What is the best way to minimize the RMSE? - python

I am using LinearRegression() from sklearn to predict. I have created different features for X and trying to understand how can i select the best features automatically? Let's say i have defined 50 different features for X and only one output for y. Is there a way to select the best performing features automatically instead of doing it manually?
Also I can get rmse using following command:
scores = np.sqrt(-cross_val_score(lm, X, y, cv=20, scoring='neg_mean_squared_error')).mean()
From now on, how can i use this RMSE scores? I mean do i have to make multiple predictions? How am i going to use this rmse? There must be a way to predict() using some optimisations but couldn't findout.

Actually sklearn doesn't seem to have a stepwise algorithm, which helps in understanding the importance of features. However, it does provide recursive feature elimination, which is a greedy feature elimination algorithm similar to sequential backward selection.
See the documentation here:
Recursive Feature Elimination
Note that it is not necessary that it will reduce your RMSE. You might try different techniques like Ridge and Lasso Regression as well.

RMSE measures the average magnitude of the prediction error.
RMSE gives high weight to high errors, lower the values it's always better. RMSE can be improved only if you have a decent model. For feature selection, you can use PCA or stepwise regression or basic correlation technique. If you see a lot of multi-collinearity then go for Lasso or Ridge regression. Also, make sure you have a decent split of test and train data. If you have bad testing data you will get poor results. Also, check training data R-sq and testing data R-sq to make sure the model doesn't over-fit.
It would be helpful if you add information on no. of observations in your test and train data and r-sq value. Hope this helps

Related

GridSearchCV does not improve my test accuracy

I am making multiple classifier models and the test accuracy for all of them is 0.508.
I find it weird that multiple models have the same accuracy. The models I used are Logistic Regressor,DesicionTreeClassifier, MLPClassifier, RandomForestClassifier, BaggingClassifier, AdaBoostClassifier, XGBClassifier, SVC, and VotingClassifier.
After using GridSearchCV to improve the models, all of their test accuracy scores improved. But the test accuracy scores did not change.
I wish I could say I changed something, but I don't know why the test scores did not change. After using gridsearch, I expected the test scores to improve but it didn't
I would like to confirm, you mean your training scores improve but you testing scores did not change? If yes, there are a lot of possibility behind this.
You might want to reconfigure and add your hyper parameter range for example if using KNN you can increase the number of k or by adding more distance metric calculation
If you want to you can change the hyper parameter optimization technique like randomized search or bayesian search
I don't have any information about your data but sometimes turn on or turn off the shuffle mode when splitting can affect the scores for instance if you have time series data you have not to shuffle the dataset
There can be several reasons why the test accuracy didn't change after using GridSearchCV:
The best parameters found by GridSearchCV might not be optimal for the test data.
The test data may have a different distribution than the training data, leading to low test accuracy.
The models might be overfitting to the training data and not generalizing well to the test data.
The test data size might be small, leading to high variance in test accuracy scores.
The problem itself might be challenging, and a test accuracy of 0.508 might be the best that can be achieved with the current models and data.
It would be useful to have more information about the data, the problem, and the experimental setup to diagnose the issue further.
Looking at your accuracy, first of all I would say: are you performing a binary classification task? Because if it is the case, your models are almost not better than random on the test set, which may suggest that something is wrong with your training.
Otherwise, GridSearchCV, like RandomSearchCV and other hyperparameters optimization techniques try to find optimal parameters among a range that you define. If, after optimization, your optimal parameter has the value of one bound of your range, it may suggest that you need to explore beyond this bound, that is to say set another range on purpose and run the optimization again.
By the way, I don't know the size of your dataset but if it is big I would recommend you to use RandomSearchCV instead of GridSearchCV. As it is not exhaustive, it takes less time and gives results that are (nearly) optimized.

Linear regression: Good results for training data, horrible for test data

I am working with a dataset of about 400.000 x 250.
I have a problem with the model yielding a very good R^2 score when testing it on the training set, but extremely poorly when used on the test set. Initially, this sounds like overfitting. But the data is split into training/test set at random and the data set i pretty big, so I feel like there has to be something else.
Any suggestions?
Splitting dataset into training set and test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(df.drop(['SalePrice'],
axis=1), df.SalePrice, test_size = 0.3)
Sklearn's Linear Regression estimator
from sklearn import linear_model
linReg = linear_model.LinearRegression() # Create linear regression object
linReg.fit(X_train, y_train) # Train the model using the training sets
# Predict from training set
y_train_linreg = linReg.predict(X_train)
# Predict from test set
y_pred_linreg = linReg.predict(X_test)
Metric calculation
from sklearn import metrics
metrics.r2_score(y_train, y_train_linreg)
metrics.r2_score(y_test, y_pred_linreg)
R^2 score when testing on training set: 0,64
R^2 score when testing on testing set: -10^23 (approximatly)
While I agree with Mihai that your problem definitely looks like overfitting, I don't necessarily agree on his answer that neural network would solve your problem; at least, not out of the box. By themselves, neural networks overfit more, not less, than linear models. You need somehow to take care of your data, hardly any model can do that for you. A few options that you might consider (apologies, I cannot be more precise without looking at the dataset):
Easiest thing, use regularization. 400k rows is a lot, but with 250 dimensions you can overfit almost whatever you like. So try replacing LinearRegression by Ridge or Lasso (or Elastic Net or whatever). See http://scikit-learn.org/stable/modules/linear_model.html (Lasso has the advantage of discarding features for you, see next point)
Especially if you want to go outside of linear models (and you probably should), it's advisable to first reduce the dimension of the problem, as I said 250 is a lot. Try using some of the Feature selection techniques here: http://scikit-learn.org/stable/modules/feature_selection.html
Probably most importantly than anything else, you should consider adapting your input data. The very first thing I'd try is, assuming you are really trying to predict a price as your code implies, to replace it by its logarithm, or log(1+x). Otherwise linear regression will try very very hard to fit that single object that was sold for 1 Million $ ignoring everything below $1k. Just as important, check if you have any non-numeric (categorical) columns and keep them only if you need them, in case reducing them to macro-categories: a categorical column with 1000 possible values will increase your problem dimension by 1000, making it an assured overfit. A single column with a unique categorical data for each input (e.g. buyer name) will lead you straight to perfect overfitting.
After all this (cleaning data, reducing dimension via either one of the methods above or just Lasso regression until you get to certainly less than dim 100, possibly less than 20 - and remember that this includes any categorical data!), you should consider non-linear methods to further improve your results - but that's useless until your linear model provides you at least some mildly positive R^2 value on test data. sklearn provides a lot of them: http://scikit-learn.org/stable/modules/kernel_ridge.html is the easiest to use out-of-the-box (also does regularization), but it might be too slow to use in your case (you should first try this, and any of the following, on a subset of your data, say 1000 rows once you've selected only 10 or 20 features and see how slow that is). http://scikit-learn.org/stable/modules/svm.html#regression have many different flavours, but I think all but the linear one would be too slow. Sticking to linear things, http://scikit-learn.org/stable/modules/sgd.html#regression is probably the fastest, and would be how I'd train a linear model on this many samples. Going truly out of linear, the easiest techniques would probably include some kind of trees, either directly http://scikit-learn.org/stable/modules/tree.html#regression (but that's an almost-certain overfit) or, better, using some ensemble technique (random forests http://scikit-learn.org/stable/modules/ensemble.html#forests-of-randomized-trees are the typical go-to algorithm, gradient boosting http://scikit-learn.org/stable/modules/ensemble.html#gradient-tree-boosting sometimes works better). Finally, state-of-the-art results are indeed generally obtained via neural networks, see e.g. http://scikit-learn.org/stable/modules/neural_networks_supervised.html but for these methods sklearn is generally not the right answer and you should take a look at dedicated environments (TensorFlow, Caffe, PyTorch, etc.)... however if you're not familiar with those it is certainly not worth the trouble!

How do I evaluate whether the mean squared error (MSE) is reasonable or not?

I'm creating regression models using scikit learn.
Now I'm wondering how I can evaluate whether the mean squared error is reasonable or bad?
For example, when I do cross validation, the testing data's MSE for model of train data is 0.70. Is it reasonable or bad score?
Also is it meaningful to calculate the whole data's MSE for a model and compare them and see if the scores are similar?
It's not programming question but I want to know how to evaluate the value. I'm not sure if my way is correct or not.
The way you should use MSE or other regression performance metrics (link) is to compare different models (or same models with different hyperparamaters). If you keep your data set constant then it will give you an idea about what models perform better and which worse.
Let me suggest 2 benchmark regression models to always compare your sophisticated model to. If you are not able to beat these in terms of test MSE (or others) you are doing something wrong
Dummy regressor link
Linear regression link

How to do regression as opposed to classification using logistic regression and scikit learn

The target variable that I need to predict are probabilities (as opposed to labels). The corresponding column in my training data are also in this form. I do not want to lose information by thresholding the targets to create a classification problem out of it.
If I train the logistic regression classifier with binary labels, sk-learn logistic regression API allows obtaining the probabilities at prediction time. However, I need to train it with probabilities. Is there a way to do this in scikits-learn, or a suitable Python package that scales to 100K data points of 1K dimension.
I want the regressor to use the structure of the problem. One such
structure is that the targets are probabilities.
You can't have cross-entropy loss with non-indicator probabilities in scikit-learn; this is not implemented and not supported in API. It is a scikit-learn's limitation.
In general, according to scikit-learn's docs a loss function is of the form Loss(prediction, target), where prediction is the model's output, and target is the ground-truth value.
In the case of logistic regression, prediction is a value on (0,1) (i.e., a "soft label"), while target is 0 or 1 (i.e., a "hard label").
For logistic regression you can approximate probabilities as target by oversampling instances according to probabilities of their labels. e.g. if for given sample class_1 has probability 0.2, and class_2 has probability0.8, then generate 10 training instances (copied sample): 8 withclass_2as "ground truth target label" and 2 withclass_1`.
Obviously it is workaround and is not extremely efficient, but it should work properly.
If you're ok with upsampling approach, you can pip install eli5, and use eli5.lime.utils.fit_proba with a Logistic Regression classifier from scikit-learn.
Alternative solution is to implement (or find implementation?) of LogisticRegression in Tensorflow, where you can define loss function as you like it.
In compiling this solution I worked using answers from scikit-learn - multinomial logistic regression with probabilities as a target variable and scikit-learn classification on soft labels. I advise those for more insight.
This is an excellent question because (contrary to what people might believe) there are many legitimate uses of logistic regression as.... regression!
There are three basic approaches you can use if you insist on true logistic regression, and two additional options that should give similar results. They all assume your target output is between 0 and 1. Most of the time you will have to generate training/test sets "manually," unless you are lucky enough to be using a platform that supports SGD-R with custom kernels and X-validation support out-of-the-box.
Note that given your particular use case, the "not quite true logistic regression" options may be necessary. The downside of these approaches is that it is takes more work to see the weight/importance of each feature in case you want to reduce your feature space by removing weak features.
Direct Approach using Optimization
If you don't mind doing a bit of coding, you can just use scipy optimize function. This is dead simple:
Create a function of the following type:
y_o = inverse-logit (a_0 + a_1x_1 + a_2x_2 + ...)
where inverse-logit (z) = exp^(z) / (1 + exp^z)
Use scipy minimize to minimize the sum of -1 * [y_t*log(y_o) + (1-y_t)*log(1 - y_o)], summed over all datapoints. To do this you have to set up a function that takes (a_0, a_1, ...) as parameters and creates the function and then calculates the loss.
Stochastic Gradient Descent with Custom Loss
If you happen to be using a platform that has SGD regression with a custom loss then you can just use that, specifying a loss of y_t*log(y_o) + (1-y_t)*log(1 - y_o)
One way to do this is just to fork sci-kit learn and add log loss to the regression SGD solver.
Convert to Classification Problem
You can convert your problem to a classification problem by oversampling, as described by #jo9k. But note that even in this case you should not use standard X-validation because the data are not independent anymore. You will need to break up your data manually into train/test sets and oversample only after you have broken them apart.
Convert to SVM
(Edit: I did some testing and found that on my test sets sigmoid kernels were not behaving well. I think they require some special pre-processing to work as expected. An SVM with a sigmoid kernel is equivalent to a 2-layer tanh Neural Network, which should be amenable to a regression task structured where training data outputs are probabilities. I might come back to this after further review.)
You should get similar results to logistic regression using an SVM with sigmoid kernel. You can use sci-kit learn's SVR function and specify the kernel as sigmoid. You may run into performance difficulties with 100,000s of data points across 1000 features.... which leads me to my final suggestion:
Convert to SVM using Approximated Kernels
This method will give results a bit further away from true logistic regression, but it is extremely performant. The process is the following:
Use a sci-kit-learn's RBFsampler to explicitly construct an approximate rbf-kernel for your dataset.
Process your data through that kernel and then use sci-kit-learn's SGDRegressor with a hinge loss to realize a super-performant SVM on the transformed data.
The above is laid out with code here
Instead of using predict in the scikit learn library use predict_proba function
refer here:
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression.predict_proba

When using multiple classifiers - How to measure the ensemble's performance? [SciKit Learn]

I have a classification problem (predicting whether a sequence belongs to a class or not), for which I decided to use multiple classification methods, in order to help filter out the false positives.
(The problem is in bioinformatics - classifying protein sequences as being Neuropeptide precursors sequences. Here's the original article if anyone's interested, and the code used to generate features and to train a single predictor) .
Now, the classifiers have roughly similar performance metrics (83-94% accuracy/precision/etc' on the training set for 10-fold CV), so my 'naive' approach was to simply use multiple classifiers (Random Forests, ExtraTrees, SVM (Linear kernel), SVM (RBF kernel) and GRB) , and to use a simple majority vote.
MY question is:
How can I get the performance metrics for the different classifiers and/or their votes predictions?
That is, I want to see if using the multiple classifiers improves my performance at all, or which combination of them does.
My intuition is maybe to use the ROC score, but I don't know how to "combine" the results and to get it from a combination of classifiers. (That is, to see what the ROC curve is just for each classifier alone [already known], then to see the ROC curve or AUC for the training data using combinations of classifiers).
(I currently filter the predictions using "predict probabilities" with the Random Forests and ExtraTrees methods, then I filter arbitrarily for results with a predicted score below '0.85'. An additional layer of filtering is "how many classifiers agree on this protein's positive classification").
Thank you very much!!
(The website implementation, where we're using the multiple classifiers - http://neuropid.cs.huji.ac.il/ )
The whole shebang is implemented using SciKit learn and python. Citations and all!)
To evaluate the performance of the ensemble, simply follow the same approach as you would normally. However, you will want to get the 10 fold data set partitions first, and for each fold, train all of your ensemble on that same fold, measure the accuracy, rinse and repeat with the other folds and then compute the accuracy of the ensemble. So the key difference is to not train the individual algorithms using k fold cross-validation when evaluating the ensemble. The important thing is not to let the ensemble see the test data either directly or by letting one of it's algorithms see the test data.
Note also that RF and Extra Trees are already ensemble algorithms in their own right.
An alternative approach (again making sure the ensemble approach) is to take the probabilities and \ or labels output by your classifiers, and feed them into another classifier (say a DT, RF, SVM, or whatever) that produces a prediction by combining the best guesses from these other classifiers. This is termed "Stacking"
You can use a linear regression for stacking. For each 10-fold, you can split the data with:
8 training sets
1 validation set
1 test set
Optimise the hyper-parameters for each algorithm using the training set and validation set, then stack yours predictions by using a linear regression - or a logistic regression - over the validation set. Your final model will be p = a_o + a_1 p_1 + … + a_k p_K, where K is the number of classifier, p_k is the probability given by model k and a_k is the weight of the model k. You can also directly use the predicted outcomes, if the model doesn't give you probabilities.
If yours models are the same, you can optimise for the parameters of the models and the weights in the same time.
If you have obvious differences, you can do different bins with different parameters for each. For example one bin could be short sequences and the other long sequences. Or different type of proteins.
You can use the metric whatever metric you want, as long as it makes sens, like for not blended algorithms.
You may want to look at the 2007 Belkor solution of the Netflix challenges, section Blending. In 2008 and 2009 they used more advances technics, it may also be interesting for you.

Categories