
3 2020-01-04 2 2.0 2.0
4 2020-01-05 2 0.0 2.0
5 2020-01-06 2 0.0 2.0
6 2020-01-07 4 2.0 4.0
7 2020-01-08 4 0.0 4.0
8 2020-01-09 5 1.0 5.0
9 2020-01-10 5 0.0 5.0
10 2020-01-11 0 -5.0 0.0
11 2020-01-12 1 1.0 1.0
Desired output:
Date Fault_Count Option1 Option2
0 2020-01-01 0 0.0 0.0
1 2020-01-02 0 0.0 0.0
2 2020-01-03 0 0.0 0.0
3 2020-01-04 2 3.0 3.0
4 2020-01-05 2 0.0 0.0
5 2020-01-06 2 0.0 0.0
6 2020-01-07 4 3.0 3.0
7 2020-01-08 4 0.0 0.0
8 2020-01-09 5 2.0 2.0
9 2020-01-10 5 0.0 0.0
10 2020-01-11 0 2.0 -2.0
11 2020-01-12 1 1.0 1.0
Thanks for the help.
Use:
m1 = df['Fault_Count'].ne(df['Fault_Count'].shift(fill_value=0))
m2 = df['Fault_Count'].eq(0) & df['Fault_Count'].shift(fill_value=0).ne(0)
s = df['Date'].groupby(m1.cumsum()).transform('first')
df['Option1'] = df['Date'].sub(s.shift()).dt.days.where(m1, 0)
df['Option2'] = df['Option1'].where(~m2, df['Option1'].mul(-1))
Details:
Use Series.ne + Series.shift to create boolean mask m1 which represent the boundary condition when Fault_count changes, similarly use Series.eq + Series.shift and Series.ne to create a boolean mask m2 which represent the condition where Fault_count resets:
m1 m2
0 False False
1 False False
2 False False
3 True False
4 False False
5 False False
6 True False
7 False False
8 True False
9 False False
10 True True # --> Fault count reset
11 True False
Use Series.groupby on consecutive fault counts obtained using m1.cumsum and transform the Date column using groupby.first:
print(s)
0 2020-01-01
1 2020-01-01
2 2020-01-01
3 2020-01-04
4 2020-01-04
5 2020-01-04
6 2020-01-07
7 2020-01-07
8 2020-01-09
9 2020-01-09
10 2020-01-11
11 2020-01-12
Name: Date, dtype: datetime64[ns]
Use Series.sub to subtract Date for s shifted using Series.shift and use Series.where to fill 0 based on mask m2 and assign this to Option1. Similary we obtain Option2 from Option1 based on mask m2:
print(df)
Date Fault_Count Option1 Option2
0 2020-01-01 0 0.0 0.0
1 2020-01-02 0 0.0 0.0
2 2020-01-03 0 0.0 0.0
3 2020-01-04 2 3.0 3.0
4 2020-01-05 2 0.0 0.0
5 2020-01-06 2 0.0 0.0
6 2020-01-07 4 3.0 3.0
7 2020-01-08 4 0.0 0.0
8 2020-01-09 5 2.0 2.0
9 2020-01-10 5 0.0 0.0
10 2020-01-11 0 2.0 -2.0
11 2020-01-12 1 1.0 1.0
Instead of df['Fault_count_diff'] = ... and the next line, do:
df['cycle'] = (df.Fault_Count.diff() < 0).cumsum()
Then to get the dates in between each count change.
Option1. If all calendar dates are present in df:
ndays = df.groupby(['cycle', 'Fault_Count']).Date.size()
Option2. If there's the possibility of a date not showing up in df and you still want to get the calendar days between incidents:
ndays = df.groupby(['cycle', 'Fault_Count']).Date.min().diff().dropna()
Even though this seems really simple, it drives me nuts. Why is .astype(int) not changing the floats to ints? Thank you
df_new = pd.crosstab(df["date"], df["place"]).reset_index()
places = ['cityA', "cityB", "cityC"]
df_new[places] = df_new[places].fillna(0).astype(int)
sums = df_new.select_dtypes(pd.np.number).sum().rename('total')
df_new = df_new.append(sums)
print(df_new)
Output:
place date cityA cityB cityC
0 2008-01-01 0.0 0.0 51.0
1 2009-06-01 0.0 618.0 0.0
2 2015-07-01 549.0 0.0 0.0
3 2016-01-01 41.0 0.0 0.0
4 2016-04-01 62.0 0.0 0.0
5 2017-01-01 800.0 0.0 0.0
6 2018-07-01 69.0 0.0 0.0
total NaT 1521.0 618.0 51.0
If there are NAs (which are floats in Pandas), the other values will be floats as well. See here.
I'm trying to restructure a large DataFrame of the following form as a MultiIndex:
date store_nbr item_nbr units snowfall preciptotal event
0 2012-01-01 1 1 0 0.0 0.0 0.0
1 2012-01-01 1 2 0 0.0 0.0 0.0
2 2012-01-01 1 3 0 0.0 0.0 0.0
3 2012-01-01 1 4 0 0.0 0.0 0.0
4 2012-01-01 1 5 0 0.0 0.0 0.0
I want to group by store_nbr (1-45), within each store_nbr group by item_nbr (1-111) and then for the corresponding index pair (e.g., store_nbr=12, item_nbr=109), display the rows in chronological order, so that ordered rows will look like, for example:
store_nbr=12, item_nbr=109: date=2014-02-06, units=0, snowfall=...
date=2014-02-07, units=0, snowfall=...
date=2014-02-08, units=0, snowfall=...
... ...
store_nbr=12, item_nbr=110: date=2014-02-06, units=0, snowfall=...
date=2014-02-07, units=1, snowfall=...
date=2014-02-08, units=1, snowfall=...
...
It looks like some combination of groupby and set_index might be useful here, but I'm getting stuck after the following line:
grouped = stores.set_index(['store_nbr', 'item_nbr'])
This produces the following MultiIndex:
date units snowfall preciptotal event
store_nbr item_nbr
1 1 2012-01-01 0 0.0 0.0 0.0
2 2012-01-01 0 0.0 0.0 0.0
3 2012-01-01 0 0.0 0.0 0.0
4 2012-01-01 0 0.0 0.0 0.0
5 2012-01-01 0 0.0 0.0 0.0
Does anyone have any suggestions from here? Is there an easy way to do this by manipulating groupby objects?
You can sort your rows with:
df.sort_values(by='date')