Replace property attribute with a normal attribute - python

Is it possible to replace a property of an object with 'normal' attribute?
I need this because when I access the attribute for the first, I want the value to be generated by the property. But I no longer need the property afterward:
class A(object):
#property
def x(self):
self.x = "toto" # Replace property, fail because no setter
return self.x
a = A()
print a.x # "toto"
a.x = "tata"
I know I can store the value in a second attribute like _xand check in the property if _x exist but I want to know if it's possible the replace the property itself.

To bypass the lack of a setter, you'd have to directly manipulate the instance __dict__ dictionary. However, you can't do what you want with a regular property object, because it is a data descriptor. Attribute access will always give a data descriptor priority over instance attributes.
You'd have to create a custom descriptor instead, one that doesn't define a __set__ or __delete__ method:
class CachingProperty(object):
def __init__(self, fget):
self.name = fget.__name__
self.fget = fget
def __get__(self, instance, owner):
if instance is None:
return self
value = self.fget(instance)
instance.__dict__[self.name] = value
return value
This descriptor also takes care of setting the value directly in the instance __dict__ attribute, thus creating an instance attribute.
Use the above class instead of property:
class A(object):
#CachingProperty
def x(self):
return "toto"
Demo, showing that the getter method is only called once:
>>> class Demo(object):
... #CachingProperty
... def foo(self):
... print("Calling the foo property")
... return "bar"
...
>>> d = Demo()
>>> d.foo
Calling the foo property
'bar'
>>> d.foo
'bar'
>>> vars(d)
{'foo': 'bar'}

Related

Python setter and getter for class attributes [duplicate]

I have a class with two class methods (using the classmethod() function) for getting and setting what is essentially a static variable. I tried to use the property() function with these, but it results in an error. I was able to reproduce the error with the following in the interpreter:
class Foo(object):
_var = 5
#classmethod
def getvar(cls):
return cls._var
#classmethod
def setvar(cls, value):
cls._var = value
var = property(getvar, setvar)
I can demonstrate the class methods, but they don't work as properties:
>>> f = Foo()
>>> f.getvar()
5
>>> f.setvar(4)
>>> f.getvar()
4
>>> f.var
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: 'classmethod' object is not callable
>>> f.var=5
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: 'classmethod' object is not callable
Is it possible to use the property() function with #classmethod decorated functions?
3.8 < Python < 3.11
Can use both decorators together. See this answer.
Python < 3.9
A property is created on a class but affects an instance. So if you want a classmethod property, create the property on the metaclass.
>>> class foo(object):
... _var = 5
... class __metaclass__(type): # Python 2 syntax for metaclasses
... pass
... #classmethod
... def getvar(cls):
... return cls._var
... #classmethod
... def setvar(cls, value):
... cls._var = value
...
>>> foo.__metaclass__.var = property(foo.getvar.im_func, foo.setvar.im_func)
>>> foo.var
5
>>> foo.var = 3
>>> foo.var
3
But since you're using a metaclass anyway, it will read better if you just move the classmethods in there.
>>> class foo(object):
... _var = 5
... class __metaclass__(type): # Python 2 syntax for metaclasses
... #property
... def var(cls):
... return cls._var
... #var.setter
... def var(cls, value):
... cls._var = value
...
>>> foo.var
5
>>> foo.var = 3
>>> foo.var
3
or, using Python 3's metaclass=... syntax, and the metaclass defined outside of the foo class body, and the metaclass responsible for setting the initial value of _var:
>>> class foo_meta(type):
... def __init__(cls, *args, **kwargs):
... cls._var = 5
... #property
... def var(cls):
... return cls._var
... #var.setter
... def var(cls, value):
... cls._var = value
...
>>> class foo(metaclass=foo_meta):
... pass
...
>>> foo.var
5
>>> foo.var = 3
>>> foo.var
3
In Python 3.9 You could use them together, but (as noted in #xgt's comment) it was deprecated in Python 3.11, so it is not recommended to use it.
Check the version remarks here:
https://docs.python.org/3.11/library/functions.html#classmethod
However, it used to work like so:
class G:
#classmethod
#property
def __doc__(cls):
return f'A doc for {cls.__name__!r}'
Order matters - due to how the descriptors interact, #classmethod has to be on top.
I hope this dead-simple read-only #classproperty decorator would help somebody looking for classproperties.
class classproperty(property):
def __get__(self, owner_self, owner_cls):
return self.fget(owner_cls)
class C(object):
#classproperty
def x(cls):
return 1
assert C.x == 1
assert C().x == 1
Reading the Python 2.2 release notes, I find the following.
The get method [of a property] won't be called when
the property is accessed as a class
attribute (C.x) instead of as an
instance attribute (C().x). If you
want to override the __get__ operation
for properties when used as a class
attribute, you can subclass property -
it is a new-style type itself - to
extend its __get__ method, or you can
define a descriptor type from scratch
by creating a new-style class that
defines __get__, __set__ and
__delete__ methods.
NOTE: The below method doesn't actually work for setters, only getters.
Therefore, I believe the prescribed solution is to create a ClassProperty as a subclass of property.
class ClassProperty(property):
def __get__(self, cls, owner):
return self.fget.__get__(None, owner)()
class foo(object):
_var=5
def getvar(cls):
return cls._var
getvar=classmethod(getvar)
def setvar(cls,value):
cls._var=value
setvar=classmethod(setvar)
var=ClassProperty(getvar,setvar)
assert foo.getvar() == 5
foo.setvar(4)
assert foo.getvar() == 4
assert foo.var == 4
foo.var = 3
assert foo.var == 3
However, the setters don't actually work:
foo.var = 4
assert foo.var == foo._var # raises AssertionError
foo._var is unchanged, you've simply overwritten the property with a new value.
You can also use ClassProperty as a decorator:
class foo(object):
_var = 5
#ClassProperty
#classmethod
def var(cls):
return cls._var
#var.setter
#classmethod
def var(cls, value):
cls._var = value
assert foo.var == 5
Is it possible to use the property() function with classmethod decorated functions?
No.
However, a classmethod is simply a bound method (a partial function) on a class accessible from instances of that class.
Since the instance is a function of the class and you can derive the class from the instance, you can can get whatever desired behavior you might want from a class-property with property:
class Example(object):
_class_property = None
#property
def class_property(self):
return self._class_property
#class_property.setter
def class_property(self, value):
type(self)._class_property = value
#class_property.deleter
def class_property(self):
del type(self)._class_property
This code can be used to test - it should pass without raising any errors:
ex1 = Example()
ex2 = Example()
ex1.class_property = None
ex2.class_property = 'Example'
assert ex1.class_property is ex2.class_property
del ex2.class_property
assert not hasattr(ex1, 'class_property')
And note that we didn't need metaclasses at all - and you don't directly access a metaclass through its classes' instances anyways.
writing a #classproperty decorator
You can actually create a classproperty decorator in just a few lines of code by subclassing property (it's implemented in C, but you can see equivalent Python here):
class classproperty(property):
def __get__(self, obj, objtype=None):
return super(classproperty, self).__get__(objtype)
def __set__(self, obj, value):
super(classproperty, self).__set__(type(obj), value)
def __delete__(self, obj):
super(classproperty, self).__delete__(type(obj))
Then treat the decorator as if it were a classmethod combined with property:
class Foo(object):
_bar = 5
#classproperty
def bar(cls):
"""this is the bar attribute - each subclass of Foo gets its own.
Lookups should follow the method resolution order.
"""
return cls._bar
#bar.setter
def bar(cls, value):
cls._bar = value
#bar.deleter
def bar(cls):
del cls._bar
And this code should work without errors:
def main():
f = Foo()
print(f.bar)
f.bar = 4
print(f.bar)
del f.bar
try:
f.bar
except AttributeError:
pass
else:
raise RuntimeError('f.bar must have worked - inconceivable!')
help(f) # includes the Foo.bar help.
f.bar = 5
class Bar(Foo):
"a subclass of Foo, nothing more"
help(Bar) # includes the Foo.bar help!
b = Bar()
b.bar = 'baz'
print(b.bar) # prints baz
del b.bar
print(b.bar) # prints 5 - looked up from Foo!
if __name__ == '__main__':
main()
But I'm not sure how well-advised this would be. An old mailing list article suggests it shouldn't work.
Getting the property to work on the class:
The downside of the above is that the "class property" isn't accessible from the class, because it would simply overwrite the data descriptor from the class __dict__.
However, we can override this with a property defined in the metaclass __dict__. For example:
class MetaWithFooClassProperty(type):
#property
def foo(cls):
"""The foo property is a function of the class -
in this case, the trivial case of the identity function.
"""
return cls
And then a class instance of the metaclass could have a property that accesses the class's property using the principle already demonstrated in the prior sections:
class FooClassProperty(metaclass=MetaWithFooClassProperty):
#property
def foo(self):
"""access the class's property"""
return type(self).foo
And now we see both the instance
>>> FooClassProperty().foo
<class '__main__.FooClassProperty'>
and the class
>>> FooClassProperty.foo
<class '__main__.FooClassProperty'>
have access to the class property.
Python 3!
See #Amit Portnoy's answer for an even cleaner method in python >= 3.9
Old question, lots of views, sorely in need of a one-true Python 3 way.
Luckily, it's easy with the metaclass kwarg:
class FooProperties(type):
#property
def var(cls):
return cls._var
class Foo(object, metaclass=FooProperties):
_var = 'FOO!'
Then, >>> Foo.var
'FOO!'
There is no reasonable way to make this "class property" system to work in Python.
Here is one unreasonable way to make it work. You can certainly make it more seamless with increasing amounts of metaclass magic.
class ClassProperty(object):
def __init__(self, getter, setter):
self.getter = getter
self.setter = setter
def __get__(self, cls, owner):
return getattr(cls, self.getter)()
def __set__(self, cls, value):
getattr(cls, self.setter)(value)
class MetaFoo(type):
var = ClassProperty('getvar', 'setvar')
class Foo(object):
__metaclass__ = MetaFoo
_var = 5
#classmethod
def getvar(cls):
print "Getting var =", cls._var
return cls._var
#classmethod
def setvar(cls, value):
print "Setting var =", value
cls._var = value
x = Foo.var
print "Foo.var = ", x
Foo.var = 42
x = Foo.var
print "Foo.var = ", x
The knot of the issue is that properties are what Python calls "descriptors". There is no short and easy way to explain how this sort of metaprogramming works, so I must point you to the descriptor howto.
You only ever need to understand this sort of things if you are implementing a fairly advanced framework. Like a transparent object persistence or RPC system, or a kind of domain-specific language.
However, in a comment to a previous answer, you say that you
need to modify an attribute that in such a way that is seen by all instances of a class, and in the scope from which these class methods are called does not have references to all instances of the class.
It seems to me, what you really want is an Observer design pattern.
Setting it only on the meta class doesn't help if you want to access the class property via an instantiated object, in this case you need to install a normal property on the object as well (which dispatches to the class property). I think the following is a bit more clear:
#!/usr/bin/python
class classproperty(property):
def __get__(self, obj, type_):
return self.fget.__get__(None, type_)()
def __set__(self, obj, value):
cls = type(obj)
return self.fset.__get__(None, cls)(value)
class A (object):
_foo = 1
#classproperty
#classmethod
def foo(cls):
return cls._foo
#foo.setter
#classmethod
def foo(cls, value):
cls.foo = value
a = A()
print a.foo
b = A()
print b.foo
b.foo = 5
print a.foo
A.foo = 10
print b.foo
print A.foo
Half a solution, __set__ on the class does not work, still. The solution is a custom property class implementing both a property and a staticmethod
class ClassProperty(object):
def __init__(self, fget, fset):
self.fget = fget
self.fset = fset
def __get__(self, instance, owner):
return self.fget()
def __set__(self, instance, value):
self.fset(value)
class Foo(object):
_bar = 1
def get_bar():
print 'getting'
return Foo._bar
def set_bar(value):
print 'setting'
Foo._bar = value
bar = ClassProperty(get_bar, set_bar)
f = Foo()
#__get__ works
f.bar
Foo.bar
f.bar = 2
Foo.bar = 3 #__set__ does not
Because I need to modify an attribute that in such a way that is seen by all instances of a class, and in the scope from which these class methods are called does not have references to all instances of the class.
Do you have access to at least one instance of the class? I can think of a way to do it then:
class MyClass (object):
__var = None
def _set_var (self, value):
type (self).__var = value
def _get_var (self):
return self.__var
var = property (_get_var, _set_var)
a = MyClass ()
b = MyClass ()
a.var = "foo"
print b.var
Give this a try, it gets the job done without having to change/add a lot of existing code.
>>> class foo(object):
... _var = 5
... def getvar(cls):
... return cls._var
... getvar = classmethod(getvar)
... def setvar(cls, value):
... cls._var = value
... setvar = classmethod(setvar)
... var = property(lambda self: self.getvar(), lambda self, val: self.setvar(val))
...
>>> f = foo()
>>> f.var
5
>>> f.var = 3
>>> f.var
3
The property function needs two callable arguments. give them lambda wrappers (which it passes the instance as its first argument) and all is well.
Here's a solution which should work for both access via the class and access via an instance which uses a metaclass.
In [1]: class ClassPropertyMeta(type):
...: #property
...: def prop(cls):
...: return cls._prop
...: def __new__(cls, name, parents, dct):
...: # This makes overriding __getattr__ and __setattr__ in the class impossible, but should be fixable
...: dct['__getattr__'] = classmethod(lambda cls, attr: getattr(cls, attr))
...: dct['__setattr__'] = classmethod(lambda cls, attr, val: setattr(cls, attr, val))
...: return super(ClassPropertyMeta, cls).__new__(cls, name, parents, dct)
...:
In [2]: class ClassProperty(object):
...: __metaclass__ = ClassPropertyMeta
...: _prop = 42
...: def __getattr__(self, attr):
...: raise Exception('Never gets called')
...:
In [3]: ClassProperty.prop
Out[3]: 42
In [4]: ClassProperty.prop = 1
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-4-e2e8b423818a> in <module>()
----> 1 ClassProperty.prop = 1
AttributeError: can't set attribute
In [5]: cp = ClassProperty()
In [6]: cp.prop
Out[6]: 42
In [7]: cp.prop = 1
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-7-e8284a3ee950> in <module>()
----> 1 cp.prop = 1
<ipython-input-1-16b7c320d521> in <lambda>(cls, attr, val)
6 # This makes overriding __getattr__ and __setattr__ in the class impossible, but should be fixable
7 dct['__getattr__'] = classmethod(lambda cls, attr: getattr(cls, attr))
----> 8 dct['__setattr__'] = classmethod(lambda cls, attr, val: setattr(cls, attr, val))
9 return super(ClassPropertyMeta, cls).__new__(cls, name, parents, dct)
AttributeError: can't set attribute
This also works with a setter defined in the metaclass.
I found one clean solution to this problem. It's a package called classutilities (pip install classutilities), see the documentation here on PyPi.
Consider example:
import classutilities
class SomeClass(classutilities.ClassPropertiesMixin):
_some_variable = 8 # Some encapsulated class variable
#classutilities.classproperty
def some_variable(cls): # class property getter
return cls._some_variable
#some_variable.setter
def some_variable(cls, value): # class property setter
cls._some_variable = value
You can use it on both class level and instance level:
# Getter on class level:
value = SomeClass.some_variable
print(value) # >>> 8
# Getter on instance level
inst = SomeClass()
value = inst.some_variable
print(value) # >>> 8
# Setter on class level:
new_value = 9
SomeClass.some_variable = new_value
print(SomeClass.some_variable) # >>> 9
print(SomeClass._some_variable) # >>> 9
# Setter on instance level
inst = SomeClass()
inst.some_variable = new_value
print(SomeClass.some_variable) # >>> 9
print(SomeClass._some_variable) # >>> 9
print(inst.some_variable) # >>> 9
print(inst._some_variable) # >>> 9
As you can see, it works correctly under all circumstances.
Based on https://stackoverflow.com/a/1800999/2290820
class MetaProperty(type):
def __init__(cls, *args, **kwargs):
super()
#property
def praparty(cls):
return cls._var
#praparty.setter
def praparty(cls, val):
cls._var = val
class A(metaclass=MetaProperty):
_var = 5
print(A.praparty)
A.praparty = 6
print(A.praparty)
For a functional approach pre Python 3.9 you can use this:
def classproperty(fget):
return type(
'classproperty',
(),
{'__get__': lambda self, _, cls: fget(cls), '__module__': None}
)()
class Item:
a = 47
#classproperty
def x(cls):
return cls.a
Item.x
After searching different places, I found a method to define a classproperty
valid with Python 2 and 3.
from future.utils import with_metaclass
class BuilderMetaClass(type):
#property
def load_namespaces(self):
return (self.__sourcepath__)
class BuilderMixin(with_metaclass(BuilderMetaClass, object)):
__sourcepath__ = 'sp'
print(BuilderMixin.load_namespaces)
Hope this can help somebody :)
A code completion friendly solution for Python < 3.9
from typing import (
Callable,
Generic,
TypeVar,
)
T = TypeVar('T')
class classproperty(Generic[T]):
"""Converts a method to a class property.
"""
def __init__(self, f: Callable[..., T]):
self.fget = f
def __get__(self, instance, owner) -> T:
return self.fget(owner)
Here is my solution that also caches the class property
class class_property(object):
# this caches the result of the function call for fn with cls input
# use this as a decorator on function methods that you want converted
# into cached properties
def __init__(self, fn):
self._fn_name = fn.__name__
if not isinstance(fn, (classmethod, staticmethod)):
fn = classmethod(fn)
self._fn = fn
def __get__(self, obj, cls=None):
if cls is None:
cls = type(obj)
if (
self._fn_name in vars(cls) and
type(vars(cls)[self._fn_name]).__name__ != "class_property"
):
return vars(cls)[self._fn_name]
else:
value = self._fn.__get__(obj, cls)()
setattr(cls, self._fn_name, value)
return value
Here's my suggestion. Don't use class methods.
Seriously.
What's the reason for using class methods in this case? Why not have an ordinary object of an ordinary class?
If you simply want to change the value, a property isn't really very helpful is it? Just set the attribute value and be done with it.
A property should only be used if there's something to conceal -- something that might change in a future implementation.
Maybe your example is way stripped down, and there is some hellish calculation you've left off. But it doesn't look like the property adds significant value.
The Java-influenced "privacy" techniques (in Python, attribute names that begin with _) aren't really very helpful. Private from whom? The point of private is a little nebulous when you have the source (as you do in Python.)
The Java-influenced EJB-style getters and setters (often done as properties in Python) are there to facilitate Java's primitive introspection as well as to pass muster with the static language compiler. All those getters and setters aren't as helpful in Python.

Python: overloading the __getattr__ and properties, making __setattr__ work correctly

Consider the following python code:
class Foo(object):
def __init__(self, value):
self._value = value
#property
def value(self):
return "value: {v}".format(v=self._value)
#value.setter
def value(self, value):
self._value = value
class Bar(object):
def __init__(self):
self.foo = Foo('foo')
def __getattr__(self, attr, *args, **kwargs):
"""
Intercepts attribute calls, and if we don't have it, look at the
webelement to see if it has the attribute.
"""
# Check first to see if it looks like a method, if not then just return
# the attribute the way it is.
# Note: this has only been tested with variables, and methods.
if not hasattr(getattr(self.foo, attr), '__call__'):
return getattr(self.foo, attr)
def callable(*args, **kwargs):
'''
Returns the method from the webelement module if found
'''
return getattr(self.foo, attr)(*args, **kwargs)
return callable
>>> b = Bar()
>>> b.foo
<__main__.Foo object at 0x819410>
>>> b.foo.value
'value: foo'
>>> b.foo.value = '2'
>>> b.foo.value
'value: 2'
>>> b.value
'value: 2'
>>> b.value = '3'
>>> b.value
'3'
That last part, I want it to be 'value: 3' instead of '3' because now my property 'value' is now an attribute instead.
Is it possible, and if it is how would I would I do that.
Your __getattr__ returns the property value, not the property itself. When you access getattr(self.foo, attr) it does the equivalent of self.foo.value and returns that, and the property is called at that time.
You thus need to implement a __setattr__ method too, to mirror the __getattr__ and pass on the value setting to the contained foo object.
Under the hood, Python implements properties as descriptors; their __get__() method is called by the lower-level __getattribute__ method, which causes them to return their computed value. It is never the property object itself that is returned.
Here's an example __setattr__:
def __setattr__(self, attr, value):
if hasattr(self, 'foo') and hasattr(self.foo, attr):
setattr(self.foo, attr, value)
return
super(Bar, self).__setattr__(attr, value)
Note: because your __init__ sets self.foo, you need to test if foo exists on your class (hasattr(self, 'foo'). You also need to call the original __setattr__ implementation to make sure that things like self.foo = Foo() work still.

Get the attributes of a class

Is there any universal way to get the attributes of a class by class name and instance?
class A:
def __init__(self):
self.prop = 1
a = A()
for attr, value in a.__dict__.items():
print(attr, value) # prop, 1
.
class A:
def __init__(self):
self.prop = 1
for attr, value in A.__dict__.items():
print(attr, value)
#__dict__, __doc__, __init__, __module__, __weakref__
Why the last example returns dir attibutes why the results differ?
__dict__, __doc__, __module__, ... are actually present in a class, even you haven't created them. They are 'built-in'.
So it's normal that dir shows them to you.
__dict__ attribute in an instance stores instance attributes.
class A:
def __init__(self):
self.prop = 1
a = A()
for attr, value in a.__dict__.items():
print(attr, value)
This shows instance attributes. And there is just one instance attribute - prop (self.prop = 1)
for attr, value in A.__dict__.items():
And this gets class attributes. prop was added to an instance, so it's not here.
See http://docs.python.org/library/stdtypes.html#special-attributes
To get from an object all attributes, including class attributes, base class attributes, use inspect.getmembers

Replace property for perfomance gain

Situation
Similar to this question, I want to replace a property. Unlike that question, I do not want to override it in a sub-class. I want to replace it in the init and in the property itself for efficiency, so that it doesn't have to call a function which calculates the value each time the property is called.
I have a class which has a property on it. The constructor may take the value of the property. If it is passed the value, I want to replace the property with the value (not just set the property). This is because the property itself calculates the value, which is an expensive operation. Similarly, I want to replace the property with the value calculated by the property once it has been calculated, so that future calls to the property do not have to re-calculate:
class MyClass(object):
def __init__(self, someVar=None):
if someVar is not None: self.someVar = someVar
#property
def someVar(self):
self.someVar = calc_some_var()
return self.someVar
Problem
The above code does not work because doing self.someVar = does not replace the someVar function. It tries to call the property's setter, which is not defined.
Potential Solution
I know I can achieve the same thing in a slightly different way as follows:
class MyClass(object):
def __init__(self, someVar=None):
self._someVar = someVar
#property
def someVar(self):
if self._someVar is None:
self._someVar = calc_some_var()
return self._someVar
This will be marginally less efficient as it will have to check for None every time the property is called. The application is performance critical, so this may or may not be good enough.
Question
Is there a way to replace a property on an instance of a class? How much more efficient would it be if I was able to do this (i.e. avoiding a None check and a function call)?
What you are looking for is Denis Otkidach's excellent CachedAttribute:
class CachedAttribute(object):
'''Computes attribute value and caches it in the instance.
From the Python Cookbook (Denis Otkidach)
This decorator allows you to create a property which can be computed once and
accessed many times. Sort of like memoization.
'''
def __init__(self, method, name=None):
# record the unbound-method and the name
self.method = method
self.name = name or method.__name__
self.__doc__ = method.__doc__
def __get__(self, inst, cls):
# self: <__main__.cache object at 0xb781340c>
# inst: <__main__.Foo object at 0xb781348c>
# cls: <class '__main__.Foo'>
if inst is None:
# instance attribute accessed on class, return self
# You get here if you write `Foo.bar`
return self
# compute, cache and return the instance's attribute value
result = self.method(inst)
# setattr redefines the instance's attribute so this doesn't get called again
setattr(inst, self.name, result)
return result
It can be used like this:
def demo_cache():
class Foo(object):
#CachedAttribute
def bar(self):
print 'Calculating self.bar'
return 42
foo=Foo()
print(foo.bar)
# Calculating self.bar
# 42
Notice that accessing foo.bar subsequent times does not call the getter function. (Calculating self.bar is not printed.)
print(foo.bar)
# 42
foo.bar=1
print(foo.bar)
# 1
Deleting foo.bar from foo.__dict__ re-exposes the property defined in Foo.
Thus, calling foo.bar again recalculates the value again.
del foo.bar
print(foo.bar)
# Calculating self.bar
# 42
demo_cache()
The decorator was published in the Python Cookbook and can also be found on ActiveState.
This is efficient because although the property exists in the class's __dict__, after computation, an attribute of the same name is created in the instance's __dict__. Python's attribute lookup rules gives precedence to the attribute in the instance's __dict__, so the property in class becomes effectively overridden.
Sure, you can set the attribute in the private dictionary of the class instance, which takes precedence before calling the property function foo (which is in the static dictionary A.__dict__)
class A:
def __init__(self):
self._foo = 5
self.__dict__['foo'] = 10
#property
def foo(self):
return self._foo
assert A().foo == 10
If you want to reset again to work on the property, just del self.__dict__['foo']
class MaskingProperty():
def __init__(self, fget=None, name=None, doc=None):
self.fget = fget
if fget is not None:
self.name = fget.__name__
self.__doc__ = doc or fget.__doc__
def __call__(self, func):
self.fget = func
self.name = func.__name__
if not self.__doc__:
self.__doc__ = func.__doc__
return self
def __get__(self, instance, cls):
if instance is None:
return self
if self.fget is None:
raise AttributeError("seriously confused attribute <%s.%s>" % (cls, self.name))
result = self.fget(instance)
setattr(instance, self.name, result)
return result
This is basically the same as Denis Otkidach's CachedAttribute, but slightly more robust in that it allows either:
#MaskingProperty
def spam(self):
...
or
#MaskingProperty() # notice the parens! ;)
def spam(self):
...
You can change what code a function has by replacing the functions's __code__object with the __code__ object from another function.
Here is a decorator function that I created to do just that for you. Feel free to modify it as you see fit. The big thing to remember though is that the both functions need to have the same number of 'free variables' to be swapped like this. This can easily be done by using nonlocal to force it (as shown below).
NULL = object()
def makeProperty(variable = None, default = NULL, defaultVariable = None):
"""Crates a property using the decorated function as the getter.
The docstring of the decorated function becomes the docstring for the property.
variable (str) - The name of the variable in 'self' to use for the property
- If None: uses the name of 'function' prefixed by an underscore
default (any) - What value to initialize 'variable' in 'self' as if it does not yet exist
- If NULL: Checks for a kwarg in 'function' that matches 'defaultVariable'
defaultVariable (str) - The name of a kwarg in 'function' to use for 'default'
- If None: Uses "default"
Note: this must be a kwarg, not an arg with a default; this means it must appear after *
___________________________________________________________
Example Use:
class Test():
#makeProperty()
def x(self, value, *, default = 0):
'''Lorem ipsum'''
return f"The value is {value}"
test = Test()
print(test.x) #The value is 0
test.x = 1
print(test.x) #The value is 1
Equivalent Use:
#makeProperty(defaultVariable = "someKwarg")
def x(self, value, *, someKwarg = 0):
Equivalent Use:
#makeProperty(default = 0)
def x(self, value):
___________________________________________________________
"""
def decorator(function):
_variable = variable or f"_{function.__name__}"
if (default is not NULL):
_default = default
elif (function.__kwdefaults__ is not None):
_default = function.__kwdefaults__.get(defaultVariable or "default")
else:
_default = None
def fget(self):
nonlocal fget_runOnce, fget, fset, _default #Both functions must have the same number of 'free variables' to replace __code__
return getattr(self, _variable)
def fget_runOnce(self):
if (not hasattr(self, _variable)):
fset(self, _default)
fget_runOnce.__code__ = fget.__code__
return getattr(self, _variable)
def fset(self, value):
setattr(self, _variable, function(self, value))
def fdel(self):
delattr(self, _variable)
return property(fget_runOnce, fset, fdel, function.__doc__)
return decorator

What does 'self' refer to in a #classmethod?

I thought I was starting to get a grip on "the Python way" of programming. Methods of a class accept self as the first parameter to refer to the instance of the class whose context the method is being called in. The #classmethod decorator refers to a method whose functionality is associated with the class, but which doesn't reference a specific instance.
So, what does the first parameter of a #classmethod (canonically 'self') refer to if the method is meant to be called without an instance reference?
class itself:
A class method receives the class as implicit first argument, just like an instance method receives the instance.
class C:
#classmethod
def f(cls):
print(cls.__name__, type(cls))
>>> C.f()
C <class 'type'>
and it's cls canonically, btw
The first parameter of a classmethod is named cls by convention and refers to the the class object on which the method it was invoked.
>>> class A(object):
... #classmethod
... def m(cls):
... print cls is A
... print issubclass(cls, A)
>>> class B(A): pass
>>> a = A()
>>> a.m()
True
True
>>> b = B()
>>> b.m()
False
True
The class object gets passed as the first parameter. For example:
class Foo(object):
#classmethod
def bar(self):
return self()
Would return an instance of the Foo class.
EDIT:
Note that the last line would be self() not self. self would return the class itself, while self() returns an instance.
Django does some strange stuff with a class method here:
class BaseFormSet(StrAndUnicode):
"""
A collection of instances of the same Form class.
"""
def __init__(self, data=None, files=None, auto_id='id_%s', prefix=None,
initial=None, error_class=ErrorList):
...
self.prefix = prefix or self.get_default_prefix()
...
Even though get_default_prefix is declared this way (in the same class):
#classmethod
def get_default_prefix(cls):
return 'form'

Categories