I have a csv-file with time series data, the first column is the date in the format %Y:%m:%d and the second column is the intraday time in the format '%H:%M:%S'. I would like to import this csv-file into a multiindex dataframe or panel object.
With this code, it already works:
_file_data = pd.read_csv(_file,
sep=",",
header=0,
index_col=['Date', 'Time'],
thousands="'",
parse_dates=True,
skipinitialspace=True
)
It returns the data in the following format:
Date Time Volume
2016-01-04 2018-04-25 09:01:29 53645
2018-04-25 10:01:29 123
2018-04-25 10:01:29 1345
....
2016-01-05 2018-04-25 10:01:29 123
2018-04-25 12:01:29 213
2018-04-25 10:01:29 123
1st question:
I would like to show the second index as a pure time-object not datetime. To do that, I have to declare two different date-pasers in the read_csv function, but I can't figure out how. What is the "best" way to do that?
2nd question:
After I created the Dataframe, I converted it to a panel-object. Would you recommend doing that? Is the panel-object the better choice for such a data structure? What are the benefits (drawbacks) of a panel-object?
1st question:
You can create multiple converters and define parsers in dictionary:
import pandas as pd
temp=u"""Date,Time,Volume
2016:01:04,09:00:00,53645
2016:01:04,09:20:00,0
2016:01:04,09:40:00,0
2016:01:04,10:00:00,1468
2016:01:05,10:00:00,246
2016:01:05,10:20:00,0
2016:01:05,10:40:00,0
2016:01:05,11:00:00,0
2016:01:05,11:20:00,0
2016:01:05,11:40:00,0
2016:01:05,12:00:00,213"""
def converter1(x):
#convert to datetime and then to times
return pd.to_datetime(x).time()
def converter2(x):
#define format of datetime
return pd.to_datetime(x, format='%Y:%m:%d')
#after testing replace 'pd.compat.StringIO(temp)' to 'filename.csv'
df = pd.read_csv(pd.compat.StringIO(temp),
index_col=['Date','Time'],
thousands="'",
skipinitialspace=True,
converters={'Time': converter1, 'Date': converter2})
print (df)
Volume
Date Time
2016-01-04 09:00:00 53645
09:20:00 0
09:40:00 0
10:00:00 1468
2016-01-05 10:00:00 246
10:20:00 0
10:40:00 0
11:00:00 0
11:20:00 0
11:40:00 0
12:00:00 213
Sometimes is possible use built-in parser, e.g. if format of dates is YY-MM-DD:
import pandas as pd
temp=u"""Date,Time,Volume
2016-01-04,09:00:00,53645
2016-01-04,09:20:00,0
2016-01-04,09:40:00,0
2016-01-04,10:00:00,1468
2016-01-05,10:00:00,246
2016-01-05,10:20:00,0
2016-01-05,10:40:00,0
2016-01-05,11:00:00,0
2016-01-05,11:20:00,0
2016-01-05,11:40:00,0
2016-01-05,12:00:00,213"""
def converter(x):
#define format of datetime
return pd.to_datetime(x).time()
#after testing replace 'pd.compat.StringIO(temp)' to 'filename.csv'
df = pd.read_csv(pd.compat.StringIO(temp),
index_col=['Date','Time'],
parse_dates=['Date'],
thousands="'",
skipinitialspace=True,
converters={'Time': converter})
print (df.index.get_level_values(0))
DatetimeIndex(['2016-01-04', '2016-01-04', '2016-01-04', '2016-01-04',
'2016-01-05', '2016-01-05', '2016-01-05', '2016-01-05',
'2016-01-05', '2016-01-05', '2016-01-05'],
dtype='datetime64[ns]', name='Date', freq=None)
Last possible solution is convert datetime to times in MultiIndex by set_levels - after processing:
df.index = df.index.set_levels(df.index.get_level_values(1).time, level=1)
print (df)
Volume
Date Time
2016-01-04 09:00:00 53645
09:20:00 0
09:40:00 0
10:00:00 1468
2016-01-05 10:00:00 246
10:00:00 0
10:20:00 0
10:40:00 0
11:00:00 0
11:20:00 0
11:40:00 213
2nd question:
Panel in pandas 0.20.+ is deprecated and will be removed in a future version.
To convert to a time series use pd.to_timedelta.
Ex:
import pandas as pd
df = pd.DataFrame({"Time": ["2018-04-25 09:01:29", "2018-04-25 10:01:29", "2018-04-25 10:01:29"]})
df["Time"] = pd.to_timedelta(pd.to_datetime(df["Time"]).dt.strftime('%H:%M:%S'))
print df["Time"]
Output:
0 09:01:29
1 10:01:29
2 10:01:29
Name: Time, dtype: timedelta64[ns]
Related
I have a dataframe:
data = {'time':['08:45:00', '09:30:00', '18:00:00', '15:00:00']}
df = pd.DataFrame(data)
I would like to convert the time based on conditions: if the hour is less than 9, I want to set it to 9 and if the hour is more than 17, I need to set it to 17.
I tried this approach:
df['time'] = np.where(((df['time'].dt.hour < 9) & (df['time'].dt.hour != 0)), dt.time(9, 00))
I am getting an error: Can only use .dt. accesor with datetimelike values.
Can anyone please help me with this? Thanks.
Here's a way to do what your question asks:
df.time = pd.to_datetime(df.time)
df.loc[df.time.dt.hour < 9, 'time'] = (df.time.astype('int64') + (9 - df.time.dt.hour)*3600*1000000000).astype('datetime64[ns]')
df.loc[df.time.dt.hour > 17, 'time'] = (df.time.astype('int64') + (17 - df.time.dt.hour)*3600*1000000000).astype('datetime64[ns]')
Input:
time
0 2022-06-06 08:45:00
1 2022-06-06 09:30:00
2 2022-06-06 18:00:00
3 2022-06-06 15:00:00
Output:
time
0 2022-06-06 09:45:00
1 2022-06-06 09:30:00
2 2022-06-06 17:00:00
3 2022-06-06 15:00:00
UPDATE:
Here's alternative code to try to address OP's error as described in the comments:
import pandas as pd
import datetime
data = {'time':['08:45:00', '09:30:00', '18:00:00', '15:00:00']}
df = pd.DataFrame(data)
print('', 'df loaded as strings:', df, sep='\n')
df.time = pd.to_datetime(df.time, format='%H:%M:%S')
print('', 'df converted to datetime by pd.to_datetime():', df, sep='\n')
df.loc[df.time.dt.hour < 9, 'time'] = (df.time.astype('int64') + (9 - df.time.dt.hour)*3600*1000000000).astype('datetime64[ns]')
df.loc[df.time.dt.hour > 17, 'time'] = (df.time.astype('int64') + (17 - df.time.dt.hour)*3600*1000000000).astype('datetime64[ns]')
df.time = [time.time() for time in pd.to_datetime(df.time)]
print('', 'df with time column adjusted to have hour between 9 and 17, converted to type "time":', df, sep='\n')
Output:
df loaded as strings:
time
0 08:45:00
1 09:30:00
2 18:00:00
3 15:00:00
df converted to datetime by pd.to_datetime():
time
0 1900-01-01 08:45:00
1 1900-01-01 09:30:00
2 1900-01-01 18:00:00
3 1900-01-01 15:00:00
df with time column adjusted to have hour between 9 and 17, converted to type "time":
time
0 09:45:00
1 09:30:00
2 17:00:00
3 15:00:00
UPDATE #2:
To not just change the hour for out-of-window times, but to simply apply 9:00 and 17:00 as min and max times, respectively (see OP's comment on this), you can do this:
df.loc[df['time'].dt.hour < 9, 'time'] = pd.to_datetime(pd.DataFrame({
'year':df['time'].dt.year, 'month':df['time'].dt.month, 'day':df['time'].dt.day,
'hour':[9]*len(df.index)}))
df.loc[df['time'].dt.hour > 17, 'time'] = pd.to_datetime(pd.DataFrame({
'year':df['time'].dt.year, 'month':df['time'].dt.month, 'day':df['time'].dt.day,
'hour':[17]*len(df.index)}))
df['time'] = [time.time() for time in pd.to_datetime(df['time'])]
Since your 'time' column contains strings they can kept as strings and assign new string values where appropriate. To filter for your criteria it is convenient to: create datetime Series from the 'time' column, create boolean Series by comparing the datetime Series with your criteria, use the boolean Series to filter the rows which need to be changed.
Your data:
import numpy as np
import pandas as pd
data = {'time':['08:45:00', '09:30:00', '18:00:00', '15:00:00']}
df = pd.DataFrame(data)
print(df.to_string())
>>>
time
0 08:45:00
1 09:30:00
2 18:00:00
3 15:00:00
Convert to datetime, make boolean Series with your criteria
dts = pd.to_datetime(df['time'])
lt_nine = dts.dt.hour < 9
gt_seventeen = (dts.dt.hour >= 17)
print(lt_nine)
print(gt_seventeen)
>>>
0 True
1 False
2 False
3 False
Name: time, dtype: bool
0 False
1 False
2 True
3 False
Name: time, dtype: bool
Use the boolean series to assign a new value:
df.loc[lt_nine,'time'] = '09:00:00'
df.loc[gt_seventeen,'time'] = '17:00:00'
print(df.to_string())
>>>
time
0 09:00:00
1 09:30:00
2 17:00:00
3 15:00:00
Or just stick with strings altogether and create the boolean Series using regex patterns and .str.match.
data = {'time':['08:45:00', '09:30:00', '18:00:00', '15:00:00','07:22:00','22:02:06']}
dg = pd.DataFrame(data)
print(dg.to_string())
>>>
time
0 08:45:00
1 09:30:00
2 18:00:00
3 15:00:00
4 07:22:00
5 22:02:06
# regex patterns
pattern_lt_nine = '^00|01|02|03|04|05|06|07|08'
pattern_gt_seventeen = '^17|18|19|20|21|22|23'
Make boolean Series and assign new values
gt_seventeen = dg['time'].str.match(pattern_gt_seventeen)
lt_nine = dg['time'].str.match(pattern_lt_nine)
dg.loc[lt_nine,'time'] = '09:00:00'
dg.loc[gt_seventeen,'time'] = '17:00:00'
print(dg.to_string())
>>>
time
0 09:00:00
1 09:30:00
2 17:00:00
3 15:00:00
4 09:00:00
5 17:00:00
Time series / date functionality
Working with text data
I have a dataframe with data for each minutes, it also contains a date column which is used to keep track of the date in timestamp format.
Here I'm trying to aggregate the data by hours instead of minute.
I tried the following code which is working but it needs to index based on date column which I don't want because then I cannot loop through the dataframe using df.loc function.
import pandas as pd
from datetime import datetime
import numpy as np
date_rng = pd.date_range(start='1/1/2018', end='1/08/2018', freq='T')
df = pd.DataFrame(date_rng, columns=['date'])
df['data'] = np.random.randint(0,100,size=(len(date_rng)))
df.set_index('date')
df.index = pd.to_datetime(df.index, unit='s')
df = df.resample('H').sum()
df.head(15)
I also tried groupby but it's not working, following is the code.
df.groupby([df.date.dt.hour]).data.sum()
print(df.head(15))
How I can groupby date without indexing it?
Thanks.
Try pd.Grouper and specify the freq parameter:
df.groupby([pd.Grouper(key='date', freq='1H')]).sum()
Full code:
import pandas as pd
from datetime import datetime
import numpy as np
date_rng = pd.date_range(start='1/1/2018', end='1/08/2018', freq='T')
df = pd.DataFrame(date_rng, columns=['date'])
df['data'] = np.random.randint(0, 100, size=(len(date_rng)))
print(df.groupby([pd.Grouper(key='date', freq='1H')]).sum())
# data
# date
# 2018-01-01 00:00:00 2958
# 2018-01-01 01:00:00 3084
# 2018-01-01 02:00:00 2991
# 2018-01-01 03:00:00 3021
# 2018-01-01 04:00:00 2894
# ... ...
# 2018-01-07 20:00:00 2863
# 2018-01-07 21:00:00 2850
# 2018-01-07 22:00:00 2823
# 2018-01-07 23:00:00 2805
# 2018-01-08 00:00:00 25
# [169 rows x 1 columns]
Hope that helps !
I have a pandas dataframe with over 1000 timestamps (below) that I would like to loop through:
2016-02-22 14:59:44.561776
I'm having a hard time splitting this time stamp into 2 columns- 'date' and 'time'. The date format can stay the same, but the time needs to be converted to CST (including milliseconds).
Thanks for the help
Had same problem and this worked for me.
Suppose the date column in your dataset is called "date"
import pandas as pd
df = pd.read_csv(file_path)
df['Dates'] = pd.to_datetime(df['date']).dt.date
df['Time'] = pd.to_datetime(df['date']).dt.time
This will give you two columns "Dates" and "Time" with splited dates.
I'm not sure why you would want to do this in the first place, but if you really must...
df = pd.DataFrame({'my_timestamp': pd.date_range('2016-1-1 15:00', periods=5)})
>>> df
my_timestamp
0 2016-01-01 15:00:00
1 2016-01-02 15:00:00
2 2016-01-03 15:00:00
3 2016-01-04 15:00:00
4 2016-01-05 15:00:00
df['new_date'] = [d.date() for d in df['my_timestamp']]
df['new_time'] = [d.time() for d in df['my_timestamp']]
>>> df
my_timestamp new_date new_time
0 2016-01-01 15:00:00 2016-01-01 15:00:00
1 2016-01-02 15:00:00 2016-01-02 15:00:00
2 2016-01-03 15:00:00 2016-01-03 15:00:00
3 2016-01-04 15:00:00 2016-01-04 15:00:00
4 2016-01-05 15:00:00 2016-01-05 15:00:00
The conversion to CST is more tricky. I assume that the current timestamps are 'unaware', i.e. they do not have a timezone attached? If not, how would you expect to convert them?
For more details:
https://docs.python.org/2/library/datetime.html
How to make an unaware datetime timezone aware in python
EDIT
An alternative method that only loops once across the timestamps instead of twice:
new_dates, new_times = zip(*[(d.date(), d.time()) for d in df['my_timestamp']])
df = df.assign(new_date=new_dates, new_time=new_times)
The easiest way is to use the pandas.Series dt accessor, which works on columns with a datetime dtype (see pd.to_datetime). For this case, pd.date_range creates an example column with a datetime dtype, therefore use .dt.date and .dt.time:
df = pd.DataFrame({'full_date': pd.date_range('2016-1-1 10:00:00.123', periods=10, freq='5H')})
df['date'] = df['full_date'].dt.date
df['time'] = df['full_date'].dt.time
In [166]: df
Out[166]:
full_date date time
0 2016-01-01 10:00:00.123 2016-01-01 10:00:00.123000
1 2016-01-01 15:00:00.123 2016-01-01 15:00:00.123000
2 2016-01-01 20:00:00.123 2016-01-01 20:00:00.123000
3 2016-01-02 01:00:00.123 2016-01-02 01:00:00.123000
4 2016-01-02 06:00:00.123 2016-01-02 06:00:00.123000
5 2016-01-02 11:00:00.123 2016-01-02 11:00:00.123000
6 2016-01-02 16:00:00.123 2016-01-02 16:00:00.123000
7 2016-01-02 21:00:00.123 2016-01-02 21:00:00.123000
8 2016-01-03 02:00:00.123 2016-01-03 02:00:00.123000
9 2016-01-03 07:00:00.123 2016-01-03 07:00:00.123000
If your timestamps are already in pandas format (not string), then:
df["date"] = df["timestamp"].date
dt["time"] = dt["timestamp"].time
If your timestamp is a string, you can parse it using the datetime module:
from datetime import datetime
data1["timestamp"] = df["timestamp"].apply(lambda x: \
datetime.strptime(x,"%Y-%m-%d %H:%M:%S.%f"))
Source:
http://pandas.pydata.org/pandas-docs/stable/timeseries.html
If your timestamp is a string, you can convert it to a datetime object:
from datetime import datetime
timestamp = '2016-02-22 14:59:44.561776'
dt = datetime.strptime(timestamp, '%Y-%m-%d %H:%M:%S.%f')
From then on you can bring it to whatever format you like.
Try
s = '2016-02-22 14:59:44.561776'
date,time = s.split()
then convert time as needed.
If you want to further split the time,
hour, minute, second = time.split(':')
try this:
def time_date(datetime_obj):
date_time = datetime_obj.split(' ')
time = date_time[1].split('.')
return date_time[0], time[0]
In addition to #Alexander if you want a single liner
df['new_date'],df['new_time'] = zip(*[(d.date(), d.time()) for d in df['my_timestamp']])
If your timestamp is a string, you can convert it to pandas timestamp before splitting it.
#convert to pandas timestamp
data["old_date"] = pd.to_datetime(data.old_date)
#split columns
data["new_date"] = data["old_date"].dt.date
data["new_time"] = data["old_date"].dt.time
I have a large data set like this
user category
time
2014-01-01 00:00:00 21155349 2
2014-01-01 00:00:00 56347479 6
2014-01-01 00:00:00 68429517 13
2014-01-01 00:00:00 39055685 4
2014-01-01 00:00:00 521325 13
I want to make it as
user category
time
00:00:00 21155349 2
00:00:00 56347479 6
00:00:00 68429517 13
00:00:00 39055685 4
00:00:00 521325 13
How you do this using pandas
If you want to mutate a series (column) in pandas, the pattern is to apply a function to it (that updates on element in the series at a time), and to then assign that series back into into the dataframe
import pandas
import StringIO
# load data
data = '''date,user,category
2014-01-01 00:00:00, 21155349, 2
2014-01-01 00:00:00, 56347479, 6
2014-01-01 00:00:00, 68429517, 13
2014-01-01 00:00:00, 39055685, 4
2014-01-01 00:00:00, 521325, 13'''
df = pandas.read_csv(StringIO.StringIO(data))
df['date'] = pandas.to_datetime(df['date'])
# make the required change
without_date = df['date'].apply( lambda d : d.time() )
df['date'] = without_date
# display results
print df
If the problem is because the date is the index, you've got a few more hoops to jump through:
df = pandas.read_csv(StringIO.StringIO(data), index_col='date')
ser = pandas.to_datetime(df.index).to_series()
df.set_index(ser.apply(lambda d : d.time() ))
As suggested by #DSM, If you have pandas later than 0.15.2, you can use use the .dt accessor on the series to do fast updates.
df = pandas.read_csv(StringIO.StringIO(data), index_col='date')
ser = pandas.to_datetime(df.index).to_series()
df.set_index(ser.dt.time)
I have a csv file that I am trying to import into pandas.
There are two columns of intrest. date and hour and are the first two cols.
E.g.
date,hour,...
10-1-2013,0,
10-1-2013,0,
10-1-2013,0,
10-1-2013,1,
10-1-2013,1,
How do I import using pandas so that that hour and date is combined or is that best done after the initial import?
df = DataFrame.from_csv('bingads.csv', sep=',')
If I do the initial import how do I combine the two as a date and then delete the hour?
Thanks
Define your own date_parser:
In [291]: from dateutil.parser import parse
In [292]: import datetime as dt
In [293]: def date_parser(x):
.....: date, hour = x.split(' ')
.....: return parse(date) + dt.timedelta(0, 3600*int(hour))
In [298]: pd.read_csv('test.csv', parse_dates=[[0,1]], date_parser=date_parser)
Out[298]:
date_hour a b c
0 2013-10-01 00:00:00 1 1 1
1 2013-10-01 00:00:00 2 2 2
2 2013-10-01 00:00:00 3 3 3
3 2013-10-01 01:00:00 4 4 4
4 2013-10-01 01:00:00 5 5 5
Apply read_csv instead of read_clipboard to handle your actual data:
>>> df = pd.read_clipboard(sep=',')
>>> df['date'] = pd.to_datetime(df.date) + pd.to_timedelta(df.hour, unit='D')/24
>>> del df['hour']
>>> df
date ...
0 2013-10-01 00:00:00 NaN
1 2013-10-01 00:00:00 NaN
2 2013-10-01 00:00:00 NaN
3 2013-10-01 01:00:00 NaN
4 2013-10-01 01:00:00 NaN
[5 rows x 2 columns]
Take a look at the parse_dates argument which pandas.read_csv accepts.
You can do something like:
df = pandas.read_csv('some.csv', parse_dates=True)
# in which case pandas will parse all columns where it finds dates
df = pandas.read_csv('some.csv', parse_dates=[i,j,k])
# in which case pandas will parse the i, j and kth columns for dates
Since you are only using the two columns from the cdv file and combining those into one, I would squeeze into a series of datetime objects like so:
import pandas as pd
from StringIO import StringIO
import datetime as dt
txt='''\
date,hour,A,B
10-1-2013,0,1,6
10-1-2013,0,2,7
10-1-2013,0,3,8
10-1-2013,1,4,9
10-1-2013,1,5,10'''
def date_parser(date, hour):
dates=[]
for ed, eh in zip(date, hour):
month, day, year=list(map(int, ed.split('-')))
hour=int(eh)
dates.append(dt.datetime(year, month, day, hour))
return dates
p=pd.read_csv(StringIO(txt), usecols=[0,1],
parse_dates=[[0,1]], date_parser=date_parser, squeeze=True)
print p
Prints:
0 2013-10-01 00:00:00
1 2013-10-01 00:00:00
2 2013-10-01 00:00:00
3 2013-10-01 01:00:00
4 2013-10-01 01:00:00
Name: date_hour, dtype: datetime64[ns]