scipy.optimize.fmin error: setting an array element with a sequence - python

I tried to fit a sin-function by finding the parameter, which has lowest error-value.
Below is my code:
import numpy as np
import scipy.optimize as opt
from scipy.optimize import leastsq
import matplotlib.pyplot as plt
def func_model(x, para):
''' Model: y = a*sin(2*k*pi*x+theta)'''
a, k, theta = para
return a*np.sin(2*k*np.pi*x+theta)
def func_noise(x, para):
a, k, theta = para
return a*np.sin(2*k*np.pi*x+theta) + np.random.randn(100)
def func_error(para_guess):
'''error_func'''
error_sum = 0
x_seq = np.linspace(-2*np.pi, 0, 100)
para_fact = [10, 0.34, np.pi/6]
for x in x_seq:
error_value = (func_noise(x, para_fact)-func_model(x, para_guess))**2
error_sum = error_sum + error_value
return error_sum
para_guess_init = np.array([7, 0.2, 0])
solution = opt.fmin(func_error, para_guess_init)
print(solution)
But it doesn't work, and said the error: setting an array with a sequence
Traceback:
File "", line 26, in <module>
solution = opt.fmin(func_error, para_guess_init)
File "C:\Users\sun\AppData\Local\Continuum\anaconda3\lib\site-packages\scipy\optimize\optimize.py", line 408, in fmin
res = _minimize_neldermead(func, x0, args, callback=callback, **opts)
File "C:\Users\sun\AppData\Local\Continuum\anaconda3\lib\site-packages\scipy\optimize\optimize.py", line 532, in _minimize_neldermead
fsim[k] = func(sim[k])
ValueError: setting an array element with a sequence.
Can someone help me, thanks in advance

This minimizer expects a scalar function-evaluation to minimize.
Your function func_error returns a vector of size (100,).
Compare your line:
error_value = (func_noise(x, para_fact)-func_model(x, para_guess))**2
with for example:
error_value = np.sum(np.square(
func_noise(x, para_fact)-func_model(x, para_guess)))
although i would prefer (objective changes!):
error_value = np.linalg.norm(
func_noise(x, para_fact)-func_model(x, para_guess))

Related

Type Error Warning keeps occurring in my code

In my python code, I keep getting the following error:
TypeError: No loop matching the specified signature and casting was found for ufunc svd_n
the code is as follows:
import numpy as np
from numpy.linalg import norm
def sdm_3eqs():
def f_bold(x):
return [15*x[0] + x[1]**2 - 4*x[2] - 15, x[0]**2 + 10*x[1] - x[2] - 10, x[1]**3 - 25*x[2] + 24]
def f(x):
f_n = []
for i in range(len(x)):
f_i = f_bold[i]**2
f_n.append(f_i)
return np.sum(f_n)
def M(x):
m = np.array([[15, 2*x[0], 0], [2*x[1], 10, 3*x[1]**2], [-4, -1, -25]])
return m
def grad_f(x):
return 2*M(x)*f_bold(x)
def d(x):
return -grad_f(x)/norm(grad_f(x), ord=2)
def s_prime(x, alpha, d):
return grad_f(x + alpha*d)*d
x = [0.5, 0.5, 0.5]
iter = 0
err = 100
while err > 0.005:
x_k = x
d_k = d(x_k)
m = 0
sprime = 300
alpha_l = 0
alpha_u = 1.5
alpha = (alpha_l+alpha_u)/2
while abs(sprime) > 0.0005:
alpha = (alpha_l+alpha_u)/2
sprime = s_prime(x_k, alpha, d_k)[0][0]
if abs(sprime) < 0.001:
break
elif sprime > 0:
alpha_u = alpha
else:
alpha_l = alpha
m += 1
iter += 1
x = x_k + alpha*d_k
err = norm(grad_f(x), ord=2)/max(1, norm(f_bold(x), ord=2))
print(f'f_bold: {f_bold(x)}')
sdm_3eqs()
I am unsure why but it says the type error come from line 57 in the code:
err = norm(grad_f(x), ord=2)/max(1, norm(f_bold(x), ord=2))
If anyone can help, that would be great!
EDIT:
Traceback (most recent call last):
File "/Users/aidanpayne/Desktop/Scripts/Python/University of Greenwich/MATH1157/Scripts/Steepest Descent Method.py", line 61, in <module>
sdm_3eqs()
File "/Users/aidanpayne/Desktop/Scripts/Python/University of Greenwich/MATH1157/Scripts/Steepest Descent Method.py", line 57, in sdm_3eqs
err = norm(grad_f(x), ord=2)/max(1, norm(f_bold(x), ord=2))
File "<__array_function__ internals>", line 5, in norm
File "/Users/aidanpayne/opt/anaconda3/lib/python3.8/site-packages/numpy/linalg/linalg.py", line 2579, in norm
ret = _multi_svd_norm(x, row_axis, col_axis, amax)
File "/Users/aidanpayne/opt/anaconda3/lib/python3.8/site-packages/numpy/linalg/linalg.py", line 2355, in _multi_svd_norm
result = op(svd(y, compute_uv=False), axis=-1)
File "<__array_function__ internals>", line 5, in svd
File "/Users/aidanpayne/opt/anaconda3/lib/python3.8/site-packages/numpy/linalg/linalg.py", line 1673, in svd
s = gufunc(a, signature=signature, extobj=extobj)
TypeError: No loop matching the specified signature and casting was found for ufunc svd_n
It looks like the M(x) function is returning a 3-dimensional array, of structure
[
[ a [b c d] e ]
[[f g h] i [k l m]]
[ n o p ]
]
and then you're attempting to matrix-multiply that with the result of f_bold(x) and calculate the norm.
I believe the error is related to trying to calculate the norm of this irregular matrix. In particular, check your function definition for M(x) to verify the shape/regularity of its returned array.
line 17: m = np.array([[15, 2*x[0], 0], [2*x[1], 10, 3*x[1]**2], [-4, -1, -25]])
^^^^ ^^^^ ^^^^
I added a couple of prints to your code, and got this run:
In [63]: sdm_3eqs()
<ipython-input-62-2b082fcea817>:14: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
m = np.array([[15, 2*x[0], 0], [2*x[1], 10, 3*x[1]**2], [-4, -1, -25]])
f_bold
[array([ 6.64610017e-05, -8.57391288e+00, -1.40877199e+01]), array([-3.81306816, -3.03705309, -6.81097338]), array([ 15.47764768, 12.41073581, -18.41883603])]
grad_f
array([[0.0019938300511945783,
array([-36.8081748 , -17.89173085, -17.14782575]), -0.0],
[array([ -8.20903822, -10.93449844, -7.0767119 ]),
-60.74106175194817,
array([-11.83793275, -21.00337307, -8.79740011])],
[-123.82118142652486, -24.821471626766595, 920.9418016830625]],
dtype=object)
Traceback (most recent call last):
File "<ipython-input-63-8732d4079184>", line 1, in <module>
sdm_3eqs()
File "<ipython-input-62-2b082fcea817>", line 57, in sdm_3eqs
err = np.linalg.norm(grad_f(x), ord=2)/max(1, np.linalg.norm(f_bold(x), ord=2))
File "<__array_function__ internals>", line 5, in norm
File "/usr/local/lib/python3.8/dist-packages/numpy/linalg/linalg.py", line 2579, in norm
ret = _multi_svd_norm(x, row_axis, col_axis, amax)
File "/usr/local/lib/python3.8/dist-packages/numpy/linalg/linalg.py", line 2355, in _multi_svd_norm
result = op(svd(y, compute_uv=False), axis=-1)
File "<__array_function__ internals>", line 5, in svd
File "/usr/local/lib/python3.8/dist-packages/numpy/linalg/linalg.py", line 1672, in svd
s = gufunc(a, signature=signature, extobj=extobj)
UFuncTypeError: Cannot cast ufunc 'svd_n' input from dtype('O') to dtype('float64') with casting rule 'same_kind'
In new enough numpy versions, the creation of a "ragged array" gets this warning, and tells us that we are not creating a simple numeric array. Instead M is an object dtype array, containing a mix of numbers and arrays.
f_bold is a list of arrays. grad_f is a (3,3) object dtype array with a mix of floats and arrays.
And in the latest numpy version this kind of error specifies the problem dtype - which as I suspected is 'O', object.
norm cannot handle that kind of array. That's why I asked for the dtype of the 2 norm arguments.
I have solved it.
In some of the functions, it was supposed to be the dot product of two matrices.
e.g.:
def grad_f(x):
return 2*np.dot(M(x), f_bold(x))
Here's the updated code:
import numpy as np
from numpy.core.fromnumeric import shape
from numpy.linalg import norm
from numpy import transpose
from numpy import array
from numpy import sum
from matplotlib import pyplot as plt
def sdm_3eqs():
def f_bold(x):
x_1 = x[0]
x_2 = x[1]
x_3 = x[2]
return array([15*x_1 + x_2**2 - 4*x_3 - 15, x_1**2 + 10*x_2 - x_3 - 10, x_2**3 - 25*x_3 + 24], dtype='float32')
def f(x):
f_n = []
for i in range(len(x)):
f_i = f_bold[i]**2
f_n.append(f_i)
return sum(f_n)
def M(x):
x_1 = x[0]
x_2 = x[1]
d1 = 2*x_1
d2 = 2*x_2
d3 = 3*x_2**2
return array([[15, d1, 0], [d2, 10, d3], [-4, -1, -25]], dtype='float32')
def grad_f(x):
return 2*np.dot(M(x), f_bold(x))
def d(x):
return -1*grad_f(x)/norm(grad_f(x), ord=2)
def s_prime(x, alpha, d):
return np.dot(transpose(grad_f(x + alpha*d)), d)
x = array([[0.5], [0.5], [0.5]], dtype='float32')
iter = 0
err = 100
while err > 0.005:
x_k = x
d_k = d(x_k)
m = 0
sprime = 300
alpha_l = 0
alpha_u = 1.5
alpha = (alpha_l+alpha_u)/2
while abs(sprime) > 0.0005:
alpha = (alpha_l+alpha_u)/2
sprime = s_prime(x_k, alpha, d_k)
if abs(sprime) < 0.001:
break
elif sprime > 0:
alpha_u = alpha
else:
alpha_l = alpha
m += 1
iter += 1
x = x_k + alpha*d_k
err = norm(grad_f(x), ord=2)/max(1, norm(f_bold(x), ord=2))
print(f'\nf_bold:\nEquation 1 = {f_bold(x)[0][0]}\nEquation 2 = {f_bold(x)[1][0]}\nEquation 3 = {f_bold(x)[2][0]}\n')
sdm_3eqs()

ValueError: x and y must have same first dimension, but have shapes (41,) and (1, 41)

I'm trying to plot a vs kappa_inv and I keep getting the error: ValueError: x and y must have same first dimension, but have shapes (41,) and (1, 41).
I saw a prev post about changing plt.plot square brackets to round ones but the error is still occurring. Can anyone see what I'm doing wrong?
import numpy
L = [20,20, 20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20]
L = numpy.array(L)
delta = [0.5, 0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5]
delta = numpy.array(delta)
x = L/delta
a =[-0.5,0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5,6,6.5,7,7.5,8,8.5,9,9.5,10,10.5,11,11.5,12,12.5,13,13.5,14,14.5,15,15.5,16,16.5,17,17.5,18,18.5,19,19.5]
numpy.array(a)
#Force
F = 100 #kN
#calc sigma
y = 250 #mm
E = 32800 #MPa
I =1.837E9 #mm4
sig = y/(E*I)
print (sig)
kappa = []
b = []
y = 20
while y >= 0:
   b.append(y)
   y = y-0.5
numpy.array(b)
for val in a:
val = "{:.1f}".format(val)
val = float(val)
fraction = b/L
kappa_i = fraction * val
kappa.append(kappa_i)
b = b - delta
N = 4
Length = len(kappa)
pad_kappa = numpy.pad(kappa,(0,N),'constant', constant_values = 0)
print(pad_kappa)
#Calc bending moment list
BM = []
for k in range (0,Length):
bendingMoment = (pad_kappa[k]*F) + (pad_kappa[k+3]*F)
BM.append(bendingMoment)
print(BM)
Strain =[]
for j in range(0,len(BM)):
strain = (BM[j] * sig) * 10E6
Strain.append(strain)
kappa_inv = [ -x for x in kappa]
numpy.array(kappa_inv)
import matplotlib.pyplot as plt
plt.plot(a,kappa_inv)
plt.ylabel('KAPPA')
plt.xlabel('LENGTH ALONG BEAM')
plt.show()
#E = BM*10E6 * sigma
strainCalcReverse = []
for s in Strain:
bendYourMomLOL = s/sig * (1/10E6)
bendYourMomLOL.append(strainCalcReverse)
print(strainCalcReverse)
There's a lot of messy stuff in your code,
Lines like:
numpy.array(a) # doesn't change list a
numpy.array(b) # same
but
fraction = b/L # only works if b is an array, not a list.
Looks like this is trying to turn all elements in a to float, but that's not how a python loop works.
for val in a:
val = "{:.1f}".format(val)
val = float(val)
a = np.array(a) will produce a float array, so there's no need for this loop.
Anyways, it looks like kappa_i is an array. If so then the following demonstrates your error:
In [311]: kappa=[]
In [312]: kappa.append(np.arange(3))
In [313]: kappa
Out[313]: [array([0, 1, 2])]
In [314]: plt.plot([1,2,3], kappa)
Traceback (most recent call last):
File "<ipython-input-314-e15645b5613f>", line 1, in <module>
plt.plot([1,2,3], kappa)
File "/usr/local/lib/python3.8/dist-packages/matplotlib/pyplot.py", line 2988, in plot
return gca().plot(
File "/usr/local/lib/python3.8/dist-packages/matplotlib/axes/_axes.py", line 1605, in plot
lines = [*self._get_lines(*args, data=data, **kwargs)]
File "/usr/local/lib/python3.8/dist-packages/matplotlib/axes/_base.py", line 315, in __call__
yield from self._plot_args(this, kwargs)
File "/usr/local/lib/python3.8/dist-packages/matplotlib/axes/_base.py", line 501, in _plot_args
raise ValueError(f"x and y must have same first dimension, but "
ValueError: x and y must have same first dimension, but have shapes (3,) and (1, 3)
By using that list append, you made a list with one array element. When passed to plot that is produces a (1,n) array.
Correct your code, whether it's the actual code or the copy to the question. And pay closer attention to when variables are lists, or arrays, and if arrays, what's the shape and dtype.

how to pack my numpy variables and arrays when calling curve_fit?

This is my standalone code to reproduce the problem:
import numpy as np
from scipy.optimize import curve_fit
def find_vector_of_minor_axis_from_chunk(data):
n = 20 # number of points
time = np.linspace(0, 2 * np.pi, n)
guess_center_point = data.mean(1)
guess_center_point = guess_center_point[np.newaxis, :].transpose()
guess_a_phase = 0
guess_b_phase = 0
guess_a = 1
guess_b = 1
guess_a_axis_vector = np.array([[1], [0], [0]])
guess_b_axis_vector = np.array([[0], [1], [0]])
p0 = np.array([guess_center_point,
guess_a, guess_a_axis_vector, guess_a_phase,
guess_b, guess_b_axis_vector, guess_b_phase])
def ellipse_func(t, center_point, a, a_axis_vector, a_phase, b, b_axis_vector, b_phase):
return center_point + a * a_axis_vector * np.sin(t * a_phase) + b * b_axis_vector * np.sin(t + b_phase)
popt, pcov = curve_fit(ellipse_func, time, data, p0=p0)
center_point, a, a_axis_vector, a_phase, b, b_axis_vector, b_phase = popt
print(str(a_axis_vector, b_axis_vector))
shorter_vector = a_axis_vector
if np.abs(a_axis_vector) > np.aps(b_axis_vector):
shorter_vector = b_axis_vector
return shorter_vector
def main():
data = np.array([[-4.62767933, -4.6275775, -4.62735346, -4.62719652, -4.62711625, -4.62717975,
-4.62723845, -4.62722407, -4.62713901, -4.62708749, -4.62703238, -4.62689101,
-4.62687185, -4.62694013, -4.62701082, -4.62700483, -4.62697488, -4.62686825,
-4.62675683, -4.62675204],
[-1.58625998, -1.58625039, -1.58619648, -1.58617611, -1.58620606, -1.5861833,
-1.5861821, -1.58619169, -1.58615814, -1.58616893, -1.58613179, -1.58615934,
-1.58611262, -1.58610782, -1.58613179, -1.58614017, -1.58613059, -1.58612699,
-1.58607428, -1.58610183],
[-0.96714786, -0.96713827, -0.96715984, -0.96715145, -0.96716703, -0.96712869,
-0.96716104, -0.96713228, -0.96719698, -0.9671838, -0.96717062, -0.96717062,
-0.96715744, -0.96707717, -0.96709275, -0.96706519, -0.96715026, -0.96711791,
-0.96713588, -0.96714786]])
print(str(find_vector_of_minor_axis_from_chunk(data)))
if __name__ == '__main__':
main()
That gives me this traceback:
Traceback (most recent call last):
File "C:/Users/X/PycharmProjects/lissajous-achse/ellipse_fit.py", line 52, in <module>
main()
File "C:/Users/X/PycharmProjects/lissajous-achse/ellipse_fit.py", line 49, in main
print(str(find_vector_of_minor_axis_from_chunk(data)))
File "C:/Users/X/PycharmProjects/lissajous-achse/ellipse_fit.py", line 25, in find_vector_of_minor_axis_from_chunk
popt, pcov = curve_fit(ellipse_func, time, data, p0=p0)
File "C:\Users\X\PycharmProjects\lissajous-achse\venv\lib\site-packages\scipy\optimize\minpack.py", line 763, in curve_fit
res = leastsq(func, p0, Dfun=jac, full_output=1, **kwargs)
File "C:\Users\X\PycharmProjects\lissajous-achse\venv\lib\site-packages\scipy\optimize\minpack.py", line 392, in leastsq
raise TypeError('Improper input: N=%s must not exceed M=%s' % (n, m))
TypeError: Improper input: N=7 must not exceed M=3
Process finished with exit code 1
My code is an adaption of the second answer here. The problem causing the error message is solved by simple packing of variables here.
Why does the problem not surface in the mentioned second answer? And how can I pack my variables, which consist of several 3d vectors and individual scalars, to solve this problem? How do i pass in my t, which is a constant and should not be optimized?
Apparently python is quite smart regarding the length of the fields of the arguments, depending on the the initial guesses. So i could just pass in ONE variable, and split it up inside the function like so:
import numpy as np
from scipy.optimize import minimize
def find_vector_of_minor_axis_from_chunk(data):
n = 20 # number of points
guess_center_point = data.mean(1)
guess_center_point = guess_center_point[np.newaxis, :].transpose()
guess_a_phase = 0.0
guess_b_phase = 0.0
guess_a = 1.0
guess_b = 1.0
guess_a_axis_vector = np.array([[1.0], [0.0], [0.0]])
guess_b_axis_vector = np.array([[0.0], [1.0], [0.0]])
p0 = np.array([guess_center_point,
guess_a, guess_a_axis_vector, guess_a_phase,
guess_b, guess_b_axis_vector, guess_b_phase])
def ellipse_func(x, data):
center_point = x[0]
a = x[1]
a_axis_vector = x[2]
a_phase = x[3]
b = x[4]
b_axis_vector = x[5]
b_phase = x[6]
t = np.linspace(0, 2 * np.pi, n)
error = center_point + a * a_axis_vector * np.sin(t * a_phase) + b * b_axis_vector * np.sin(t + b_phase) - data
error_sum = np.sum(error**2)
print(str(error_sum))
return error_sum
popt, pcov = minimize(ellipse_func, p0, args=(data))
center_point, a, a_axis_vector, a_phase, b, b_axis_vector, b_phase = popt
print(str(a_axis_vector, b_axis_vector))
shorter_vector = a_axis_vector
if np.abs(a_axis_vector) > np.aps(b_axis_vector):
shorter_vector = b_axis_vector
return shorter_vector
def main():
data = np.array([[-4.62767933, -4.6275775, -4.62735346, -4.62719652, -4.62711625, -4.62717975,
-4.62723845, -4.62722407, -4.62713901, -4.62708749, -4.62703238, -4.62689101,
-4.62687185, -4.62694013, -4.62701082, -4.62700483, -4.62697488, -4.62686825,
-4.62675683, -4.62675204],
[-1.58625998, -1.58625039, -1.58619648, -1.58617611, -1.58620606, -1.5861833,
-1.5861821, -1.58619169, -1.58615814, -1.58616893, -1.58613179, -1.58615934,
-1.58611262, -1.58610782, -1.58613179, -1.58614017, -1.58613059, -1.58612699,
-1.58607428, -1.58610183],
[-0.96714786, -0.96713827, -0.96715984, -0.96715145, -0.96716703, -0.96712869,
-0.96716104, -0.96713228, -0.96719698, -0.9671838, -0.96717062, -0.96717062,
-0.96715744, -0.96707717, -0.96709275, -0.96706519, -0.96715026, -0.96711791,
-0.96713588, -0.96714786]])
print(str(find_vector_of_minor_axis_from_chunk(data)))
if __name__ == '__main__':
main()
Also i fixed some floating point vs integer errors in the vector for the initial values.
However now I get a different error:
Traceback (most recent call last):
File "C:/Users/X/PycharmProjects/lissajous-achse/ellipse_fit.py", line 61, in <module>
main()
File "C:/Users/X/PycharmProjects/lissajous-achse/ellipse_fit.py", line 58, in main
print(str(find_vector_of_minor_axis_from_chunk(data)))
File "C:/Users/X/PycharmProjects/lissajous-achse/ellipse_fit.py", line 34, in find_vector_of_minor_axis_from_chunk
popt, pcov = minimize(ellipse_func, p0, args=(data))
File "C:\Users\X\PycharmProjects\lissajous-achse\venv\lib\site-packages\scipy\optimize\_minimize.py", line 604, in minimize
return _minimize_bfgs(fun, x0, args, jac, callback, **options)
File "C:\Users\X\PycharmProjects\lissajous-achse\venv\lib\site-packages\scipy\optimize\optimize.py", line 1063, in _minimize_bfgs
if isinf(rhok): # this is patch for numpy
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
I guess that
The truth value of an array with more than one element is ambiguous.
Use a.any() or a.all()
is some internal error, stemming from the internal decision matrix how to proceed. I don't know how I caused it and how to fix it. When i figure out how it is done properly, I will come back and edit this answer.

Troubles with solving differental equations in Python

I am trying to complete this, where I have to solve five ordinary
differential equations using odeint and reproduce figures given in that task.
Here is my code:
import scipy as sp
import scipy.interpolate as ip
import numpy as np
import matplotlib.pyplot as pl
d = 8.64
Mu1 = 4.95*10**2
Mu2 = 4.95*10**(-2)
vs = 0.12
vd = 1.23
w = 10**(-3)
k1 = 2.19*10**(-4)
k2 = 6.12*10**(-5)
k3 = 0.997148
k4 = 6.79*10**(-2)
p0 = 1.00
sigmas0 = 2.01
sigmad0 = 2.23
alphas0 = 2.20
alphad0 = 2.26
hs = (sigmas0-(sigmas0**(2)-k3*alphas0*(2*sigmas0-alphas0))**(1/2))/k3
cs = (alphas0-hs)/2
ps = k4*(hs**2)/cs
t_points = [ 1000, 1850, 1950, 1980, 2000, 2050, 2080, 2100, 2120, 2150, 2225, 2300, 2500, 5000 ]
y_points = [ 0.0, 0.0, 1.0, 4.0, 5.0, 8.0, 10.0, 10.5, 10.0, 8.0, 3.5, 2.0, 0.0, 0.0 ]
t1 = np.array(t_points)
y1 = np.array(y_points)
new_length = 1000
new_t = np.linspace(t1.min(), t1.max(), new_length)
new_y2 = ip.pchip_interpolate(t1, y1, new_t)
pl.plot(t_points,y_points,'o', new_t,new_y2)
pl.show()
ft = sp.interpolate.interp1d(new_t, new_y2)
def equations(x, t1):
p = x[0]
alphad = x[1]
alphas = x[2]
sigmad = x[3]
sigmas = x[4]
dpdt = (ps-p)/d + ft/Mu1
dalphaddt = (1/vd)*(k2-w*(alphad-alphas))
dalphasdt = (1/vs)*(w*(alphad-alphas)-k2)
dsigmaddt = (1/vd)*(k1-w*(sigmad-sigmas))
dsigmasdt = (1/vs)*(w*(sigmad-sigmas)-k1-(ps-p)/d*Mu2)
return [dpdt, dalphaddt, dalphasdt, dsigmaddt, dsigmasdt]
solve = sp.integrate.odeint(equations, [p0, alphad0, alphas0, sigmad0, sigmas0], t1)
It seems like this part:
dpdt = (ps-p)/d + ft/Mi1
is wrong and I have no idea how to solve it.
The error says:
TypeError: unsupported operand type(s) for /: 'interp1d' and 'float'.
Any ideas and advices are much appreciated.
EDIT: When I apply changes suggested by meowgoesthedog, I get error:
Traceback (most recent call last):
File "<ipython-input-5-324757833872>", line 1, in <module>
runfile('E:/Data/Project 2/project2.py', wdir='E:/Data/Project 2')
File "D:\Programs\Anaconda3\lib\site-packages\spyder_kernels\customize\spydercustomize.py", line 668, in runfile
execfile(filename, namespace)
File "D:\Programs\Anaconda3\lib\site-packages\spyder_kernels\customize\spydercustomize.py", line 108, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "E:/Data/Project 2/project2.py", line 59, in <module>
solve = odeint(equations, [p0, alphad0, alphas0, sigmad0, sigmas0], t1)
File "D:\Programs\Anaconda3\lib\site-packages\scipy\integrate\odepack.py", line 233, in odeint
int(bool(tfirst)))
File "E:/Data/Project 2/project2.py", line 51, in equations
dpdt = (ps-p)/d + ft(t1)/Mu1
File "D:\Programs\Anaconda3\lib\site-packages\scipy\interpolate\polyint.py", line 79, in __call__
y = self._evaluate(x)
File "D:\Programs\Anaconda3\lib\site-packages\scipy\interpolate\interpolate.py", line 664, in _evaluate
below_bounds, above_bounds = self._check_bounds(x_new)
File "D:\Programs\Anaconda3\lib\site-packages\scipy\interpolate\interpolate.py", line 696, in _check_bounds
raise ValueError("A value in x_new is above the interpolation "
ValueError: A value in x_new is above the interpolation range.
`
According to interp1d's documentation:
ynew = f(xnew) # use interpolation function returned by interp1d
It returns a function / callable object which takes a value x and returns the interpolated value of f(x). In your case "x" = t:
dpdt = (ps-p)/d + ft(t1)/Mu1 # pass t1 to ft to obtain interpolated value
UPDATE
This new error is due to odeint sampling the function f(t) at values of t beyond the last value of t_points. This is necessary for error correction and there is no option to prevent odeint from doing so. However, we can instead extrapolate f(t) beyond the supplied samples, using InterpolatedUnivariateSpline:
from scipy.interpolate import InterpolatedUnivariateSpline
...
ft = InterpolatedUnivariateSpline(t1, y1, k=1)
As with interp1d, this returns a function with the same signature. However, after applying this fix the result becomes:
Which is of course incorrect.
You have declared hs, cs, ps outside of the function as constants. In-fact they are functions of the alpha* and sigma* variables, so have to be evaluated during each call to equation:
def equations(x, t):
p = x[0]
alphad = x[1]
alphas = x[2]
sigmad = x[3]
sigmas = x[4]
hs = (sigmas-(sigmas**(2)-k3*alphas*(2*sigmas-alphas))**(1/2))/k3
cs = (alphas-hs)/2
ps = k4*(hs**2)/cs
dpdt = (ps-p)/d + ft(t)/Mu1
dalphaddt = (1/vd)*(k2-w*(alphad-alphas))
dalphasdt = (1/vs)*(w*(alphad-alphas)-k2)
dsigmaddt = (1/vd)*(k1-w*(sigmad-sigmas))
dsigmasdt = (1/vs)*(w*(sigmad-sigmas)-k1-(ps-p)/d*Mu2)
return [dpdt, dalphaddt, dalphasdt, dsigmaddt, dsigmasdt]
The result now matches the graph in the exercise... almost.
You passed t1 as the horizontal axis variable to odeint. It only has 14 elements which is too few for a smooth output. Pass new_t instead:
solve = ig.odeint(equations, [p0, alphad0, alphas0, sigmad0, sigmas0], new_t)
The result now exactly matches the expected one!

Scipy fmin_powell function

I'm trying to optimize the function eul with the initial guess X0 (X0 = [0.6421, -0.5046]) using fmin_powell. The function eul gets the initial conditions and calculates the velocity and temperature profile across a vertical flat plate using predictor-corrector method. I've displayed my code below:
def eul(X):
f2, q1 = X
N_tot = 5000;
n=np.linspace(0.0,10.0,N_tot)
f = np.zeros(N_tot,dtype=float).reshape(N_tot,)
dfdn = np.zeros(N_tot,dtype=float).reshape(N_tot,)
d2fdn2 = np.zeros(N_tot,dtype=float).reshape(N_tot,)
q = np.zeros(N_tot,dtype=float).reshape(N_tot,)
dqdn = np.zeros(N_tot,dtype=float).reshape(N_tot,)
Pr = 0.72; #Prandtl Number
##x0 = [d2fdn2_g1, dtdn_g1]
# Boundary Conditions
f[0] = 0.0;
dfdn[0] = 0.0;
d2fdn2[0] = f2;
q[0] = 1.0;
dqdn[0] = q1;
for i in np.arange(0,N_tot-1):
Dn = n[i+1] - n[i];
f_tmp=f[i]+dfdn[i]*Dn;
dfdn_tmp=dfdn[i]+d2fdn2[i]*Dn;
d2fdn2_tmp=d2fdn2[i]+(-3*f[i]*d2fdn2[i]+2*(dfdn[i])**2-q[i])*Dn;
q_tmp=q[i]+dqdn[i]*Dn;
dqdn_tmp=dqdn[i]-3*Pr*f[i]*dqdn[i]*Dn;
f[i+1]=f[i]+0.5*Dn*(dfdn[i]+dfdn_tmp);
dfdn[i+1]=dfdn[i]+0.5*Dn*(d2fdn2[i]+d2fdn2_tmp);
d2fdn2[i+1]=d2fdn2[i]+0.5*Dn*((-3*f[i]*d2fdn2[i]+2*(dfdn[i])**2-q[i])+(-3*f_tmp*d2fdn2_tmp+2*(dfdn_tmp)**2-q_tmp));
q[i+1]=q[i]+0.5*Dn*(dqdn[i]+dqdn_tmp);
dqdn[i+1]=dqdn[i]-0.5*Dn*((3*Pr*f[i]*dqdn[i])+(3*Pr*f_tmp*dqdn_tmp));
if((q[i+1]>1)|(q[i+1]<0)|(f[i+1]>2)|(f[i+1]<0)):
q[N_tot-1]=1+1/i;
dfdn[N_tot-1]=1+1/i;
break
return dfdn, q, n
MAIN PROGRAM
import numpy as np
import scipy as sp
import scipy.optimize
# Initial Guess
d2fdn2_g1 = 0.6421;
dtdn_g1 = -0.5046;
X0 = np.array([d2fdn2_g1, dtdn_g1])
X = scipy.optimize.fmin_powell(eul, X0)
I'm getting an error message:
Traceback (most recent call last):
File "C:\Users\labuser\Desktop\Sankar\New_Euler.py", line 52, in <module>
X = scipy.optimize.fmin_powell(eul, X0)
File "C:\Python27\lib\site-packages\scipy\optimize\optimize.py", line 1519, in fmin_powell
fval, x, direc1 = _linesearch_powell(func, x, direc1, tol=xtol*100)
File "C:\Python27\lib\site-packages\scipy\optimize\optimize.py", line 1418, in _linesearch_powell
alpha_min, fret, iter, num = brent(myfunc, full_output=1, tol=tol)
File "C:\Python27\lib\site-packages\scipy\optimize\optimize.py", line 1241, in brent
brent.optimize()
File "C:\Python27\lib\site-packages\scipy\optimize\optimize.py", line 1113, in optimize
xa,xb,xc,fa,fb,fc,funcalls = self.get_bracket_info()
File "C:\Python27\lib\site-packages\scipy\optimize\optimize.py", line 1089, in get_bracket_info
xa,xb,xc,fa,fb,fc,funcalls = bracket(func, args=args)
File "C:\Python27\lib\site-packages\scipy\optimize\optimize.py", line 1357, in bracket
if (fa < fb): # Switch so fa > fb
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
My guess is your function eul is returning an array. fmin_powell minimizes a scalar function. Check that eul returns a single value, not an array.
(Without seeing more code, the best we can do is guess. It would help if you added the definition of eul to the question.)
Instead of sending an array to fmin_powell just define another function that computes sum of the returned array, and use it.
# Initial Guess
d2fdn2_g1 = 0.6421;
dtdn_g1 = -0.5046;
def eeul(X):
return np.sum(eul(X))
X0 = np.array([d2fdn2_g1, dtdn_g1])
X = scipy.optimize.fmin_powell(eeul, X0)
This seems to work properly.

Categories