I'm trying to override the dir method in a Python class. Inside I want to call the builtin dir method, but my attempts at calling it seem to be calling my method, rather than the default implementation.
The correct way to override the __dir__ method in python
This question seemed relevant but doesn't answer the question since it seems their issue was with extending a numpy class, not with calling the default dir implementation for the class
Relevant code
def __dir__(self):
return builtins.dir(self) + self.fields()
In other words I want everything that would normally be listed plus some other things, but the builtins.dir() call just calls this function recursively.
I'm testing this in Python 3.6
Since overriding __dir__ only matters in class' instances, you can do this:
class Test:
def test(self):
print('hey')
def __dir__(self):
return dir(Test) + ['hello']
Notice that dir(Test) is different from dir(Test()) because only the latter calls Test.__dir__.
Using dir(super()) inside Test.__dir__ also kinda works, but it only provides you with data for the parent class, so that dir(Test()) won't contain the names of the attributes present exclusively in the class Test.
Related
I'm working on a some classes, and for the testing process it would be very useful to be able to run the class methods in a for loop. I'm adding methods and changing their names, and I want this to automatically change in the file where I run the class for testing.
I use the function below to get a list of the methods I need to run automatically (there are some other conditional statements I deleted for the example to make sure that I only run certain methods that require testing and which only have self as an argument)
def get_class_methods(class_to_get_methods_from):
import inspect
methods = []
for name, type in (inspect.getmembers(class_to_get_methods_from)):
if 'method' in str(type) and str(name).startswith('_') == False:
methods.append(name)
return methods
Is it possible to use the returned list 'methods' to run the class methods in a for loop?
Or is there any other way to make sure i can run my class methods in my testingrunning file without having to alter or add things i changed in the class?
Thanks!
Looks like you want getattr(object, name[, default]):
class Foo(object):
def bar(self):
print("bar({})".format(self))
f = Foo()
method = getattr(f, "bar")
method()
As a side note : I'm not sure that dynamically generating lists of methods to test is such a good idea (looks rather like an antipattern to me) - now it's hard to tell without the whole project's context so take this remarks with the required grain of salt ;)
If I have the following class.
class Foo:
#staticmethod
def _bar():
# do something
print "static method"
def instancemethod(self):
Foo._bar() # method 1
self._bar() # method 2
In this case, is method 1 a preferred way of calling staticmethod _bar() or method 2 in the Python world?
Write the code that expresses what you want to do. If you want to call this method right here:
class Foo:
#staticmethod
def _bar(): # <-- this one
# do something
print "static method"
then specify that particular method:
Foo._bar()
If you want to call whatever self._bar resolves to, meaning you've actually decided that it makes sense to override it and made sure your code still behaves sensibly when that method is overridden, then specify self._bar:
self._bar()
Most likely, this method isn't designed to be overridden, and the code that uses it isn't designed to anticipate overriding it, so you probably want Foo._bar().
In addition to bypassing any instance attributes in the interest of correctness, implicit special method lookup generally also bypasses the __getattribute__() method even of the object’s metaclass.
The docs mention special methods such as __hash__, __repr__ and __len__, and I know from experience it also includes __iter__ for Python 2.7.
To quote an answer to a related question:
"Magic __methods__() are treated specially: They are internally assigned to "slots" in the type data structure to speed up their look-up, and they are only looked up in these slots."
In a quest to improve my answer to another question, I need to know: Which methods, specifically, are we talking about?
You can find an answer in the python3 documentation for object.__getattribute__, which states:
Called unconditionally to implement attribute accesses for instances of the class. If the class also defines __getattr__(), the
latter will not be called unless __getattribute__() either calls it
explicitly or raises an AttributeError. This method should return the
(computed) attribute value or raise an AttributeError exception. In
order to avoid infinite recursion in this method, its implementation
should always call the base class method with the same name to access
any attributes it needs, for example, object.__getattribute__(self,
name).
Note
This method may still be bypassed when looking up special methods as the result of implicit invocation via language syntax or built-in
functions. See Special method lookup.
also this page explains exactly how this "machinery" works. Fundamentally __getattribute__ is called only when you access an attribute with the .(dot) operator(and also by hasattr as Zagorulkin pointed out).
Note that the page does not specify which special methods are implicitly looked up, so I deem that this hold for all of them(which you may find here.
Checked in 2.7.9
Couldn't find any way to bypass the call to __getattribute__, with any of the magical methods that are found on object or type:
# Preparation step: did this from the console
# magics = set(dir(object) + dir(type))
# got 38 names, for each of the names, wrote a.<that_name> to a file
# Ended up with this:
a.__module__
a.__base__
#...
Put this at the beginning of that file, which i renamed into a proper python module (asdf.py)
global_counter = 0
class Counter(object):
def __getattribute__(self, name):
# this will count how many times the method was called
global global_counter
global_counter += 1
return super(Counter, self).__getattribute__(name)
a = Counter()
# after this comes the list of 38 attribute accessess
a.__module__
#...
a.__repr__
#...
print global_counter # you're not gonna like it... it printer 38
Then i also tried to get each of those names by getattr and hasattr -> same result. __getattribute__ was called every time.
So if anyone has other ideas... I was too lazy to look inside C code for this, but I'm sure the answer lies somewhere there.
So either there's something that i'm not getting right, or the docs are lying.
super().method will also bypass __getattribute__. This atrocious code will run just fine (Python 3.11).
class Base:
def print(self):
print("whatever")
def __getattribute__(self, item):
raise Exception("Don't access this with a dot!")
class Sub(Base):
def __init__(self):
super().print()
a = Sub()
# prints 'whatever'
a.print()
# Exception Don't access this with a dot!
Let's say I have classes Base(object) and Derived(Base). These both implement a function foo, with Derived.foo overriding the version in Base.
However, in one of the methods, say Base.learn_to_foo, I want to call Base.foo instead of the derived version regardless of whether it was overridden. So, I call Base.foo(self) in that method:
class Base(object):
# ...
def learn_to_foo(self, x):
y = Base.foo(self, x)
# check if we foo'd correctly, do interesting stuff
This approach seems to work and from a domain standpoint, it makes perfect sense, but somehow it smells a bit fishy. Is this the way to go, or should I refactor?
The answer is NOT to use the super() function. The way you are doing is exactly right as you don't want to invoke the virtual method that is overridden in the super class. Since you seem to want the base class' exact implementation all the time, the only way is to get the base class' unbound method object back, bound it to self, which could be an instance of Base or Derived. Invoke the unbound method with self supplied explicitly as the first parameter gives you back a bound method. From this point forward, Base.foo will be acting on the instance self's data. This is perfectly acceptable and is the way Python deals with non-virtual method invocation. This is one of the nice things that Python allows you to do that Java does not.
It is recommended:
def learn_to_foo(self, x):
super(Derived, self).foo(x)
More information at http://docs.python.org/library/functions.html#super
An alternative is to use the 'super' built-in:
super(Derived, self).foo(x) # Python 2
super().foo(x) # Python 3
I'm trying to get the name of all methods in my class.
When testing how the inspect module works, i extraced one of my methods by obj = MyClass.__dict__['mymethodname'].
But now inspect.ismethod(obj) returns False while inspect.isfunction(obj) returns True, and i don't understand why. Is there some strange way of marking methods as methods that i am not aware of? I thought it was just that it is defined in the class and takes self as its first argument.
You are seeing some effects of the behind-the-scenes machinery of Python.
When you write f = MyClass.__dict__['mymethodname'], you get the raw implementation of "mymethodname", which is a plain function. To call it, you need to pass in an additional parameter, class instance.
When you write f = MyClass.mymethodname (note the absence of parentheses after mymethodname), you get an unbound method of class MyClass, which is an instance of MethodType that wraps the raw function you obtained above. To call it, you need to pass in an additional parameter, class instance.
When you write f = MyClass().mymethodname (note that i've created an object of class MyClass before taking its method), you get a bound method of an instance of class MyClass. You do not need to pass an additional class instance to it, since it's already stored inside it.
To get wrapped method (bound or unbound) by its name given as a string, use getattr, as noted by gnibbler. For example:
unbound_mth = getattr(MyClass, "mymethodname")
or
bound_mth = getattr(an_instance_of_MyClass, "mymethodname")
Use the source
def ismethod(object):
"""Return true if the object is an instance method.
Instance method objects provide these attributes:
__doc__ documentation string
__name__ name with which this method was defined
__func__ function object containing implementation of method
__self__ instance to which this method is bound"""
return isinstance(object, types.MethodType)
The first argument being self is just by convention. By accessing the method by name from the class's dict, you are bypassing the binding, so it appears to be a function rather than a method
If you want to access the method by name use
getattr(MyClass, 'mymethodname')
Well, do you mean that obj.mymethod is a method (with implicitly passed self) while Klass.__dict__['mymethod'] is a function?
Basically Klass.__dict__['mymethod'] is the "raw" function, which can be turned to a method by something called descriptors. This means that every function on a class can be both a normal function and a method, depending on how you access them. This is how the class system works in Python and quite normal.
If you want methods, you can't go though __dict__ (which you never should anyways). To get all methods you should do inspect.getmembers(Klass_or_Instance, inspect.ismethod)
You can read the details here, the explanation about this is under "User-defined methods".
From a comment made on #THC4k's answer, it looks like the OP wants to discriminate between built-in methods and methods defined in pure Python code. User defined methods are of types.MethodType, but built-in methods are not.
You can get the various types like so:
import inspect
import types
is_user_defined_method = inspect.ismethod
def is_builtin_method(arg):
return isinstance(arg, (type(str.find), type('foo'.find)))
def is_user_or_builtin_method(arg):
MethodType = types.MethodType
return isinstance(arg, (type(str.find), type('foo'.find), MethodType))
class MyDict(dict):
def puddle(self): pass
for obj in (MyDict, MyDict()):
for test_func in (is_user_defined_method, is_builtin_method,
is_user_or_builtin_method):
print [attr
for attr in dir(obj)
if test_func(getattr(obj, attr)) and attr.startswith('p')]
which prints:
['puddle']
['pop', 'popitem']
['pop', 'popitem', 'puddle']
['puddle']
['pop', 'popitem']
['pop', 'popitem', 'puddle']
You could use dir to get the name of available methods/attributes/etc, then iterate through them to see which ones are methods. Like this:
[ mthd for mthd in dir(FooClass) if inspect.ismethod(myFooInstance.__getattribute__(mthd)) ]
I'm expecting there to be a cleaner solution, but this could be something you could use if nobody else comes up with one. I'd like if I didn't have to use an instance of the class to use getattribute.