Related
My goal is to compute a confusion matrix from a huge dataset with 10 classes, so far I got the following code and results:
Note: As far as I know is doing the correct predictions over all the classes, I computed the loss in a pre-training phase, and the accuracy during this Transfer classification phase and they behave as expected, my problem comes in the obtention of the predicted labels from the outputs.
train_dataset = Subset(eurosat_dataset, train_indices, train_transforms)
val_dataset = Subset(eurosat_dataset, val_indices, val_transforms)
train_loader = DataLoader(train_dataset, batch_size=batchsize, shuffle=False, num_workers=2, pin_memory=False,
drop_last=True)
val_loader = DataLoader(val_dataset, batch_size=batchsize, shuffle=False, num_workers=2, pin_memory=False,
drop_last=True)
print('train_len: %d val_len: %d' % (len(train_dataset), len(val_dataset)))
#for i, data in enumerate(val_loader): # inputs = data[0], labels = data[1]
# inputs, labels = data # inputs [1,13,224,224], labels[0-9] --> classes
# if i > 10:
# break
# print(inputs.shape, labels, inputs[0].max())
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#inputs = inputs.to(device)
# Get the model, definition of the model to be loaded
import models.models_mae_mod as models_mae_mod
from models.util.pos_embed import interpolate_pos_embed # import pos_embed.py ----> Run OK
def prepare_model(chkpt_dir, arch='mae_vit_small_patch16'):
# build model
model = getattr(models_mae_mod, arch)(in_chans=13)
# load model
checkpoint = torch.load(chkpt_dir, map_location='cpu')
state_dict = model.state_dict()
for k in ['head.weight', 'head.bias']:
if k in checkpoint and checkpoint[k].shape != state_dict[k].shape:
print(f"Removing key {k} from pretrained checkpoint")
del checkpoint[k]
# interpolate position embedding
interpolate_pos_embed(model, checkpoint)
msg = model.load_state_dict(checkpoint['model'], strict=False)
print(msg)
return model
# loading the model
chkpt_dir = 'C:/Users/hugo_/PycharmProjects/transfermodel_Eurosat/datasets/B_raw_norm.pth'
model_mae = prepare_model(chkpt_dir, 'mae_vit_small_patch16')
model_mae = model_mae.to(device)
model_mae.eval()
print('Model loaded.')
with torch.no_grad():
for i, (inputs, labels) in enumerate(val_loader):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model_mae(inputs) # 0 is LOSS, 1 is [1, 196, 3328] is PRED, 2 is [1, 196] is MASK,
# 3 is [1, 13, 224, 224] is TARGET
#_, preds = torch.max(outputs, 1)
#outputs = outputs[-1:]
print("set")
I'm not computing the confusion matrix this time since the Outputs format is not the correct to get it.
nb_classes = 10
confusion_matrix = torch.zeros(nb_classes, nb_classes)
with torch.no_grad():
for i, (inputs, classes) in enumerate(val_loader):
inputs = inputs.to(device)
classes = classes.to(device)
outputs = model_mae(inputs)
outputs = outputs[3]
_, preds = torch.max(outputs, 1)
for t, p in zip(classes.view(-1), preds.view(-1)):
confusion_matrix[t.long(), p.long()] += 1
print(confusion_matrix)
I identified my problem as the way I'm getting the Outputs, which is the correct one but not enough to get the information I want, how to get those predicted labels and use them for the calculation of the Confusion Matrix?
I attach an image of my debugging process for a better understanding:
I have a data set like this:
edge_origins = np.array([[0,1,2,3,4],[6,7,8]])
edge_destinations = np.array([[1,2,3,4,5],[7,8,9]])
target = np.array([0,1])
x = [[np.array([0.1,0.5,0.2]),np.array([0.5,0.6,0.23]),
np.array([0.1,0.5,0.5]),np.array([0.1,0.6,0.23]),
np.array([0.1,0.4,0.4]),np.array([0.52,0.6,0.23])],
[np.array([0.1,0.3,0.3]),np.array([0.3,0.6,0.23]),
np.array([0.1,0.1,0.2]),np.array([0.4,0.6,0.23])]]
This is a list of two networks. The first network has 6 nodes with 5 edges and a class 0, and then 4 nodes with 3 edges and class 1 networks.
I want to develop a model in Pytorch that will classify each network into it's class, and then i'll give it a new set of networks to classify.
So ultimately, I want to be able to shuffle these lists (simultaneously, i.e. maintaining the order between the data and the classes), split into train and test, and then read the train and test data into two data loaders, and feed these into a PyTorch network.
I wrote this:
edge_origins = np.array([[0,1,2,3,4],[6,7,8]])
edge_destinations = np.array([[1,2,3,4,5],[7,8,9]])
target = np.array([0,1])
x = [[np.array([0.1,0.5,0.2]),np.array([0.5,0.6,0.23]),
np.array([0.1,0.5,0.5]),np.array([0.1,0.6,0.23]),
np.array([0.1,0.4,0.4]),np.array([0.52,0.6,0.23])],
[np.array([0.1,0.3,0.3]),np.array([0.3,0.6,0.23]),
np.array([0.1,0.1,0.2]),np.array([0.4,0.6,0.23])]]
edge_index = torch.tensor([edge_origins, edge_destinations], dtype=torch.long)
dataset = Data(x=x, edge_index=edge_index, y=y, num_classes = len(set(target)))
print(dataset)
And the error is:
edge_index = torch.tensor([edge_origins, edge_destinations], dtype=torch.long)
ValueError: expected sequence of length 5 at dim 2 (got 3)
But then once that is fixed I think the next step is:
torch.manual_seed(12345)
dataset = dataset.shuffle()
train_dataset = dataset[:1] #for toy example
test_dataset = dataset[1:]
print(f'Number of training graphs: {len(train_dataset)}')
print(f'Number of test graphs: {len(test_dataset)}')
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
class GCN(torch.nn.Module):
def __init__(self, hidden_channels):
super(GCN, self).__init__()
torch.manual_seed(12345)
self.conv1 = GCNConv(dataset.num_node_features, hidden_channels)
self.conv2 = GCNConv(hidden_channels, hidden_channels)
self.conv3 = GCNConv(hidden_channels, hidden_channels)
self.lin = Linear(hidden_channels, dataset.num_classes)
def forward(self, x, edge_index, batch):
# 1. Obtain node embeddings
x = self.conv1(x, edge_index)
x = x.relu()
x = self.conv2(x, edge_index)
x = x.relu()
x = self.conv3(x, edge_index)
# 2. Readout layer
x = global_mean_pool(x, batch) # [batch_size, hidden_channels]
# 3. Apply a final classifier
x = F.dropout(x, p=0.5, training=self.training)
x = self.lin(x)
return x
model = GCN(hidden_channels=64)
print(model)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
criterion = torch.nn.CrossEntropyLoss()
def train():
model.train()
for data in train_loader: # Iterate in batches over the training dataset.
out = model(data.x, data.edge_index, data.batch) # Perform a single forward pass.
loss = criterion(out, data.y) # Compute the loss.
loss.backward() # Derive gradients.
optimizer.step() # Update parameters based on gradients.
optimizer.zero_grad() # Clear gradients.
def test(loader):
model.eval()
correct = 0
for data in loader: # Iterate in batches over the training/test dataset.
out = model(data.x, data.edge_index, data.batch)
pred = out.argmax(dim=1) # Use the class with highest probability.
correct += int((pred == data.y).sum()) # Check against ground-truth labels.
return correct / len(loader.dataset) # Derive ratio of correct predictions.
for epoch in range(1, 171):
train()
train_acc = test(train_loader)
test_acc = test(test_loader)
print(f'Epoch: {epoch:03d}, Train Acc: {train_acc:.4f}, Test Acc: {test_acc:.4f}')
Could someone demonstrate to me how to get my data running into the Pytorch network above?
In Pytorch Geometric the Data object is used to contain only one graph. So you could iterate through all your arrays like so:
data_list = []
for i in range(2):
edge_index_curr = torch.tensor([edge_origins[i],
edge_destinations[i],
dtype=torch.long)
data = Data(x=torch.tensor(x[i]), edge_index=edge_index_curr, y=torch.tensor(target[i]))
datas.append(data)
You can then use this list of Data to create your own Dataloader:
loader = DataLoader(data_list, batch_size=32)
If you need to split into train/val/test (I would advise having more than 2 samples for this case) you can do it manually or using sklearn.model_selection.
For data augmentation if you really do have very little data, pytorch-geometric comes with transforms.
my data are divided to 2 parts training and validation one . I Used load_dataset and dataloader functions . I convert data in dataset to torch format using traindataset.set_format
when starting training I got error
new(): invalid data type 'numpy.str_'
in this line
for step,batch in enumerate(train_dataloader):
so how can i fix this error?
model= MixModel()
#model.load_state_dict(torch.load(r"/media/sh/saved_weightscnnbert.pt"))
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
traindataset = load_dataset('csv', data_files='/content/drive//My Drive/Colab Notebooks/newdataset/newdata_train2',split='train')
testdataset = load_dataset('csv', data_files='/content/drive//My Drive/Colab Notebooks/newdataset/newdata_valid2',split='train')
traindataset =traindataset.map(encode)
testdataset1 = testdataset.map(encode)
traindataset =traindataset.map(lambda examples: {'labels': examples['symptoms']}, batched=True)
testdataset =testdataset1.map(lambda examples: {'labels': examples['symptoms']}, batched=True)
traindataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
testdataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
train_dataloader = torch.utils.data.DataLoader(traindataset, batch_size= 64)
test_dataloader = torch.utils.data.DataLoader(testdataset, batch_size= 64)
# function to train the model
def train():
model.train()
total_loss, total_accuracy = 0, 0
# empty list to save model predictions
total_preds=[]
Labels=[]
# iterate over batches
for step,batch in enumerate(train_dataloader):
# progress update after every 50 batches.
if step % 100 == 0 and not step == 0:
print(' Batch {:>5,} of {:>5,}.'.format(step, len(train_dataloader)))
sent_id, mask, labels = batch['input_ids'],batch['attention_mask'],batch['labels']
# clear previously calculated gradients
model.zero_grad()
# get model predictions for the current batch
preds = model(sent_id, mask, labels)
# compute the loss between actual and predicted values
alpha=0.25
gamma=2
ce_loss = loss_fn(preds, labels)
#pt = torch.exp(-ce_loss)
#focal_loss = (alpha * (1-pt)**gamma * ce_loss).mean() # mean over the batch
# add on to the total loss
total_loss = total_loss + ce_loss.item()
# backward pass to calculate the gradients
ce_loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
# update parameters
optimizer.step()
preds =torch.argmax(preds, dim=1)
total_preds.append(preds)
total_accuracy += (preds == labels).float().sum()
# compute the training loss of the epoch
avg_loss = total_loss / len(train_dataloader)
avg_accuracy = total_accuracy / len(traindataset)
# predictions are in the form of (no. of batches, size of batch, no. of classes).
# reshape the predictions in form of (number of samples, no. of classes)
total_preds = np.concatenate(total_preds, axis=0)
#returns the loss and predictions
return avg_loss, total_preds, avg_accuracy
i can't understand how in function train() below, the variable (data, target) are choosen.
def train(args, model, device, federated_train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(federated_train_loader): # <-- now it is a distributed dataset
model.send(data.location) # <-- NEW: send the model to the right location`
i guess they are 2 tensor representing 2 random images of dataset train, but then the loss function
loss = F.nll_loss(output, target)
is calculated at every interaction with different target?
Also i have different question: i trained the network with images of cats, then i test it with images of cars and the accuracy reached is 97%. How is this possible? is a proper value or i'm doing something wrong?
here is the entire code:
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import syft as sy # <-- NEW: import the Pysyft library
hook = sy.TorchHook(torch) # <-- NEW: hook PyTorch ie add extra functionalities to support Federated Learning
bob = sy.VirtualWorker(hook, id="bob") # <-- NEW: define remote worker bob
alice = sy.VirtualWorker(hook, id="alice") # <-- NEW: and alice
class Arguments():
def __init__(self):
self.batch_size = 64
self.test_batch_size = 1000
self.epochs = 2
self.lr = 0.01
self.momentum = 0.5
self.no_cuda = False
self.seed = 1
self.log_interval = 30
self.save_model = False
args = Arguments()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
federated_train_loader = sy.FederatedDataLoader( # <-- this is now a FederatedDataLoader
datasets.MNIST("C:\\users...\\train", train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
.federate((bob, alice)), # <-- NEW: we distribute the dataset across all the workers, it's now a FederatedDataset
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST("C:\\Users...\\test", train=False, download=True, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4*4*50, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4*4*50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def train(args, model, device, federated_train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(federated_train_loader): # <-- now it is a distributed dataset
model.send(data.location) # <-- NEW: send the model to the right location
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
model.get() # <-- NEW: get the model back
if batch_idx % args.log_interval == 0:
loss = loss.get() # <-- NEW: get the loss back
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * args.batch_size, len(federated_train_loader) * args.batch_size,
100. * batch_idx / len(federated_train_loader), loss.item()))
def test(args, model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=args.lr) # TODO momentum is not supported at the moment
for epoch in range(1, args.epochs + 1):
train(args, model, device, federated_train_loader, optimizer, epoch)
test(args, model, device, test_loader)
if (args.save_model):
torch.save(model.state_dict(), "mnist_cnn.pt")
Consider it like this. When you hook torch, all your torch tensors will get additional functionality - methods like .send(), .federate(), and attributes like .location and ._objects. Your data and target, which were once torch tensors, became pointers to tensors residing in different VirtualWorker objects due to .federate((bob, alice)).
Now data and target have additional attributes that includes .location, which will return the location of that tensor - data/target pointed by the pointer called data/target.
Federated learning sends the global model to this location, as seen in model.send(data.location).
Now, model is a pointer residing at the same location and data is also a pointer residing there. Hence when you take the output as output = model(data), output will also reside there and all we (the central server or in other words, the VirtualWorker called 'me') will get is a pointer to that output.
Now, regarding your doubt on loss calculation, since output and target are both residing in that same location, calculation of loss will also happen there. Same goes for backprop and step.
Finally, you can see model.get(), here is where the central server pulls the remote model using the pointer called model. (I'm not sure if it should be model = model.get() though).
So anything with .get() will be pulled from that worker and will be returned in our python statement. Also note that .get() will remove that object from it's location when called. Hence use .copy().get() if you are going to need it further.
#!/usr/bin/python
#-*- coding:utf-8 -*-
"""
Created on Tue Jan 2 16:31:45 2018
#author: houlinjie
"""
import tensorflow as tf
from tensorflow.contrib.framework.python.ops.variables import get_or_create_global_step
from tensorflow.python.platform import tf_logging as logging
import inception_preprocessing
from inception_resnet_v2 import inception_resnet_v2, inception_resnet_v2_arg_scope
import os
import time
slim = tf.contrib.slim
import sys
import matplotlib.pyplot as plt
import numpy as np
#================ DATASET INFORMATION ======================
#State dataset directory where the tfrecord files are located
dataset_dir = '.'
#设定Gpu使用量
#config = tf.ConfigProto()
#config.gpu_options.per_process_gpu_memory_fraction = 0.7
#State where your log file is at. If it doesn't exist, create it.
log_dir = './log'
#State where your checkpoint file is
checkpoint_file = './inception_resnet_v2_2016_08_30.ckpt'
#State the image size you're resizing your images to. We will use the default inception size of 299.
img_height = 600
img_width = 800
#State the number of classes to predict:
num_classes = 6
#State the labels file and read it
labels_file = './labels.txt'
labels = open(labels_file, 'r')
#Create a dictionary to refer each label to their string name
labels_to_name = {}
for line in labels:
label, string_name = line.split(':')
string_name = string_name[:-1] #Remove newline
labels_to_name[int(label)] = string_name
#Create the file pattern of your TFRecord files so that it could be recognized later on
file_pattern = 'estate_%s_*.tfrecord'
#Create a dictionary that will help people understand your dataset better. This is required by the Dataset class later.
items_to_descriptions = {
'image': 'A 3-channel RGB coloured real estate image that is either bathroom, bedroom, floorplan, kitchen, or livingroom, other.',
'label': 'A label that is as such -- 0:bathroom, 1:bedroom, 2:floorplan, 3:kitchen, 4:livingroom, 5:other'
}
#================= TRAINING INFORMATION ==================
#State the number of epochs to train
num_epochs = 10
#State your batch size
batch_size = 4
#Learning rate information and configuration (Up to you to experiment)
initial_learning_rate = 0.0002
learning_rate_decay_factor = 0.7
num_epochs_before_decay = 2
#============== DATASET LOADING ======================
#We now create a function that creates a Dataset class which will give us many TFRecord files to feed in the examples into a queue in parallel.
def get_split(split_name, dataset_dir, file_pattern=file_pattern, file_pattern_for_counting='estate'):
'''
Obtains the split - training or validation - to create a Dataset class for feeding the examples into a queue later on. This function will
set up the decoder and dataset information all into one Dataset class so that you can avoid the brute work later on.
Your file_pattern is very important in locating the files later.
INPUTS:
- split_name(str): 'train' or 'validation'. Used to get the correct data split of tfrecord files
- dataset_dir(str): the dataset directory where the tfrecord files are located
- file_pattern(str): the file name structure of the tfrecord files in order to get the correct data
- file_pattern_for_counting(str): the string name to identify your tfrecord files for counting
OUTPUTS:
- dataset (Dataset): A Dataset class object where we can read its various components for easier batch creation later.
'''
#First check whether the split_name is train or validation
if split_name not in ['train', 'validation']:
raise ValueError('The split_name %s is not recognized. Please input either train or validation as the split_name' % (split_name))
#Create the full path for a general file_pattern to locate the tfrecord_files
file_pattern_path = os.path.join(dataset_dir, file_pattern % (split_name))
#Count the total number of examples in all of these shard
num_samples = 0
file_pattern_for_counting = file_pattern_for_counting + '_' + split_name
tfrecords_to_count = [os.path.join(dataset_dir, file) for file in os.listdir(dataset_dir) if file.startswith(file_pattern_for_counting)]
for tfrecord_file in tfrecords_to_count:
for record in tf.python_io.tf_record_iterator(tfrecord_file):
num_samples += 1
#Create a reader, which must be a TFRecord reader in this case
reader = tf.TFRecordReader
#Create the keys_to_features dictionary for the decoder
keys_to_features = {
'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
'image/format': tf.FixedLenFeature((), tf.string, default_value='jpg'),
'image/class/label': tf.FixedLenFeature(
[], tf.int64, default_value=tf.zeros([], dtype=tf.int64)),
}
#Create the items_to_handlers dictionary for the decoder.
items_to_handlers = {
'image': slim.tfexample_decoder.Image(),
'label': slim.tfexample_decoder.Tensor('image/class/label'),
}
#Start to create the decoder
decoder = slim.tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers)
#Create the labels_to_name file
labels_to_name_dict = labels_to_name
#Actually create the dataset
#dataset 对象定义了数据集的文件位置,解码方式等元信息
dataset = slim.dataset.Dataset(
data_sources = file_pattern_path,
decoder = decoder,
reader = reader,
num_readers = 4,
num_samples = num_samples,
num_classes = num_classes,
labels_to_name = labels_to_name_dict,
items_to_descriptions = items_to_descriptions)
return dataset
def load_batch(dataset, batch_size, height=img_height, width=img_width, is_training=True):
'''
Loads a batch for training.
INPUTS:
- dataset(Dataset): a Dataset class object that is created from the get_split function
- batch_size(int): determines how big of a batch to train
- height(int): the height of the image to resize to during preprocessing
- width(int): the width of the image to resize to during preprocessing
- is_training(bool): to determine whether to perform a training or evaluation preprocessing
OUTPUTS:
- images(Tensor): a Tensor of the shape (batch_size, height, width, channels) that contain one batch of images
- labels(Tensor): the batch's labels with the shape (batch_size,) (requires one_hot_encoding).
'''
#First create the data_provider object
data_provider = slim.dataset_data_provider.DatasetDataProvider(
dataset,
common_queue_capacity = 24 + 3 * batch_size,
common_queue_min = 24)
#Obtain the raw image using the get method
raw_image, label = data_provider.get(['image', 'label'])
#Perform the correct preprocessing for this image depending if it is training or evaluating
image = inception_preprocessing.preprocess_image(raw_image, height, width, is_training)
#As for the raw images, we just do a simple reshape to batch it up
raw_image = tf.expand_dims(raw_image, 0)
raw_image = tf.image.resize_nearest_neighbor(raw_image, [height, width])
raw_image = tf.squeeze(raw_image)
#Batch up the image by enqueing the tensors internally in a FIFO queue and dequeueing many elements with tf.train.batch.
images, raw_images, labels = tf.train.batch(
[image, raw_image, label],
batch_size = batch_size,
num_threads = 4,
capacity = 4 * batch_size,
allow_smaller_final_batch = True)
print("images tensor data type:", tf.shape(images))
return images, raw_images, labels
def train():
#Create the log directory here. Must be done here otherwise import will activate this unneededly.
if not os.path.exists(log_dir):
os.mkdir(log_dir)
#======================= TRAINING PROCESS =========================
#Now we start to construct the graph and build our model
#with tf.Graph().as_default() as graph:
tf.logging.set_verbosity(tf.logging.INFO) #Set the verbosity to INFO level
#First create the dataset and load one batch
dataset = get_split('train', dataset_dir, file_pattern=file_pattern)
images, raw_images, labels = load_batch(dataset, batch_size=batch_size)
print('num_samples:', dataset.num_samples)
#Know the number steps to take before decaying the learning rate and batches per epoch
num_batches_per_epoch = int(dataset.num_samples / batch_size)
num_steps_per_epoch = num_batches_per_epoch #Because one step is one batch processed
decay_steps = int(num_epochs_before_decay * num_steps_per_epoch)
x = tf.placeholder(tf.float32, shape=[None, img_height, img_width, 3], name='x')
y_true = tf.placeholder(tf.int32, shape=[None], name='y_true')
#Create the model inference
with slim.arg_scope(inception_resnet_v2_arg_scope()):
logits, end_points = inception_resnet_v2(x, num_classes = dataset.num_classes, is_training = True)
#Define the scopes that you want to exclude for restoration
exclude = ['InceptionResnetV2/Logits', 'InceptionResnetV2/AuxLogits']
variables_to_restore = slim.get_variables_to_restore(exclude = exclude)
#Perform one-hot-encoding of the labels (Try one-hot-encoding within the load_batch function!)
one_hot_labels = slim.one_hot_encoding(y_true, dataset.num_classes)
#Performs the equivalent to tf.nn.sparse_softmax_cross_entropy_with_logits but enhanced with checks
loss = tf.losses.softmax_cross_entropy(onehot_labels = one_hot_labels, logits = logits)
total_loss = tf.losses.get_total_loss() #obtain the regularization losses as well
#Create the global step for monitoring the learning_rate and training.
global_step = get_or_create_global_step()
#Define your exponentially decaying learning rate
lr = tf.train.exponential_decay(
learning_rate = initial_learning_rate,
global_step = global_step,
decay_steps = decay_steps,
decay_rate = learning_rate_decay_factor,
staircase = True)
#Now we can define the optimizer that takes on the learning rate
optimizer = tf.train.AdamOptimizer(learning_rate = lr)
#Create the train_op.
train_op = slim.learning.create_train_op(total_loss, optimizer)
#State the metrics that you want to predict. We get a predictions that is not one_hot_encoded.
y_pred = tf.nn.softmax(logits, name='y_pred')
predictions = tf.argmax(end_points['Predictions'], 1)
probabilities = end_points['Predictions']
accuracy, accuracy_update = tf.contrib.metrics.streaming_accuracy(predictions,y_true)
precision, precision_update = tf.contrib.metrics.streaming_precision(predictions, y_true)
recall, recall_update = tf.contrib.metrics.streaming_recall(predictions, y_true)
#tf.group 返回的值是 ‘op’
metrics_op = tf.group(accuracy_update, probabilities, precision_update, recall_update)
#Now finally create all the summaries you need to monitor and group them into one summary op.
tf.summary.scalar('losses/Total_Loss', total_loss)
tf.summary.scalar('accuracy', accuracy)
tf.summary.scalar('learning_rate', lr)
tf.summary.scalar('precision',precision)
tf.summary.scalar('recall',recall)
my_summary_op = tf.summary.merge_all()
#my_summary_op = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES))
#Now we need to create a training step function that runs both the train_op, metrics_op and updates the global_step concurrently.
def train_step(sess, train_op, global_step, img, lab):
'''
Simply runs a session for the three arguments provided and gives a logging on the time elapsed for each global step
'''
#Check the time for each sess run
start_time = time.time()
total_loss, global_step_count, _ = sess.run([train_op, global_step, metrics_op],feed_dict={x: img.eval(session=sess), y_true: lab.eval(session=sess)})
#total_loss, global_step_count, _ = sess.run([train_op, global_step, metrics_op])
time_elapsed = time.time() - start_time
#Run the logging to print some results
#if global_step_count % 10 == 0:
logging.info('global step %s: loss: %.4f (%.2f sec/step)', global_step_count, total_loss, time_elapsed)
return total_loss, global_step_count
#Now we create a saver function that actually restores the variables from a checkpoint file in a sess
saver = tf.train.Saver(variables_to_restore)
def restore_fn(sess):
return saver.restore(sess, checkpoint_file)
#Define your supervisor for running a managed session. Do not run the summary_op automatically or else it will consume too much memory
#logdir used for save checkpoint and summary
"""
Supervisor的作用
1.自动去checkpoint 加载数据或初始化数据
2.自身有一个Saver, 可以用来保存checkpoint
3.有一个summary_computed 用来保存Summary
所以我们就不需要:
1.手动初始化或从checkpoint 中加载数据
2.不需要创建Saver, 使用sv内部的就可以
3.不需要创建summary writer
"""
sv = tf.train.Supervisor(logdir = log_dir, summary_op = None, init_fn = restore_fn)
#Run the managed session
#会自动去logdir 中去找checkpoint, 如果没有的话,自动执行初始化
with sv.managed_session() as sess:
for step in xrange(num_steps_per_epoch * num_epochs):
#At the start of every epoch, show the vital information
if step % num_batches_per_epoch == 0:
logging.info('Epoch %s/%s', step/num_batches_per_epoch + 1, num_epochs)
learning_rate_value, accuracy_value = sess.run([lr, accuracy])
logging.info('Current Learning Rate: %s', learning_rate_value)
logging.info('Current Streaming Accuracy: %s', accuracy_value)
# optionally, print your logits and predictions for a sanity check that things are going fine.
logits_value, probabilities_value, predictions_value, labels_value = sess.run([logits, probabilities, predictions, labels], feed_dict={x: images.eval(session=sess), y_true: labels.eval(session=sess)})
print 'logits: \n', logits_value
print 'Probabilities: \n', probabilities_value
print 'predictions: \n', predictions_value
print 'Labels:\n:', labels_value
#Log the summaries every 10 step.
if step % 10 == 0:
loss, _ = train_step(sess, train_op, sv.global_step, images, labels)
summaries = sess.run(my_summary_op, feed_dict={x: images.eval(session=sess), y_true: labels.eval(session=sess)})
sv.summary_computed(sess, summaries)
#If not, simply run the training step
else:
loss, _ = train_step(sess, train_op, sv.global_step, images, labels)
#raw_images, labels, predictions = sess.run([raw_images, labels, predictions], feed_dict={x: images.eval(session=sess), y_true: labels.eval(session=sess)})
#We log the final training loss and accuracy
logging.info('Final Loss: %s', loss)
logging.info('Final Accuracy: %s', sess.run(accuracy))
#Once all the training has been done, save the log files and checkpoint model
logging.info('Finished training! Saving model to disk now.')
#saver.save(sess, "./log/estate_model.ckpt")
sv.saver.save(sess, sv.save_path, global_step = sv.global_step)
if __name__ == '__main__':
train()
The code can run but accuracy is very low,I modify the code from batch load dataset to placeholder method, I convert to the return value that load_batch() function from a tensor to numpy.array, use tensor.eval() method to convert a tensor feed_dict={x: img.eval(session=sess), y_true: lab.eval(session=sess)}),I suspect the below code snippet ,but i can't find out the issue
dataset = get_split('train', dataset_dir, file_pattern=file_pattern)
images, raw_images, labels = load_batch(dataset, batch_size=batch_size)
print('num_samples:', dataset.num_samples)
#Know the number steps to take before decaying the learning rate and batches per epoch
num_batches_per_epoch = int(dataset.num_samples / batch_size)
num_steps_per_epoch = num_batches_per_epoch #Because one step is one batch processed
decay_steps = int(num_epochs_before_decay * num_steps_per_epoch)
x = tf.placeholder(tf.float32, shape=[None, img_height, img_width, 3], name='x')
y_true = tf.placeholder(tf.int32, shape=[None], name='y_true')
#Create the model inference
with slim.arg_scope(inception_resnet_v2_arg_scope()):
logits, end_points = inception_resnet_v2(x, num_classes = dataset.num_classes, is_training = True)
#Define the scopes that you want to exclude for restoration
exclude = ['InceptionResnetV2/Logits', 'InceptionResnetV2/AuxLogits']
variables_to_restore = slim.get_variables_to_restore(exclude = exclude)
#Perform one-hot-encoding of the labels (Try one-hot-encoding within the load_batch function!)
one_hot_labels = slim.one_hot_encoding(y_true, dataset.num_classes)
#Performs the equivalent to tf.nn.sparse_softmax_cross_entropy_with_logits but enhanced with checks
loss = tf.losses.softmax_cross_entropy(onehot_labels = one_hot_labels, logits = logits)
total_loss = tf.losses.get_total_loss() #obtain the regularization losses as well