Labeling horizontal barplot with values in Seaborn - python

I have a horizontal barplot, for example, a simplified version of the example from the seaborn documentation:
import seaborn as sns
import matplotlib.pyplot as plt
f, ax = plt.subplots(figsize=(6, 15))
crashes = sns.load_dataset("car_crashes").sort_values("total", ascending=False)
sns.barplot(x="total", y="abbrev", data=crashes,
label="Total", color="b")
ax.set(xlim=(0, 24), ylabel="",
xlabel="Automobile collisions per billion miles")
plt.show()
How can I get the bars labeled with the value for each bar?
I tried this approach for vertical bars (How to add percentages on top of bars in seaborn), but it doesn't seem to work. Changing height to width doesn't have the effect I assumed it would.
for p in ax.patches:
height = p.get_width()
ax.text(p.get_y()+p.get_height()/2.,
height + 3,
'{:1.2f}'.format(height),
ha="center")
I'm assuming the horizontal plot works differently?

Got it, thanks to #ImportanceOfBeingErnest
This worked for me
for p in ax.patches:
width = p.get_width() # get bar length
ax.text(width + 1, # set the text at 1 unit right of the bar
p.get_y() + p.get_height() / 2, # get Y coordinate + X coordinate / 2
'{:1.2f}'.format(width), # set variable to display, 2 decimals
ha = 'left', # horizontal alignment
va = 'center') # vertical alignment

As of matplotlib 3.4.0
Use the new built-in ax.bar_label, which will automatically label bar containers regardless of orientation:
fig, ax = plt.subplots(figsize=(6, 8))
sns.barplot(x="total", y="abbrev", data=crashes)
# new helper method to auto-label bars
ax.bar_label(ax.containers[0])
If the bars are grouped by hue, call ax.bar_label on all the containers:
fig, ax = plt.subplots(figsize=(5, 6))
ax = sns.barplot(x="tip", y="day", hue="smoker", data=tips)
# grouped bars will have multiple containers
for container in ax.containers:
ax.bar_label(container)

Thank you very much for this. It helped me a lot, but i ran to a problem, where percents had to many digits after decimal point, the format can be then simply specified:
for container in ax.containers:
ax.bar_label(container,size=8,fmt='%.1f')

Related

Adding total values to seaborn plot python [duplicate]

I have a horizontal barplot, for example, a simplified version of the example from the seaborn documentation:
import seaborn as sns
import matplotlib.pyplot as plt
f, ax = plt.subplots(figsize=(6, 15))
crashes = sns.load_dataset("car_crashes").sort_values("total", ascending=False)
sns.barplot(x="total", y="abbrev", data=crashes,
label="Total", color="b")
ax.set(xlim=(0, 24), ylabel="",
xlabel="Automobile collisions per billion miles")
plt.show()
How can I get the bars labeled with the value for each bar?
I tried this approach for vertical bars (How to add percentages on top of bars in seaborn), but it doesn't seem to work. Changing height to width doesn't have the effect I assumed it would.
for p in ax.patches:
height = p.get_width()
ax.text(p.get_y()+p.get_height()/2.,
height + 3,
'{:1.2f}'.format(height),
ha="center")
I'm assuming the horizontal plot works differently?
Got it, thanks to #ImportanceOfBeingErnest
This worked for me
for p in ax.patches:
width = p.get_width() # get bar length
ax.text(width + 1, # set the text at 1 unit right of the bar
p.get_y() + p.get_height() / 2, # get Y coordinate + X coordinate / 2
'{:1.2f}'.format(width), # set variable to display, 2 decimals
ha = 'left', # horizontal alignment
va = 'center') # vertical alignment
As of matplotlib 3.4.0
Use the new built-in ax.bar_label, which will automatically label bar containers regardless of orientation:
fig, ax = plt.subplots(figsize=(6, 8))
sns.barplot(x="total", y="abbrev", data=crashes)
# new helper method to auto-label bars
ax.bar_label(ax.containers[0])
If the bars are grouped by hue, call ax.bar_label on all the containers:
fig, ax = plt.subplots(figsize=(5, 6))
ax = sns.barplot(x="tip", y="day", hue="smoker", data=tips)
# grouped bars will have multiple containers
for container in ax.containers:
ax.bar_label(container)
Thank you very much for this. It helped me a lot, but i ran to a problem, where percents had to many digits after decimal point, the format can be then simply specified:
for container in ax.containers:
ax.bar_label(container,size=8,fmt='%.1f')

Matplotlib: Automatic labeling in side by side bar chart

Based on the following example from matplotlib, I have made a function that plots two weekly time series as a side-by-side bar chart.
https://matplotlib.org/3.1.1/gallery/lines_bars_and_markers/barchart.html#sphx-glr-gallery-lines-bars-and-markers-barchart-py
My problem is that I set the xticks explicitly, and that creates messy xtick-labels. Is there a way to get matplotlib to choose xticks (position and labels) explicitly in such a plot?
I must say that I find the whole operation with specifycing the position of the bar using (x - width/2) quite inelegant to get side-by-side-bars - are there other options (other packages than matplotlib or other specifications in matplotlib) to avoid writing such explicit code?
Below is code and result. I'm seeking a solution that selects the number and placements of xticks and xticklabels that leaves it readable:
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
labels = ['W1-2020', 'W2-2020', 'W3-2020', 'W4-2020', 'W5-2020','W6-2020','W7-2020','W8-2020','W9-2020','W10-2020','W11-2020','W12-2020','W13-2020','W14-2020','W15-2020']
men_means = [20, 34, 30, 35, 27,18,23,29,27,29,38,28,17,28,23]
women_means = [25, 32, 34, 20, 25,27,18,23,29,27,29,38,19,20, 34]
x = np.arange(len(labels)) # the label locations
width = 0.35 # the width of the bars
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, men_means, width, label='Men')
rects2 = ax.bar(x + width/2, women_means, width, label='Women')
# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('Scores')
ax.set_title('Scores by group and gender')
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.legend()
def autolabel(rects):
"""Attach a text label above each bar in *rects*, displaying its height."""
for rect in rects:
height = rect.get_height()
ax.annotate('{}'.format(height),
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0, 3), # 3 points vertical offset
textcoords="offset points",
ha='center', va='bottom')
autolabel(rects1)
autolabel(rects2)
fig.tight_layout()
plt.show()
Solution 1 : Using Pandas
You can first create a pandas DataFrame and then plot a multiple bar chart directly. The formatting of labels on the x-axis is much neater
df = pd.DataFrame(
{'labels': labels,
'men_means': men_means,
'women_means': women_means
})
df.plot(x="labels", y=["men_means", "women_means"], kind="bar")
Solution 2: Using Seaborn (adapted from this answer)
import seaborn as sns
fig, ax = plt.subplots(figsize=(6, 4))
tidy = df.melt(id_vars='labels').rename(columns=str.title)
sns.barplot(x='Labels', y='Value', hue='Variable', data=tidy, ax=ax)
sns.despine(fig)
ax.tick_params(axis='x', labelrotation=90)
To hide only every n-th tick, you can do the following as adapted from this answer
n = 2
for label in ax.xaxis.get_ticklabels()[::n]:
label.set_visible(False)
To show every n-th label, you can use the following trick
fig.canvas.draw()
n = 4
labels = [item.get_text() if i%n == 0 else "" for i, item in enumerate(ax.get_xticklabels())]
ax.set_xticklabels(labels);

Python - dual y axis chart, align zero

I'm trying to create a horizontal bar chart, with dual x axes. The 2 axes are very different in scale, 1 set goes from something like -5 to 15 (positive and negative value), the other set is more like 100 to 500 (all positive values).
When I plot this, I'd like to align the 2 axes so zero shows at the same position, and only the negative values are to the left of this. Currently the set with all positive values starts at the far left, and the set with positive and negative starts in the middle of the overall plot.
I found the align_yaxis example, but I'm struggling to align the x axes.
Matplotlib bar charts: Aligning two different y axes to zero
Here is an example of what I'm working on with simple test data. Any ideas/suggestions? thanks
import pandas as pd
import matplotlib.pyplot as plt
d = {'col1':['Test 1','Test 2','Test 3','Test 4'],'col 2':[1.4,-3,1.3,5],'Col3':[900,750,878,920]}
df = pd.DataFrame(data=d)
fig = plt.figure() # Create matplotlib figure
ax = fig.add_subplot(111) # Create matplotlib axes
ax2 = ax.twiny() # Create another axes that shares the same y-axis as ax.
width = 0.4
df['col 2'].plot(kind='barh', color='darkblue', ax=ax, width=width, position=1,fontsize =4, figsize=(3.0, 5.0))
df['Col3'].plot(kind='barh', color='orange', ax=ax2, width=width, position=0, fontsize =4, figsize=(3.0, 5.0))
ax.set_yticklabels(df.col1)
ax.set_xlabel('Positive and Neg',color='darkblue')
ax2.set_xlabel('Positive Only',color='orange')
ax.invert_yaxis()
plt.show()
I followed the link from a question and eventually ended up at this answer : https://stackoverflow.com/a/10482477/5907969
The answer has a function to align the y-axes and I have modified the same to align x-axes as follows:
def align_xaxis(ax1, v1, ax2, v2):
"""adjust ax2 xlimit so that v2 in ax2 is aligned to v1 in ax1"""
x1, _ = ax1.transData.transform((v1, 0))
x2, _ = ax2.transData.transform((v2, 0))
inv = ax2.transData.inverted()
dx, _ = inv.transform((0, 0)) - inv.transform((x1-x2, 0))
minx, maxx = ax2.get_xlim()
ax2.set_xlim(minx+dx, maxx+dx)
And then use it within the code as follows:
import pandas as pd
import matplotlib.pyplot as plt
d = {'col1':['Test 1','Test 2','Test 3','Test 4'],'col 2' [1.4,-3,1.3,5],'Col3':[900,750,878,920]}
df = pd.DataFrame(data=d)
fig = plt.figure() # Create matplotlib figure
ax = fig.add_subplot(111) # Create matplotlib axes
ax2 = ax.twiny() # Create another axes that shares the same y-axis as ax.
width = 0.4
df['col 2'].plot(kind='barh', color='darkblue', ax=ax, width=width, position=1,fontsize =4, figsize=(3.0, 5.0))
df['Col3'].plot(kind='barh', color='orange', ax=ax2, width=width, position=0, fontsize =4, figsize=(3.0, 5.0))
ax.set_yticklabels(df.col1)
ax.set_xlabel('Positive and Neg',color='darkblue')
ax2.set_xlabel('Positive Only',color='orange')
align_xaxis(ax,0,ax2,0)
ax.invert_yaxis()
plt.show()
This will give you what you're looking for

One figure to present multiple pie chart with different size

The figure above is an illustration of my purpose.
It's easy to plot pie chart in MatPlotLib.
But how to draw several pie in one figure and the size of each figure depend on the value I set.
Any advices or recommandation is appreciate!
You can use subplots to place the pies into the figure. You can then use the radius argument to determine their size. As usual it helps to consult the manual.
Here is an example:
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
t = "Plot a pie chart with different sized pies all in one figure"
X = np.random.rand(12,4)*30
r = np.random.rand(12)*0.8+0.6
fig, axes= plt.subplots(3, 4)
for i, ax in enumerate(axes.flatten()):
x = X[i,:]/np.sum(X[i,:])
ax.pie(x, radius = r[i], autopct="%.1f%%", pctdistance=0.9)
ax.set_title(t.split()[i])
plt.show()
You can use add_axes to adjust the size of the axes for your plot. Also,
there is a radius parameter in the pie function which you can use to specify the radius of the pie plot. Check the code below:
labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
fracs = [15, 30, 45, 10]
fig = plt.figure()
ax1 = fig.add_axes([.1, .1, .8, .8], aspect=1)
ax1.pie(fracs, labels=labels)
ax2 = fig.add_axes([.65, .65, .3, .3], aspect=1) # You can adjust the position and size of the axes for the pie plot
ax2.pie(fracs, labels=labels, radius=.8) # The radius argument can also be used to adjust the size of the pie plot
plt.show()

How to plot a superimposed bar chart using matplotlib in python?

I want to plot a bar chart or a histogram using matplotlib. I don't want a stacked bar plot, but a superimposed barplot of two lists of data, for instance I have the following two lists of data with me:
Some code to begin with :
import matplotlib.pyplot as plt
from numpy.random import normal, uniform
highPower = [1184.53,1523.48,1521.05,1517.88,1519.88,1414.98,1419.34,
1415.13,1182.70,1165.17]
lowPower = [1000.95,1233.37, 1198.97,1198.01,1214.29,1130.86,1138.70,
1104.12,1012.95,1000.36]
plt.hist(highPower, bins=10, histtype='stepfilled', normed=True,
color='b', label='Max Power in mW')
plt.hist(lowPower, bins=10, histtype='stepfilled', normed=True,
color='r', alpha=0.5, label='Min Power in mW')
I want to plot these two lists against the number of values in the two lists such that I am able to see the variation per reading.
You can produce a superimposed bar chart using plt.bar() with the alpha keyword as shown below.
The alpha controls the transparency of the bar.
N.B. when you have two overlapping bars, one with an alpha < 1, you will get a mixture of colours. As such the bar will appear purple even though the legend shows it as a light red. To alleviate this I have modified the width of one of the bars, this way even if your powers should change you will still be able to see both bars.
plt.xticks can be used to set the location and format of the x-ticks in your graph.
import matplotlib.pyplot as plt
import numpy as np
width = 0.8
highPower = [1184.53,1523.48,1521.05,1517.88,1519.88,1414.98,
1419.34,1415.13,1182.70,1165.17]
lowPower = [1000.95,1233.37, 1198.97,1198.01,1214.29,1130.86,
1138.70,1104.12,1012.95,1000.36]
indices = np.arange(len(highPower))
plt.bar(indices, highPower, width=width,
color='b', label='Max Power in mW')
plt.bar([i+0.25*width for i in indices], lowPower,
width=0.5*width, color='r', alpha=0.5, label='Min Power in mW')
plt.xticks(indices+width/2.,
['T{}'.format(i) for i in range(len(highPower))] )
plt.legend()
plt.show()
Building on #Ffisegydd's answer, if your data is in a Pandas DataFrame, this should work nicely:
def overlapped_bar(df, show=False, width=0.9, alpha=.5,
title='', xlabel='', ylabel='', **plot_kwargs):
"""Like a stacked bar chart except bars on top of each other with transparency"""
xlabel = xlabel or df.index.name
N = len(df)
M = len(df.columns)
indices = np.arange(N)
colors = ['steelblue', 'firebrick', 'darksage', 'goldenrod', 'gray'] * int(M / 5. + 1)
for i, label, color in zip(range(M), df.columns, colors):
kwargs = plot_kwargs
kwargs.update({'color': color, 'label': label})
plt.bar(indices, df[label], width=width, alpha=alpha if i else 1, **kwargs)
plt.xticks(indices + .5 * width,
['{}'.format(idx) for idx in df.index.values])
plt.legend()
plt.title(title)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
if show:
plt.show()
return plt.gcf()
And then in a python command line:
low = [1000.95, 1233.37, 1198.97, 1198.01, 1214.29, 1130.86, 1138.70, 1104.12, 1012.95, 1000.36]
high = [1184.53, 1523.48, 1521.05, 1517.88, 1519.88, 1414.98, 1419.34, 1415.13, 1182.70, 1165.17]
df = pd.DataFrame(np.matrix([high, low]).T, columns=['High', 'Low'],
index=pd.Index(['T%s' %i for i in range(len(high))],
name='Index'))
overlapped_bar(df, show=False)
It is actually simpler than the answers all over the internet make it appear.
a = range(1,10)
b = range(4,13)
ind = np.arange(len(a))
fig = plt.figure()
ax = fig.add_subplot(111)
ax.bar(x=ind, height=a, width=0.35,align='center')
ax.bar(x=ind, height=b, width=0.35/3, align='center')
plt.xticks(ind, a)
plt.tight_layout()
plt.show()

Categories