Related
I created an iterator to increment the figure number in various plotting function calls:
figndx=itertools.count()
I then proceed to call these throughout my code, passing next(figndx) as an argument to increment the value I use for the figure number: - for ex:
an.plotimg(ref_frame,next(figndx),'Ref Frame')
an.plotimg(new_frame,next(figndx),'New Frame')
etc...
After some particular function call, I want to read back the figndx value and store it in a variable for later use. However, when I look at figndx , it returns count(7), for example. How do I extract the '7' from this?
I've tried :
figndx
figndx.__iter__()
and I can't find anything else in the 'suggested' methods (when I type the dot (.)) that will get the actual iterator value. Can this be done?
`
Just wrap a count object
class MyCount:
def __init__(self, *args, **kwargs):
self._c = itertools.count(*args, **kwargs)
self._current = next(self._c)
def __next__(self):
current = self._current
self._current = next(self._c)
return current
def __iter__(self):
return self
def peek(self):
return self._current
You can create yourself a peeker, using itertools.tee, and encapsulate the peek:
from itertools import count, tee
def peek(iterator):
iterator, peeker = tee(iterator)
return iterator, next(peeker)
Then you can call it like
figndx = count(1)
next(figndx)
next(figndx)
figndx, next_value = peek(figndx)
next_value
# 3
I often find myself using a pattern like this:
num_repeats = 123
interval = 12
for _ in xrange(num_repeats):
result = ...
if result meets condition:
break
time.sleep(interval)
else:
raise Failed despite multiple attempts
Basically, it repeats code until the correct result is returned, or the counter expires.
Although this works, it looks too verbose to me. Is it possible to "parametrize" this loop to a reusable function or context manager, like for example
with repeat(num_repeats, interval):
code
Or maybe there's something in the standard library that would do the trick?
You can use a generator which sleeps before returning repeated results.
The advantage is that your caller is still a genuine for loop, with
all the break, continue, else semantics still in tact.
def trickle_range(num_repeats, interval):
yield 0
for k in xrange(1, num_repeats):
time.sleep(interval)
yield k
for k in trickle_range(num_repeats, interval):
... do stuff, iterate or break as you like ...
You definately won't be able to use the with statement, as python only supplies hooks before and after the code has run, but not one for invoking it, ie. You can't hide a loop within a with statement.
A nice approach is to use a lambda function:
def repeat(repeats, interval, func):
for i in xrange(repeats):
if func(i):
break
time.sleep(interval)
Which you can then use quite easily:
repeat(123, 12, lambda i: condition(i))
Or something similar
One approach would be to decorate the functions you want to repeat:
def repeats_until(num_repeats, interval, condition):
def deco(f):
def func(*args, **kwargs):
for _ in xrange(num_repeats):
result = f(*args, **kwargs)
if condition(result):
return result
time.sleep(interval)
return func
return deco
And then use it like:
#repeats_until(3, 5, lambda s: s == "hello")
def take_input():
return raw_input("Say hello: ")
Example (although I can't show the wait!)
>>> take_input()
Say hello: foo
Say hello: bar
Say hello: baz
>>> take_input()
Say hello: hello
'hello'
Alternatively, to keep the condition with the called function, something like:
def repeats(num_repeats, interval):
def deco(f):
def func(*args, **kwargs):
for _ in xrange(num_repeats):
result = f(*args, **kwargs)
if result is not None: # or e.g. False if None is valid return
return result
time.sleep(interval)
return func
return deco
#repeats(3, 5)
def take_input(condition):
s = raw_input("Say hello: ")
if condition(s):
return s
ui = take_input(lambda s: s == "hello")
This relies on the decorated function returning a value (in this case the implicit None) that tells the decorator it isn't finished yet.
I would like to use a decorator on a function that I will subsequently pass to a multiprocessing pool. However, the code fails with "PicklingError: Can't pickle : attribute lookup __builtin__.function failed". I don't quite see why it fails here. I feel certain that it's something simple, but I can't find it. Below is a minimal "working" example. I thought that using the functools function would be enough to let this work.
If I comment out the function decoration, it works without an issue. What is it about multiprocessing that I'm misunderstanding here? Is there any way to make this work?
Edit: After adding both a callable class decorator and a function decorator, it turns out that the function decorator works as expected. The callable class decorator continues to fail. What is it about the callable class version that keeps it from being pickled?
import random
import multiprocessing
import functools
class my_decorator_class(object):
def __init__(self, target):
self.target = target
try:
functools.update_wrapper(self, target)
except:
pass
def __call__(self, elements):
f = []
for element in elements:
f.append(self.target([element])[0])
return f
def my_decorator_function(target):
#functools.wraps(target)
def inner(elements):
f = []
for element in elements:
f.append(target([element])[0])
return f
return inner
#my_decorator_function
def my_func(elements):
f = []
for element in elements:
f.append(sum(element))
return f
if __name__ == '__main__':
elements = [[random.randint(0, 9) for _ in range(5)] for _ in range(10)]
pool = multiprocessing.Pool(processes=4)
results = [pool.apply_async(my_func, ([e],)) for e in elements]
pool.close()
f = [r.get()[0] for r in results]
print(f)
The problem is that pickle needs to have some way to reassemble everything that you pickle. See here for a list of what can be pickled:
http://docs.python.org/library/pickle.html#what-can-be-pickled-and-unpickled
When pickling my_func, the following components need to be pickled:
An instance of my_decorator_class, called my_func.
This is fine. Pickle will store the name of the class and pickle its __dict__ contents. When unpickling, it uses the name to find the class, then creates an instance and fills in the __dict__ contents. However, the __dict__ contents present a problem...
The instance of the original my_func that's stored in my_func.target.
This isn't so good. It's a function at the top-level, and normally these can be pickled. Pickle will store the name of the function. The problem, however, is that the name "my_func" is no longer bound to the undecorated function, it's bound to the decorated function. This means that pickle won't be able to look up the undecorated function to recreate the object. Sadly, pickle doesn't have any way to know that object it's trying to pickle can always be found under the name __main__.my_func.
You can change it like this and it will work:
import random
import multiprocessing
import functools
class my_decorator(object):
def __init__(self, target):
self.target = target
try:
functools.update_wrapper(self, target)
except:
pass
def __call__(self, candidates, args):
f = []
for candidate in candidates:
f.append(self.target([candidate], args)[0])
return f
def old_my_func(candidates, args):
f = []
for c in candidates:
f.append(sum(c))
return f
my_func = my_decorator(old_my_func)
if __name__ == '__main__':
candidates = [[random.randint(0, 9) for _ in range(5)] for _ in range(10)]
pool = multiprocessing.Pool(processes=4)
results = [pool.apply_async(my_func, ([c], {})) for c in candidates]
pool.close()
f = [r.get()[0] for r in results]
print(f)
You have observed that the decorator function works when the class does not. I believe this is because functools.wraps modifies the decorated function so that it has the name and other properties of the function it wraps. As far as the pickle module can tell, it is indistinguishable from a normal top-level function, so it pickles it by storing its name. Upon unpickling, the name is bound to the decorated function so everything works out.
I also had some problem using decorators in multiprocessing. I'm not sure if it's the same problem as yours:
My code looked like this:
from multiprocessing import Pool
def decorate_func(f):
def _decorate_func(*args, **kwargs):
print "I'm decorating"
return f(*args, **kwargs)
return _decorate_func
#decorate_func
def actual_func(x):
return x ** 2
my_swimming_pool = Pool()
result = my_swimming_pool.apply_async(actual_func,(2,))
print result.get()
and when I run the code I get this:
Traceback (most recent call last):
File "test.py", line 15, in <module>
print result.get()
File "somedirectory_too_lengthy_to_put_here/lib/python2.7/multiprocessing/pool.py", line 572, in get
raise self._value
cPickle.PicklingError: Can't pickle <type 'function'>: attribute lookup __builtin__.function failed
I fixed it by defining a new function to wrap the function in the decorator function, instead of using the decorator syntax
from multiprocessing import Pool
def decorate_func(f):
def _decorate_func(*args, **kwargs):
print "I'm decorating"
return f(*args, **kwargs)
return _decorate_func
def actual_func(x):
return x ** 2
def wrapped_func(*args, **kwargs):
return decorate_func(actual_func)(*args, **kwargs)
my_swimming_pool = Pool()
result = my_swimming_pool.apply_async(wrapped_func,(2,))
print result.get()
The code ran perfectly and I got:
I'm decorating
4
I'm not very experienced at Python, but this solution solved my problem for me
If you want the decorators too bad (like me), you can also use the exec() command on the function string, to circumvent the mentioned pickling.
I wanted to be able to pass all the arguments to an original function and then use them successively. The following is my code for it.
At first, I made a make_functext() function to convert the target function object to a string. For that, I used the getsource() function from the inspect module (see doctumentation here and note that it can't retrieve source code from compiled code etc.). Here it is:
from inspect import getsource
def make_functext(func):
ft = '\n'.join(getsource(func).split('\n')[1:]) # Removing the decorator, of course
ft = ft.replace(func.__name__, 'func') # Making function callable with 'func'
ft = ft.replace('#§ ', '').replace('#§', '') # For using commented code starting with '#§'
ft = ft.strip() # In case the function code was indented
return ft
It is used in the following _worker() function that will be the target of the processes:
def _worker(functext, args):
scope = {} # This is needed to keep executed definitions
exec(functext, scope)
scope['func'](args) # Using func from scope
And finally, here's my decorator:
from multiprocessing import Process
def parallel(num_processes, **kwargs):
def parallel_decorator(func, num_processes=num_processes):
functext = make_functext(func)
print('This is the parallelized function:\n', functext)
def function_wrapper(funcargs, num_processes=num_processes):
workers = []
print('Launching processes...')
for k in range(num_processes):
p = Process(target=_worker, args=(functext, funcargs[k])) # use args here
p.start()
workers.append(p)
return function_wrapper
return parallel_decorator
The code can finally be used by defining a function like this:
#parallel(4)
def hello(args):
#§ from time import sleep # use '#§' to avoid unnecessary (re)imports in main program
name, seconds = tuple(args) # unpack args-list here
sleep(seconds)
print('Hi', name)
... which can now be called like this:
hello([['Marty', 0.5],
['Catherine', 0.9],
['Tyler', 0.7],
['Pavel', 0.3]])
... which outputs:
This is the parallelized function:
def func(args):
from time import sleep
name, seconds = tuple(args)
sleep(seconds)
print('Hi', name)
Launching processes...
Hi Pavel
Hi Marty
Hi Tyler
Hi Catherine
Thanks for reading, this is my very first post. If you find any mistakes or bad practices, feel free to leave a comment. I know that these string conversions are quite dirty, though...
If you use this code for your decorator:
import multiprocessing
from types import MethodType
DEFAULT_POOL = []
def run_parallel(_func=None, *, name: str = None, context_pool: list = DEFAULT_POOL):
class RunParallel:
def __init__(self, func):
self.func = func
def __call__(self, *args, **kwargs):
process = multiprocessing.Process(target=self.func, name=name, args=args, kwargs=kwargs)
context_pool.append(process)
process.start()
def __get__(self, instance, owner):
return self if instance is None else MethodType(self, instance)
if _func is None:
return RunParallel
else:
return RunParallel(_func)
def wait_context(context_pool: list = DEFAULT_POOL, kill_others_if_one_fails: bool = False):
finished = []
for process in context_pool:
process.join()
finished.append(process)
if kill_others_if_one_fails and process.exitcode != 0:
break
if kill_others_if_one_fails:
# kill unfinished processes
for process in context_pool:
if process not in finished:
process.kill()
# wait for every process to be dead
for process in context_pool:
process.join()
Then you can use it like this, in these 4 examples:
#run_parallel
def m1(a, b="b"):
print(f"m1 -- {a=} {b=}")
#run_parallel(name="mym2", context_pool=DEFAULT_POOL)
def m2(d, cc="cc"):
print(f"m2 -- {d} {cc=}")
a = 1/0
class M:
#run_parallel
def c3(self, k, n="n"):
print(f"c3 -- {k=} {n=}")
#run_parallel(name="Mc4", context_pool=DEFAULT_POOL)
def c4(self, x, y="y"):
print(f"c4 -- {x=} {y=}")
if __name__ == "__main__":
m1(11)
m2(22)
M().c3(33)
M().c4(44)
wait_context(kill_others_if_one_fails=True)
The output will be:
m1 -- a=11 b='b'
m2 -- 22 cc='cc'
c3 -- k=33 n='n'
(followed by the exception raised in method m2)
Have Python iterators got a has_next method?
There's an alternative to the StopIteration by using next(iterator, default_value).
For exapmle:
>>> a = iter('hi')
>>> print next(a, None)
h
>>> print next(a, None)
i
>>> print next(a, None)
None
So you can detect for None or other pre-specified value for end of the iterator if you don't want the exception way.
No, there is no such method. The end of iteration is indicated by an exception. See the documentation.
If you really need a has-next functionality, it's easy to obtain it with a little wrapper class. For example:
class hn_wrapper(object):
def __init__(self, it):
self.it = iter(it)
self._hasnext = None
def __iter__(self): return self
def next(self):
if self._hasnext:
result = self._thenext
else:
result = next(self.it)
self._hasnext = None
return result
def hasnext(self):
if self._hasnext is None:
try: self._thenext = next(self.it)
except StopIteration: self._hasnext = False
else: self._hasnext = True
return self._hasnext
now something like
x = hn_wrapper('ciao')
while x.hasnext(): print next(x)
emits
c
i
a
o
as required.
Note that the use of next(sel.it) as a built-in requires Python 2.6 or better; if you're using an older version of Python, use self.it.next() instead (and similarly for next(x) in the example usage). [[You might reasonably think this note is redundant, since Python 2.6 has been around for over a year now -- but more often than not when I use Python 2.6 features in a response, some commenter or other feels duty-bound to point out that they are 2.6 features, thus I'm trying to forestall such comments for once;-)]]
===
For Python3, you would make the following changes:
from collections.abc import Iterator # since python 3.3 Iterator is here
class hn_wrapper(Iterator): # need to subclass Iterator rather than object
def __init__(self, it):
self.it = iter(it)
self._hasnext = None
def __iter__(self):
return self
def __next__(self): # __next__ vs next in python 2
if self._hasnext:
result = self._thenext
else:
result = next(self.it)
self._hasnext = None
return result
def hasnext(self):
if self._hasnext is None:
try:
self._thenext = next(self.it)
except StopIteration:
self._hasnext = False
else: self._hasnext = True
return self._hasnext
In addition to all the mentions of StopIteration, the Python "for" loop simply does what you want:
>>> it = iter("hello")
>>> for i in it:
... print i
...
h
e
l
l
o
Try the __length_hint__() method from any iterator object:
iter(...).__length_hint__() > 0
You can tee the iterator using, itertools.tee, and check for StopIteration on the teed iterator.
hasNext somewhat translates to the StopIteration exception, e.g.:
>>> it = iter("hello")
>>> it.next()
'h'
>>> it.next()
'e'
>>> it.next()
'l'
>>> it.next()
'l'
>>> it.next()
'o'
>>> it.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
StopIteration docs: http://docs.python.org/library/exceptions.html#exceptions.StopIteration
Some article about iterators and generator in python: http://www.ibm.com/developerworks/library/l-pycon.html
No. The most similar concept is most likely a StopIteration exception.
I believe python just has next() and according to the doc, it throws an exception is there are no more elements.
http://docs.python.org/library/stdtypes.html#iterator-types
The use case that lead me to search for this is the following
def setfrom(self,f):
"""Set from iterable f"""
fi = iter(f)
for i in range(self.n):
try:
x = next(fi)
except StopIteration:
fi = iter(f)
x = next(fi)
self.a[i] = x
where hasnext() is available, one could do
def setfrom(self,f):
"""Set from iterable f"""
fi = iter(f)
for i in range(self.n):
if not hasnext(fi):
fi = iter(f) # restart
self.a[i] = next(fi)
which to me is cleaner. Obviously you can work around issues by defining utility classes, but what then happens is you have a proliferation of twenty-odd different almost-equivalent workarounds each with their quirks, and if you wish to reuse code that uses different workarounds, you have to either have multiple near-equivalent in your single application, or go around picking through and rewriting code to use the same approach. The 'do it once and do it well' maxim fails badly.
Furthermore, the iterator itself needs to have an internal 'hasnext' check to run to see if it needs to raise an exception. This internal check is then hidden so that it needs to be tested by trying to get an item, catching the exception and running the handler if thrown. This is unnecessary hiding IMO.
Maybe it's just me, but while I like https://stackoverflow.com/users/95810/alex-martelli 's answer, I find this a bit easier to read:
from collections.abc import Iterator # since python 3.3 Iterator is here
class MyIterator(Iterator): # need to subclass Iterator rather than object
def __init__(self, it):
self._iter = iter(it)
self._sentinel = object()
self._next = next(self._iter, self._sentinel)
def __iter__(self):
return self
def __next__(self): # __next__ vs next in python 2
if not self.has_next():
next(self._iter) # raises StopIteration
val = self._next
self._next = next(self._iter, self._sentinel)
return val
def has_next(self):
return self._next is not self._sentinel
No, there is no such method. The end of iteration is indicated by a StopIteration (more on that here).
This follows the python principle EAFP (easier to ask for forgiveness than permission). A has_next method would follow the principle of LBYL (look before you leap) and contradicts this core python principle.
This interesting article explains the two concepts in more detail.
Suggested way is StopIteration.
Please see Fibonacci example from tutorialspoint
#!usr/bin/python3
import sys
def fibonacci(n): #generator function
a, b, counter = 0, 1, 0
while True:
if (counter > n):
return
yield a
a, b = b, a + b
counter += 1
f = fibonacci(5) #f is iterator object
while True:
try:
print (next(f), end=" ")
except StopIteration:
sys.exit()
It is also possible to implement a helper generator that wraps any iterator and answers question if it has next value:
Try it online!
def has_next(it):
first = True
for e in it:
if not first:
yield True, prev
else:
first = False
prev = e
if not first:
yield False, prev
for has_next_, e in has_next(range(4)):
print(has_next_, e)
Which outputs:
True 0
True 1
True 2
False 3
The main and probably only drawback of this method is that it reads ahead one more element, for most of tasks it is totally alright, but for some tasks it may be disallowed, especially if user of has_next() is not aware of this read-ahead logic and may missuse it.
Code above works for infinite iterators too.
Actually for all cases that I ever programmed such kind of has_next() was totally enough and didn't cause any problems and in fact was very helpful. You just have to be aware of its read-ahead logic.
The way has solved it based on handling the "StopIteration" execption is pretty straightforward in order to read all iterations :
end_cursor = False
while not end_cursor:
try:
print(cursor.next())
except StopIteration:
print('end loop')
end_cursor = True
except:
print('other exceptions to manage')
end_cursor = True
I think there are valid use cases for when you may want some sort of has_next functionality, in which case you should decorate an iterator with a has_next defined.
Combining concepts from the answers to this question here is my implementation of that which feels like a nice concise solution to me (python 3.9):
_EMPTY_BUF = object()
class BufferedIterator(Iterator[_T]):
def __init__(self, real_it: Iterator[_T]):
self._real_it = real_it
self._buf = next(self._real_it, _EMPTY_BUF)
def has_next(self):
return self._buf is not _EMPTY_BUF
def __next__(self) -> _T_co:
v = self._buf
self._buf = next(self._real_it, _EMPTY_BUF)
if v is _EMPTY_BUF:
raise StopIteration()
return v
The main difference is that has_next is just a boolean expression, and also handles iterators with None values.
Added this to a gist here with tests and example usage.
With 'for' one can implement his own version of 'next' avoiding exception
def my_next(it):
for x in it:
return x
return None
very interesting question, but this "hasnext" design had been put into leetcode:
https://leetcode.com/problems/iterator-for-combination/
here is my implementation:
class CombinationIterator:
def __init__(self, characters: str, combinationLength: int):
from itertools import combinations
from collections import deque
self.iter = combinations(characters, combinationLength)
self.res = deque()
def next(self) -> str:
if len(self.res) == 0:
return ''.join(next(self.iter))
else:
return ''.join(self.res.pop())
def hasNext(self) -> bool:
try:
self.res.insert(0, next(self.iter))
return True
except:
return len(self.res) > 0
The way I solved my problem is to keep the count of the number of objects iterated over, so far. I wanted to iterate over a set using calls to an instance method. Since I knew the length of the set, and the number of items counted so far, I effectively had an hasNext method.
A simple version of my code:
class Iterator:
# s is a string, say
def __init__(self, s):
self.s = set(list(s))
self.done = False
self.iter = iter(s)
self.charCount = 0
def next(self):
if self.done:
return None
self.char = next(self.iter)
self.charCount += 1
self.done = (self.charCount < len(self.s))
return self.char
def hasMore(self):
return not self.done
Of course, the example is a toy one, but you get the idea. This won't work in cases where there is no way to get the length of the iterable, like a generator etc.
I asked previously how the nested functions work, but unfortunately I still don't quite get it. To understand it better, can someone please show some real-wold, practical usage examples of nested functions?
Many thanks
Your question made me curious, so I looked in some real-world code: the Python standard library. I found 67 examples of nested functions. Here are a few, with explanations.
One very simple reason to use a nested function is simply that the function you're defining doesn't need to be global, because only the enclosing function uses it. A typical example from Python's quopri.py standard library module:
def encode(input, output, quotetabs, header = 0):
...
def write(s, output=output, lineEnd='\n'):
# RFC 1521 requires that the line ending in a space or tab must have
# that trailing character encoded.
if s and s[-1:] in ' \t':
output.write(s[:-1] + quote(s[-1]) + lineEnd)
elif s == '.':
output.write(quote(s) + lineEnd)
else:
output.write(s + lineEnd)
... # 35 more lines of code that call write in several places
Here there was some common code within the encode function, so the author simply factored it out into a write function.
Another common use for nested functions is re.sub. Here's some code from the json/encode.py standard library module:
def encode_basestring(s):
"""Return a JSON representation of a Python string
"""
def replace(match):
return ESCAPE_DCT[match.group(0)]
return '"' + ESCAPE.sub(replace, s) + '"'
Here ESCAPE is a regular expression, and ESCAPE.sub(replace, s) finds all matches of ESCAPE in s and replaces each one with replace(match).
In fact, any API, like re.sub, that accepts a function as a parameter can lead to situations where nested functions are convenient. For example, in turtle.py there's some silly demo code that does this:
def baba(xdummy, ydummy):
clearscreen()
bye()
...
tri.write(" Click me!", font = ("Courier", 12, "bold") )
tri.onclick(baba, 1)
onclick expects you to pass an event-handler function, so we define one and pass it in.
Decorators are a very popular use for nested functions. Here's an example of a decorator that prints a statement before and after any call to the decorated function.
def entry_exit(f):
def new_f(*args, **kwargs):
print "Entering", f.__name__
f(*args, **kwargs)
print "Exited", f.__name__
return new_f
#entry_exit
def func1():
print "inside func1()"
#entry_exit
def func2():
print "inside func2()"
func1()
func2()
print func1.__name__
Nested functions avoid cluttering other parts of the program with other functions and variables that only make sense locally.
A function that return Fibonacci numbers could be defined as follows:
>>> def fib(n):
def rec():
return fib(n-1) + fib(n-2)
if n == 0:
return 0
elif n == 1:
return 1
else:
return rec()
>>> map(fib, range(10))
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
EDIT: In practice, generators would be a better solution for this, but the example shows how to take advantage of nested functions.
They are useful when using functions that take other functions as input. Say you're in a function, and want to sort a list of items based on the items' value in a dict:
def f(items):
vals = {}
for i in items: vals[i] = random.randint(0,100)
def key(i): return vals[i]
items.sort(key=key)
You can just define key right there and have it use vals, a local variable.
Another use-case is callbacks.
I have only had to use nested functions when creating decorators. A nested function is basically a way of adding some behavior to a function without knowing what the function is that you are adding behavior to.
from functools import wraps
from types import InstanceType
def printCall(func):
def getArgKwargStrings(*args, **kwargs):
argsString = "".join(["%s, " % (arg) for arg in args])
kwargsString = "".join(["%s=%s, " % (key, value) for key, value in kwargs.items()])
if not len(kwargs):
if len(argsString):
argsString = argsString[:-2]
else:
kwargsString = kwargsString[:-2]
return argsString, kwargsString
#wraps(func)
def wrapper(*args, **kwargs):
ret = None
if args and isinstance(args[0], InstanceType) and getattr(args[0], func.__name__, None):
instance, args = args[0], args[1:]
argsString, kwargsString = getArgKwargStrings(*args, **kwargs)
ret = func(instance, *args, **kwargs)
print "Called %s.%s(%s%s)" % (instance.__class__.__name__, func.__name__, argsString, kwargsString)
print "Returned %s" % str(ret)
else:
argsString, kwargsString = getArgKwargStrings(*args, **kwargs)
ret = func(*args, **kwargs)
print "Called %s(%s%s)" % (func.__name__, argsString, kwargsString)
print "Returned %s" % str(ret)
return ret
return wrapper
def sayHello(name):
print "Hello, my name is %s" % (name)
if __name__ == "__main__":
sayHelloAndPrintDebug = printCall(sayHello)
name = "Nimbuz"
sayHelloAndPrintDebug(name)
Ignore all the mumbo jumbo in the "printCall" function for right now and focus only the "sayHello" function and below. What we're doing here is we want to print out how the "sayHello" function was called everytime it is called without knowing or altering what the "sayHello" function does. So we redefine the "sayHello" function by passing it to "printCall", which returns a NEW function that does what the "sayHello" function does AND prints how the "sayHello" function was called. This is the concept of decorators.
Putting "#printCall" above the sayHello definition accomplishes the same thing:
#printCall
def sayHello(name):
print "Hello, my name is %s" % (name)
if __name__ == "__main__":
name = "Nimbuz"
sayHello(name)
Yet another (very simple) example. A function that returns another function. Note how the inner function (that is returned) can use variables from the outer function's scope.
def create_adder(x):
def _adder(y):
return x + y
return _adder
add2 = create_adder(2)
add100 = create_adder(100)
>>> add2(50)
52
>>> add100(50)
150
Python Decorators
This is actually another topic to learn, but if you look at the stuff on 'Using Functions as Decorators', you'll see some examples of nested functions.
OK, besides decorators: Say you had an application where you needed to sort a list of strings based on substrings which varied from time to time. Now the sorted functions takes a key= argument which is a function of one argument: the items (strings in this case) to be sorted. So how to tell this function which substrings to sort on? A closure or nested function, is perfect for this:
def sort_key_factory(start, stop):
def sort_key(string):
return string[start: stop]
return sort_key
Simple eh? You can expand on this by encapsulating start and stop in a tuple or a slice object and then passing a sequence or iterable of these to the sort_key_factory.