Numpy: How to stack arrays in columns? - python

Let's say that I have n numpy arrays of the same length. I would like to now create a numpy matrix, sucht that each column of the matrix is one of the numpy arrays. How can I achieve this? Now I'm doing this in a loop and it produces the wrong results.
Note: I have to be able to stack them next to each other one by one iteratively.
my code looks like assume that get_array is a function that returns a certain array based on its argument. I don't know until after the loop, how many columns that I'm going to have.
matrix = np.empty((n_rows,))
for item in sorted_arrays:
array = get_array(item)
matrix = np.vstack((matrix,array))
any help would be appreciated

You could try putting all your arrays (or lists) into a matrix and then transposing it. This will work if all arrays are the same length.
mymatrix = np.asmatrix((array1, array2, array3)) #... putting arrays into matrix.
mymatrix = mymatrix.transpose()
This should output a matrix with each array as a column. Hope this helps.

Time and again, we recommend collecting the arrays in a list, and making the final array with one call. That's more efficient, and usually easier to get right.
alist = []
for item in sorted_arrays:
alist.append(get_array(item)
or
alist = [get_array(item) for item in sorted_arrays]
There are various ways of assembling the list. Since you want columns, and assuming get_array produces equal sized 1d arrays:
arr = np.column_stack(alist)
Collecting them in rows and transposing that works too:
arr = np.array(alist).T
arr = np.vstack(alist).T
arr = np.stack(alist).T
arr = np.stack(alist, axis=1)
If the arrays are already 2d
arr = np.concatenate(alist, axis=1)
All the stack variations use concatenate, just varying in how they tweak the shape(s) of the input arrays. The key to using concatenate is to understand the dimensions and shapes, and how to add dimensions as needed. That should, soon or later, become fluent in that kind of coding.
If they vary in shape or dimensions, things get messier.
Equally good is to put the arrays in a pre-allocated array. But you need to know the desired final shape
arr = np.zeros((m,n), dtype)
for i, item in enumerate(sorted_arrays):
arr[:,i] = get_array(item)
n is len(sorted_arrays), and m is the length of one of get_array(item). You also need to know the expected dtype (int, float etc).

If you have a, b, c, d np array of same length, the following code will accomplish what you want:
out_matrix = np.vstack([a, b, c, d]).transpose()
An example:
In [3]: a = np.array([1, 2, 3, 4])
In [4]: b = np.array([5, 6, 7, 8])
In [5]: c = np.array([2, 3, 4, 5])
In [6]: d = np.array([6, 8, 2, 4])
In [10]: np.vstack([a, b, c, d]).transpose()
Out[10]:
array([[1, 5, 2, 6],
[2, 6, 3, 8],
[3, 7, 4, 2],
[4, 8, 5, 4]])

Related

Iterating through rows in numpy array with one row

For a 2D numpy array A, the loop for a in A will loop through all the rows in A. This functionality is what I want for my code, but I'm having difficulty with the edge case where A only has one row (i.e., is essentially a 1-dimensional array). In this case, the for loop treats A as a 1D array and iterates through its elements. What I want to instead happen in this case is a natural extension of the 2D case, where the loop retrieves the (single) row in A. Is there a way to format the array A such that the for loop functions like this?
Depending on if you declare the array yourself you can do this:
A = np.array([[1, 2, 3]])
Else you can check the dim of your array before iterating over it
B = np.array([1, 2, 3])
if B.ndim == 1:
B = B[None, :]
Or you can use the function np.at_least2d
C = np.array([1, 2, 3])
C = np.atleast_2d(C)
If your array trully is a 2D array, even with one row, there is no edge case:
import numpy
a = numpy.array([[1, 2, 3]])
for line in a:
print(line)
>>> [1 2 3]
You seem to be confusing numpy.array([[1, 2, 3]]) which is a 2D array of one line and numpy.array([1, 2, 3]) which would be a 1D array.
I think you can use np.expand_dims to achieve your goal
X = np.expand_dims(X, axis=0)

numpy array TypeError: only integer scalar arrays can be converted to a scalar index

i=np.arange(1,4,dtype=np.int)
a=np.arange(9).reshape(3,3)
and
a
>>>array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
a[:,0:1]
>>>array([[0],
[3],
[6]])
a[:,0:2]
>>>array([[0, 1],
[3, 4],
[6, 7]])
a[:,0:3]
>>>array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
Now I want to vectorize the array to print them all together. I try
a[:,0:i]
or
a[:,0:i[:,None]]
It gives TypeError: only integer scalar arrays can be converted to a scalar index
Short answer:
[a[:,:j] for j in i]
What you are trying to do is not a vectorizable operation. Wikipedia defines vectorization as a batch operation on a single array, instead of on individual scalars:
In computer science, array programming languages (also known as vector or multidimensional languages) generalize operations on scalars to apply transparently to vectors, matrices, and higher-dimensional arrays.
...
... an operation that operates on entire arrays can be called a vectorized operation...
In terms of CPU-level optimization, the definition of vectorization is:
"Vectorization" (simplified) is the process of rewriting a loop so that instead of processing a single element of an array N times, it processes (say) 4 elements of the array simultaneously N/4 times.
The problem with your case is that the result of each individual operation has a different shape: (3, 1), (3, 2) and (3, 3). They can not form the output of a single vectorized operation, because the output has to be one contiguous array. Of course, it can contain (3, 1), (3, 2) and (3, 3) arrays inside of it (as views), but that's what your original array a already does.
What you're really looking for is just a single expression that computes all of them:
[a[:,:j] for j in i]
... but it's not vectorized in a sense of performance optimization. Under the hood it's plain old for loop that computes each item one by one.
I ran into the problem when venturing to use numpy.concatenate to emulate a C++ like pushback for 2D-vectors; If A and B are two 2D numpy.arrays, then numpy.concatenate(A,B) yields the error.
The fix was to simply to add the missing brackets: numpy.concatenate( ( A,B ) ), which are required because the arrays to be concatenated constitute to a single argument
This could be unrelated to this specific problem, but I ran into a similar issue where I used NumPy indexing on a Python list and got the same exact error message:
# incorrect
weights = list(range(1, 129)) + list(range(128, 0, -1))
mapped_image = weights[image[:, :, band]] # image.shape = [800, 600, 3]
# TypeError: only integer scalar arrays can be converted to a scalar index
It turns out I needed to turn weights, a 1D Python list, into a NumPy array before I could apply multi-dimensional NumPy indexing. The code below works:
# correct
weights = np.array(list(range(1, 129)) + list(range(128, 0, -1)))
mapped_image = weights[image[:, :, band]] # image.shape = [800, 600, 3]
try the following to change your array to 1D
a.reshape((1, -1))
You can use numpy.ravel to return a flattened array from n-dimensional array:
>>> a
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
>>> a.ravel()
array([0, 1, 2, 3, 4, 5, 6, 7, 8])
I had a similar problem and solved it using list...not sure if this will help or not
classes = list(unique_labels(y_true, y_pred))
this problem arises when we use vectors in place of scalars
for example in a for loop the range should be a scalar, in case you have given a vector in that place you get error. So to avoid the problem use the length of the vector you have used
I ran across this error when while trying to access elements of a list using a 1-D array. I was suggested this page but I don't the answer I was looking for.
Let l be the list and myarray be my 1D array. The correct way to access list l using elements of myarray is
np.take(l,myarray)

appending multidimensional elements into numpy arrays without reshaping

I have a few simple questions I'm not able to find the answer to. They are both stated in the following example code. Thank you for any help!
import numpy as np
#here are two arrays to join together
a = np.array([1,2,3,4,5])
b = np.array([6,7,8,9,10])
#here comes the joining step I don't know how to do better
#QUESTION 1: How to form all permutations of two 1D arrays?
temp = np.array([]) #empty array to be filled with values
for aa in a:
for bb in b:
temp = np.append(temp,[aa,bb]) #fill the array
#QUESTION 2: Why do I have to reshape? How can I avoid this?
temp = temp.reshape((int(temp.size/2),2))
edit: made code more minimal
To answer your first question, you can use np.meshgrid to form those combinations between elements of the two input arrays and get to the final version of temp in a vectorized manner avoiding those loops, like so -
np.array(np.meshgrid(a,b)).transpose(2,1,0).reshape(-1,2)
As seen, we would still need a reshape if you intend to get a 2-column output array.
There are other ways we could construct the array with the meshed structure and thus avoid a reshape. One of those ways would be with np.column_stack, as shown below -
r,c = np.meshgrid(a,b)
temp = np.column_stack((r.ravel('F'), c.ravel('F')))
The proper way to build an array iteratively is with list append. np.append is poorly named, and often mis used.
In [274]: a = np.array([1,2,3,4,5])
...: b = np.array([6,7,8,9,10])
...:
In [275]: temp = []
In [276]: for aa in a:
...: for bb in b:
...: temp.append([aa,bb])
...:
In [277]: temp
Out[277]:
[[1, 6],
[1, 7],
[1, 8],
[1, 9],
[1, 10],
[2, 6],
....
[5, 9],
[5, 10]]
In [278]: np.array(temp).shape
Out[278]: (25, 2)
It's better to avoid loops at all, but if you must, use this list append approach.

How do I sum a numpy array of size (m*n,) in groups of m?

Suppose I have a where a.shape is (m*n,), how do I create a new array that comprises the m sums of each group of n elements efficiently?
The best I came up with is:
a.reshape((m, n)).sum(axis=1)
but this creates an extra new array.
I think there is nothing wrong with using reshape and then taking the sum of the rows, I cannot think of anything faster. According to the manual, reshape should (if possible) return a view on the original array, so no large amount of data is copied. When a view is created, numpy only creates a new header with different strides and shape, with a pointer into the data of the original array. This should cost constant time and memory, independent of the array size.
In [23]: x = np.arange(12)
In [24]: y = x.reshape((3, 4))
In [25]: y
Out[25]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
In [26]: y.base is x # check if it is a view
Out[26]: True
There is another trick, a variant on cumsum, reduceat. In this case
np.add.reduceat(a, np.arange(0,m*n,n))
For m,n=100,10, it is 2x as fast as x.reshape((m,n)).sum(axis=1).
I haven't used it much, so it took a bit of digging to find in the documentation.

Index of multidimensional array

I have a problem using multi-dimensional vectors as indices for multi-dimensional vectors. Say I have C.ndim == idx.shape[0], then I want C[idx] to give me a single element. Allow me to explain with a simple example:
A = arange(0,10)
B = 10+A
C = array([A.T, B.T])
C = C.T
idx = array([3,1])
Now, C[3] gives me the third row, and C[1] gives me the first row. C[idx] then will give me a vstack of both rows. However, I need to get C[3,1]. How would I achieve that given arrays C, idx?
/edit:
An answer suggested tuple(idx). This work's perfectly for a single idx. But:
Let's take it to the next level: say INDICES is a vector where I have stacked vertically arrays of shape idx. tuple(INDICES) will give me one long tuple, so C[tuple(INDICES)] won't work. Is there a clean way of doing this or will I need to iterate over the rows?
If you convert idx to a tuple, it'll be interpreted as basic and not advanced indexing:
>>> C[3,1]
13
>>> C[tuple(idx)]
13
For the vector case:
>>> idx
array([[3, 1],
[7, 0]])
>>> C[3,1], C[7,0]
(13, 7)
>>> C[tuple(idx.T)]
array([13, 7])
>>> C[idx[:,0], idx[:,1]]
array([13, 7])

Categories