Modifying a subarray selected by two consecutive boolean arrays - python

I would like to modify a subset of an array which is selected on by two consecutive boolean arrays. In my use case, I have an image im, and I'm pulling out a region of interest roi using some condition. With the pixels in the ROI, I'm doing some computations, and derive a sub-region target. I now want to apply some transformation to the pixels in target in the original image. In code:
x, y = np.meshgrid(np.arange(800), np.arange(600))
im = (x + y) / 6 # a test image to work with
# use some arbitrary conditions to illustrate this
roi = (im > 64) & (im < 128)
target = (im[roi] & 0xf) > 0x7
Now I want to do something like
im[roi][target] = 0
but this fails silently because im[roi] does not directly reference the original array's elements (unlike a normal slice).
What's a nice clean way to do what I want here?

You can obtain the combined mask like so:
roi[roi] = target
im[roi] etc.
This overwrites roi. If you need to keep it:
roit = np.zeros_like(roi)
roit[roi] = target
im[roit] etc.
Or use indices:
import operator
I, J = map(operator.itemgetter(target), np.where(roi))
im[I, J] etc.

Related

Labeling a matrix

I've been trying to do a code that labels a binary matrix, i.e. I want to do a function that finds all connected components in an image and assigns a unique label to all points in the same component. The problem is that I found a function, imbinarize(), that creates a binary image and I want to know how to do it without that function (because I don't know how to do it).
EDIT: I realized that it isn't needed to binarize the image, because it is being assumed that all the images that are put as argument are already binarized. So, I changed my code. It happens that code is not working, and I think the problem is in one of the cycles, but I can't understand why.
import numpy as np
%matplotlib inline
from matplotlib import pyplot as plt
def connected_components(image):
M = image * 1
# write your code here
(row, column) = M.shape #shape of the matrix
#Second step
L = 2
#Third step
q = []
#Fourth step
#Method to look for ones starting on the pixel (0, 0) and going from left to right and top-down
for i in np.arange(row):
for j in np.arange(column):
if M[i][j] == 1:
M[i][j] = L
q.append(M[i-1][j])
q.append(M[i+1][j])
q.append(M[i][j-1])
q.append(M[i][j+1])
#Fifth step
while len(q) != 0: #same as saying 'while q is not empty'
if q[0] == 1:
M[0] = L
q.append(M[i-1][j])
q.append(M[i+1][j])
q.append(M[i][j-1])
q.append(M[i][j+1])
#Sixth step
L = L + 1
#Seventh step: goes to the beginning of the for-cycle
return labels
pyplot.binarize in its most simple form thresholds an image such that any intensity whose value is beyond a certain threshold is assigned a binary 1 / True and a binary 0 / False otherwise. It is actually more sophisticated than this as it uses some image morphology for noise removal as well as use adaptive thresholds to find the most optimal value to separate between foreground and background. As I see this post as more for validating the connected components algorithm you've created, I'm going to assume that the basic algorithm is fine and the actual algorithm to be out of scope for your needs.
Once you read in the image with matplotlib, it is most likely going to be three channels so you'll need to convert the image into grayscale first, then threshold after. We can make this more adaptive based on the number of channels that exist.
Therefore, let's define a function to threshold the image for us. You'll need to play around with the threshold until you get good results. Also take note that plt.imread reads in float32 values, so the threshold will be defined between [0-1]. We can try 0.5 as a good start:
def binarize(im, threshold=0.5):
if len(im.shape) == 3:
gray = 0.299*im[...,0] + 0.587*im[...,1] + 0.114*im[...,2]
else:
gray = im
return (gray >= threshold).astype(np.uint8)
This will check if the input image is in RGB. If it is, convert to grayscale accordingly. The method to convert from RGB to grayscale uses the SMPTE Rec. 709 standard. Once we have the grayscale image, simply return a new image where everything that meets the threshold and beyond gets assigned an integer 1 and everything else is integer 0. I've converted the result to an integer type because your connected components algorithm assumes a 0/1 labelling.
You can then replace your code with:
#First step
Image = plt.imread(image) #reads the image on the argument
M = binarize(Image) #imbinarize() converts an image to a binary matrix
(row, column) = np.M.shape #shape of the matrix
Minor Note
In your test code, you are supplying a test image directly whereas your actual code performs an imread operation. imread expects a string so by specifying the actual array, your code will produce an error. If you want to accommodate for both an array and a string, you should check to see if the input is a string vs. an array:
if type(image) is str:
Image = plt.imread(image) #reads the image on the argument
else:
Image = image
M = binarize(Image) #imbinarize() converts an image to a binary matrix
(row, column) = np.M.shape #shape of the matrix

Filter regions using skimage regionprops and create a mask with filtered components

I have generated a mask through Otsu's Method and now I have to eliminate certain closed regions from it that do not satisfy area or eccentricity conditions.
I label the mask with skimage.measure.label function and then apply skimage.measure.regionprops to it to get information about the area and eccentricity of the regions. The code is the following:
lab_img = label(mask)
regions = regionprops(lab_img)
for region in regions:
if (condition):
# Remove this region
# final_mask = mask (but without the discarded regions)
Does anyone know an efficient way to do this?
Thank you!
Here's one way to get what you want. The critical function is map_array, which lets you remap the values in an array based on input and output values, like with a Python dictionary. So you could create a table of properties using regionprops_table, then use NumPy to filter those columns quickly, and finally, remap using the labels column. Here's an example:
from skimage import measure, util
...
lab_image = measure.label(mask)
# table is a dictionary mapping column names to data columns
# (NumPy arrays)
table = regionprops_table(
lab_image,
properties=('label', 'area', 'eccentricity'),
)
condition = (table['area'] > 10) & (table['eccentricity'] < 0.5)
# zero out labels not meeting condition
input_labels = table['label']
output_labels = input_labels * condition
filtered_lab_image = util.map_array(
lab_image, input_labels, output_labels
)

local histogram equalization in matlab / python

i am very new in matlab. i want to write the code for local histogram equalization . i have been written code for global histogram equalization and i know that local equalization means do equalization for each part of image seperately but my question is that how i should choose this part of images ? for example should i do equalization for each 100 pixel that are neighbor separate of other pixels ? in the other word how i can take apart image to some parts and then do equalization to each part?
The most naive way to do what you ask is split up your image into non-overlapping blocks, do your global histogram code on that block and save it to the output. Suppose you defined the rows and columns of these non-overlapping blocks as the variables rows and cols. In your case, let's say it's 100 x 100, so rows = 100; cols = 100;. You would simply loop over each non-overlapping block, do your histogram equalization then set this to the same locations in the output.
Something like this below, assuming your image is stored in im:
rows = 100;
cols = 100;
out = zeros(size(im)); % Declare output variable
for ii = 1 : rows : size(im, 1)
for jj = 1 : cols : size(im, 2)
% Get the block
row_begin = ii;
row_end = min(size(im, 1), ii + rows);
col_begin = jj;
col_end = min(size(im, 2), jj + cols);
blk = im(row_begin : row_end, col_begin : col_end, :);
% Perform histogram equalization with the block stored in blk
% ...
% Assume the output of this is stored in O
out(row_begin : row_end, col_begin : col_end, :) = O;
end
end
Note the intricacy of the variable blk that stores the non-overlapping block. We let the beginning row and column simply be the loop counter ii and jj, but the ending row and column we must make sure that it's bounded by the dimensions of the image. That's why the min call is there. Otherwise, the ending row and column is simply the beginning row and column added by the size of the block in the corresponding dimensions. Also note that I've used : to index into the third dimension in case you have a colour image. Grayscale should not affect this code. You finally need to use the same indexing when storing the output in the output image. Note that I've assumed this is stored in the variable O which is the output of your customized histogram equalization function.
The output out will contain your locally histogram equalized image. Take note that you could theoretically do this in one line using blockproc in the image processing toolbox if you have it. This processes distinct blocks in your image and applies some function to it. Assuming your histogram equalization function is called hsteq, you would simply do this:
rows = 100; cols = 100;
out = blockproc(im, [rows, cols], #(s) hsteq(s.data));
The first input is the image you want to process, the second input defines the block size and finally the last element is the function you want to apply to each block. Note that blockproc supplies a customized structure into your function and so what is important is that you pull out the data field in the structure. This should produce the same output as the code above with loops.
We can use the tile-based local (adaptive) histogram equalization to implement AHE (as suggested in the other answer), but in that case we need to implement a bilinear interpolation-like technique to prevent sudden change of contrasts at the edges of the window, e.g., observe the equalized output below with python implementation of the same (here a 50x50 window is used for the tile):
def AHE(im, tile_x=8, tile_y=8):
h, w = im.shape
out = np.zeros(im.shape) # Declare output variable
for i in range(0, h, tile_x):
for j in range(0, w, tile_y):
# Get the block
blk = im[i: min(i + tile_x, h), j: min(j + tile_y, w)]
probs = get_distr(blk)
out[i: min(i + tile_x, h), j: min(j + tile_y, w)] = CHE(blk, probs)
return out
def CHE(im, probs):
T = np.array(list(map(int, 255*np.cumsum(probs))))
return T[im]
def get_distr(im):
hist, _ = np.histogram(im.flatten(),256,[0,256])
return hist / hist.sum()
We could instead implement the AHE algorithm from this thesis:
The implementation of algorithm yields better results (without the boundary artifacts):

Filter blobs by meanColor close to a specified colour SimpleCV

SimpleCV has this nifty function to filter blobs based on certain criteria.
blobs.filter(numpytrutharray)
Where numpytrutharray is generated by blobs.[property] [operator] [value].
I need to filter out blobs that are close to a certain colour, SimpleCV uses tuples to store the RGB colour value. Any ideas on how to do that?
If you wanted to do something like
blobs.filter((rmin, gmin, bmin) < blobs.color() < (rmax, gmax, bmax))
then you can immediately stop what were you doing. That's not how Numpy truth array generation works, if you want to filter blobs using that method you need to do this:
red, green, blue = [[],[],[]]
color_array = blobs.color()
# Split the color array into separate lists (channels)
for i in color_array:
red.append(i[0])
green.append(i[1])
blue.append(i[2])
# Convert lists to arrays
red_a = np.array(red)
green_a = np.array(green)
blue_a = np.array(blue)
# Generate truth arrays per channel
red_t = rmin < red_a < rmax
green_t = gmin < green_a < gmax
blue_t = bmin < blue_a < bmax
# Combine truth arrays (* in boolean algebra is the & operator, and that's what numpy uses)
rgb_t = red_t * green_t * blue_t
# Run the filter with our freshly baked truth array
blobs.filter(rgb_t)
Admittedly, a lengthy way to generate the array, but it's probably faster than filtering the color blob by blob manually.

Numpy manipulating array of True values dependent on x/y index

So I have an array (it's large - 2048x2048), and I would like to do some element wise operations dependent on where they are. I'm very confused how to do this (I was told not to use for loops, and when I tried that my IDE froze and it was going really slow).
Onto the question:
h = aperatureimage
h[:,:] = 0
indices = np.where(aperatureimage>1)
for True in h:
h[index] = np.exp(1j*k*z)*np.exp(1j*k*(x**2+y**2)/(2*z))/(1j*wave*z)
So I have an index, which is (I'm assuming here) essentially a 'cropped' version of my larger aperatureimage array. *Note: Aperature image is a grayscale image converted to an array, it has a shape or text on it, and I would like to find all the 'white' regions of the aperature and perform my operation.
How can I access the individual x/y values of index which will allow me to perform my exponential operation? When I try index[:,None], leads to the program spitting out 'ValueError: broadcast dimensions too large'. I also get array is not broadcastable to correct shape. Any help would be appreciated!
One more clarification: x and y are the only values I would like to change (essentially the points in my array where there is white, z, k, and whatever else are defined previously).
EDIT:
I'm not sure the code I posted above is correct, it returns two empty arrays. When I do this though
index = (aperatureimage==1)
print len(index)
Actually, nothing I've done so far works correctly. I have a 2048x2048 image with a 128x128 white square in the middle of it. I would like to convert this image to an array, look through all the values and determine the index values (x,y) where the array is not black (I only have white/black, bilevel image didn't work for me). I would then like to take all the values (x,y) where the array is not 0, and multiply them by the h[index] value listed above.
I can post more information if necessary. If you can't tell, I'm stuck.
EDIT2: Here's some code that might help - I think I have the problem above solved (I can now access members of the array and perform operations on them). But - for some reason the Fx values in my for loop never increase, it loops Fy forever....
import sys, os
from scipy.signal import *
import numpy as np
import Image, ImageDraw, ImageFont, ImageOps, ImageEnhance, ImageColor
def createImage(aperature, type):
imsize = aperature*8
middle = imsize/2
im = Image.new("L", (imsize,imsize))
draw = ImageDraw.Draw(im)
box = ((middle-aperature/2, middle-aperature/2), (middle+aperature/2, middle+aperature/2))
import sys, os
from scipy.signal import *
import numpy as np
import Image, ImageDraw, ImageFont, ImageOps, ImageEnhance, ImageColor
def createImage(aperature, type):
imsize = aperature*8 #Add 0 padding to make it nice
middle = imsize/2 # The middle (physical 0) of our image will be the imagesize/2
im = Image.new("L", (imsize,imsize)) #Make a grayscale image with imsize*imsize pixels
draw = ImageDraw.Draw(im) #Create a new draw method
box = ((middle-aperature/2, middle-aperature/2), (middle+aperature/2, middle+aperature/2)) #Bounding box for aperature
if type == 'Rectangle':
draw.rectangle(box, fill = 'white') #Draw rectangle in the box and color it white
del draw
return im, middle
def Diffraction(aperaturediameter = 1, type = 'Rectangle', z = 2000000, wave = .001):
# Constants
deltaF = 1/8 # Image will be 8mm wide
z = 1/3.
wave = 0.001
k = 2*pi/wave
# Now let's get to work
aperature = aperaturediameter * 128 # Aperaturediameter (in mm) to some pixels
im, middle = createImage(aperature, type) #Create an image depending on type of aperature
aperaturearray = np.array(im) # Turn image into numpy array
# Fourier Transform of Aperature
Ta = np.fft.fftshift(np.fft.fft2(aperaturearray))/(len(aperaturearray))
# Transforming and calculating of Transfer Function Method
H = aperaturearray.copy() # Copy image so H (transfer function) has the same dimensions as aperaturearray
H[:,:] = 0 # Set H to 0
U = aperaturearray.copy()
U[:,:] = 0
index = np.nonzero(aperaturearray) # Find nonzero elements of aperaturearray
H[index[0],index[1]] = np.exp(1j*k*z)*np.exp(-1j*k*wave*z*((index[0]-middle)**2+(index[1]-middle)**2)) # Free space transfer for ap array
Utfm = abs(np.fft.fftshift(np.fft.ifft2(Ta*H))) # Compute intensity at distance z
# Fourier Integral Method
apindex = np.nonzero(aperaturearray)
U[index[0],index[1]] = aperaturearray[index[0],index[1]] * np.exp(1j*k*((index[0]-middle)**2+(index[1]-middle)**2)/(2*z))
Ufim = abs(np.fft.fftshift(np.fft.fft2(U))/len(U))
# Save image
fim = Image.fromarray(np.uint8(Ufim))
fim.save("PATH\Fim.jpg")
ftfm = Image.fromarray(np.uint8(Utfm))
ftfm.save("PATH\FTFM.jpg")
print "that may have worked..."
return
if __name__ == '__main__':
Diffraction()
You'll need numpy, scipy, and PIL to work with this code.
When I run this, it goes through the code, but there is no data in them (everything is black). Now I have a real problem here as I don't entirely understand the math I'm doing (this is for HW), and I don't have a firm grasp on Python.
U[index[0],index[1]] = aperaturearray[index[0],index[1]] * np.exp(1j*k*((index[0]-middle)**2+(index[1]-middle)**2)/(2*z))
Should that line work for performing elementwise calculations on my array?
Could you perhaps post a minimal, yet complete, example? One that we can copy/paste and run ourselves?
In the meantime, in the first two lines of your current example:
h = aperatureimage
h[:,:] = 0
you set both 'aperatureimage' and 'h' to 0. That's probably not what you intended. You might want to consider:
h = aperatureimage.copy()
This generates a copy of aperatureimage while your code simply points h to the same array as aperatureimage. So changing one changes the other.
Be aware, copying very large arrays might cost you more memory then you would prefer.
What I think you are trying to do is this:
import numpy as np
N = 2048
M = 64
a = np.zeros((N, N))
a[N/2-M:N/2+M,N/2-M:N/2+M]=1
x,y = np.meshgrid(np.linspace(0, 1, N), np.linspace(0, 1, N))
b = a.copy()
indices = np.where(a>0)
b[indices] = np.exp(x[indices]**2+y[indices]**2)
Or something similar. This, in any case, sets some values in 'b' based on the x/y coordinates where 'a' is bigger than 0. Try visualizing it with imshow. Good luck!
Concerning the edit
You should normalize your output so it fits in the 8 bit integer. Currently, one of your arrays has a maximum value much larger than 255 and one has a maximum much smaller. Try this instead:
fim = Image.fromarray(np.uint8(255*Ufim/np.amax(Ufim)))
fim.save("PATH\Fim.jpg")
ftfm = Image.fromarray(np.uint8(255*Utfm/np.amax(Utfm)))
ftfm.save("PATH\FTFM.jpg")
Also consider np.zeros_like() instead of copying and clearing H and U.
Finally, I personally very much like working with ipython when developing something like this. If you put the code in your Diffraction function in the top level of your script (in place of 'if __ name __ &c.'), then you can access the variables directly from ipython. A quick command like np.amax(Utfm) would show you that there are indeed values!=0. imshow() is always nice to look at matrices.

Categories