Related
I would like to put an int into a string. This is what I am doing at the moment:
num = 40
plot.savefig('hanning40.pdf') #problem line
I have to run the program for several different numbers, so I'd like to do a loop. But inserting the variable like this doesn't work:
plot.savefig('hanning', num, '.pdf')
How do I insert a variable into a Python string?
See also
If you tried using + to concatenate a number with a string (or between strings, etc.) and got an error message, see How can I concatenate str and int objects?.
If you are trying to assemble a URL with variable data, do not use ordinary string formatting, because it is error-prone and more difficult than necessary. Specialized tools are available. See Add params to given URL in Python.
If you are trying to assemble a SQL query, do not use ordinary string formatting, because it is a major security risk. This is the cause of "SQL injection" which costs real companies huge amounts of money every year. See for example Python: best practice and securest way to connect to MySQL and execute queries for proper techniques.
If you just want to print (output) the string, you can prepare it this way first, or if you don't need the string for anything else, print each piece of the output individually using a single call to print. See How can I print multiple things (fixed text and/or variable values) on the same line, all at once? for details on both approaches.
Using f-strings:
plot.savefig(f'hanning{num}.pdf')
This was added in 3.6 and is the new preferred way.
Using str.format():
plot.savefig('hanning{0}.pdf'.format(num))
String concatenation:
plot.savefig('hanning' + str(num) + '.pdf')
Conversion Specifier:
plot.savefig('hanning%s.pdf' % num)
Using local variable names (neat trick):
plot.savefig('hanning%(num)s.pdf' % locals())
Using string.Template:
plot.savefig(string.Template('hanning${num}.pdf').substitute(locals()))
See also:
Fancier Output Formatting - The Python Tutorial
Python 3's f-Strings: An Improved String Formatting Syntax (Guide) - RealPython
With the introduction of formatted string literals ("f-strings" for short) in Python 3.6, it is now possible to write this with a briefer syntax:
>>> name = "Fred"
>>> f"He said his name is {name}."
'He said his name is Fred.'
With the example given in the question, it would look like this
plot.savefig(f'hanning{num}.pdf')
plot.savefig('hanning(%d).pdf' % num)
The % operator, when following a string, allows you to insert values into that string via format codes (the %d in this case). For more details, see the Python documentation:
printf-style String Formatting
You can use + as the normal string concatenation function as well as str().
"hello " + str(10) + " world" == "hello 10 world"
In general, you can create strings using:
stringExample = "someString " + str(someNumber)
print(stringExample)
plot.savefig(stringExample)
If you would want to put multiple values into the string you could make use of format
nums = [1,2,3]
plot.savefig('hanning{0}{1}{2}.pdf'.format(*nums))
Would result in the string hanning123.pdf. This can be done with any array.
Special cases
Depending on why variable data is being used with strings, the general-purpose approaches may not be appropriate.
If you need to prepare an SQL query
Do not use any of the usual techniques for assembling a string. Instead, use your SQL library's functionality for parameterized queries.
A query is code, so it should not be thought about like normal text. Using the library will make sure that any inserted text is properly escaped. If any part of the query could possibly come from outside the program in any way, that is an opportunity for a malevolent user to perform SQL injection. This is widely considered one of the important computer security problems, costing real companies huge amounts of money every year and causing problems for countless customers. Even if you think you know the data is "safe", there is no real upside to using any other approach.
The syntax will depend on the library you are using and is outside the scope of this answer.
If you need to prepare a URL query string
See Add params to given URL in Python. Do not do it yourself; there is no practical reason to make your life harder.
Writing to a file
While it's possible to prepare a string ahead of time, it may be simpler and more memory efficient to just write each piece of data with a separate .write call. Of course, non-strings will still need to be converted to string before writing, which may complicate the code. There is not a one-size-fits-all answer here, but choosing badly will generally not matter very much.
If you are simply calling print
The built-in print function accepts a variable number of arguments, and can take in any object and stringify it using str. Before trying string formatting, consider whether simply passing multiple arguments will do what you want. (You can also use the sep keyword argument to control spacing between the arguments.)
# display a filename, as an example
print('hanning', num, '.pdf', sep='')
Of course, there may be other reasons why it is useful for the program to assemble a string; so by all means do so where appropriate.
It's important to note that print is a special case. The only functions that work this way are ones that are explicitly written to work this way. For ordinary functions and methods, like input, or the savefig method of Matplotlib plots, we need to prepare a string ourselves.
Concatenation
Python supports using + between two strings, but not between strings and other types. To work around this, we need to convert other values to string explicitly: 'hanning' + str(num) + '.pdf'.
Template-based approaches
Most ways to solve the problem involve having some kind of "template" string that includes "placeholders" that show where information should be added, and then using some function or method to add the missing information.
f-strings
This is the recommended approach when possible. It looks like f'hanning{num}.pdf'. The names of variables to insert appear directly in the string. It is important to note that there is not actually such a thing as an "f-string"; it's not a separate type. Instead, Python will translate the code ahead of time:
>>> def example(num):
... return f'hanning{num}.pdf'
...
>>> import dis
>>> dis.dis(example)
2 0 LOAD_CONST 1 ('hanning')
2 LOAD_FAST 0 (num)
4 FORMAT_VALUE 0
6 LOAD_CONST 2 ('.pdf')
8 BUILD_STRING 3
10 RETURN_VALUE
Because it's a special syntax, it can access opcodes that aren't used in other approaches.
str.format
This is the recommended approach when f-strings aren't possible - mainly, because the template string needs to be prepared ahead of time and filled in later. It looks like 'hanning{}.pdf'.format(num), or 'hanning{num}.pdf'.format(num=num)'. Here, format is a method built in to strings, which can accept arguments either by position or keyword.
Particularly for str.format, it's useful to know that the built-in locals, globals and vars functions return dictionaries that map variable names to the contents of those variables. Thus, rather than something like '{a}{b}{c}'.format(a=a, b=b, c=c), we can use something like '{a}{b}{c}'.format(**locals()), unpacking the locals() dict.
str.format_map
This is a rare variation on .format. It looks like 'hanning{num}.pdf'.format_map({'num': num}). Rather than accepting keyword arguments, it accepts a single argument which is a mapping.
That probably doesn't sound very useful - after all, rather than 'hanning{num}.pdf'.format_map(my_dict), we could just as easily write 'hanning{num}.pdf'.format(**my_dict). However, this is useful for mappings that determine values on the fly, rather than ordinary dicts. In these cases, unpacking with ** might not work, because the set of keys might not be determined ahead of time; and trying to unpack keys based on the template is unwieldy (imagine: 'hanning{num}.pdf'.format(num=my_mapping[num]), with a separate argument for each placeholder).
string.Formatter
The string standard library module contains a rarely used Formatter class. Using it looks like string.Formatter().format('hanning{num}.pdf', num=num). The template string uses the same syntax again. This is obviously clunkier than just calling .format on the string; the motivation is to allow users to subclass Formatter to define a different syntax for the template string.
All of the above approaches use a common "formatting language" (although string.Formatter allows changing it); there are many other things that can be put inside the {}. Explaining how it works is beyond the scope of this answer; please consult the documentation. Do keep in mind that literal { and } characters need to be escaped by doubling them up. The syntax is presumably inspired by C#.
The % operator
This is a legacy way to solve the problem, inspired by C and C++. It has been discouraged for a long time, but is still supported. It looks like 'hanning%s.pdf' % num, for simple cases. As you'd expect, literal '%' symbols in the template need to be doubled up to escape them.
It has some issues:
It seems like the conversion specifier (the letter after the %) should match the type of whatever is being interpolated, but that's not actually the case. Instead, the value is converted to the specified type, and then to string from there. This isn't normally necessary; converting directly to string works most of the time, and converting to other types first doesn't help most of the rest of the time. So 's' is almost always used (unless you want the repr of the value, using 'r'). Despite that, the conversion specifier is a mandatory part of the syntax.
Tuples are handled specially: passing a tuple on the right-hand side is the way to provide multiple arguments. This is an ugly special case that's necessary because we aren't using function-call syntax. As a result, if you actually want to format a tuple into a single placeholder, it must be wrapped in a 1-tuple.
Other sequence types are not handled specially, and the different behaviour can be a gotcha.
string.Template
The string standard library module contains a rarely used Template class. Instances provide substitute and safe_substitute methods that work similarly to the built-in .format (safe_substitute will leave placeholders intact rather than raising an exception when the arguments don't match). This should also be considered a legacy approach to the problem.
It looks like string.Template('hanning$num.pdf').substitute(num=num), and is inspired by traditional Perl syntax. It's obviously clunkier than the .format approach, since a separate class has to be used before the method is available. Braces ({}) can be used optionally around the name of the variable, to avoid ambiguity. Similarly to the other methods, literal '$' in the template needs to be doubled up for escaping.
I had a need for an extended version of this: instead of embedding a single number in a string, I needed to generate a series of file names of the form 'file1.pdf', 'file2.pdf' etc. This is how it worked:
['file' + str(i) + '.pdf' for i in range(1,4)]
You can make dict and substitute variables in your string.
var = {"name": "Abdul Jalil", "age": 22}
temp_string = "My name is %(name)s. I am %(age)s years old." % var
I would like to convert a String like:
s = "[2-1,2,3]"
into a list, like:
a = [1,2,3]
I tried it with json:
s = "[2-1,2,3]"
a = json.loads(s)
but it can't handle 2-1.
Is there an easy method to convert strings into any kind of datatype?
Yes. And as much as it pains me to say it, eval is your friend here, as even ast.literal_eval cannot parse this.
Please read this first: eval: bad practice?, and please ensure you have complete control over the expressions being evaluated.
To help lessen the expressions being evaluated, I've wrapped this solution in regex, to extract only numbers and (in this case) the minus sign.
Obviously, this might need tweaking for your specific use case, this this should give you a boiler-plate (or at least an idea) from which to start.
Example code:
import re
s = "[2-1,2,3]"
rexp = re.compile('[\d-]+')
out = []
for exp in rexp.findall(s):
out.append(eval(exp))
Or, if you prefer a one-liner:
out = [eval(exp) for exp in rexp.findall(s)]
Output:
[1, 2, 3]
This is a common problem to tackle while writing compilers. Usually this comes under lexing.
A parser would usually have a list of tokens, watch for the tokens and then pass it to a parser and then the compiler.
Your problem cannot be completely solved with a lexer though since you also require the 2-1 to evaluate to 1. In this case, I would suggest using eval like #Daniel Hao suggested since it is a simple and clean way of achieving your goal. Remember about the caveats(both security and otherwise) while using it though. (especially, in production)
If you are interested in the parsing though, check this out:
https://craftinginterpreters.com/contents.html
https://tomassetti.me/parsing-in-python/
I would like to put an int into a string. This is what I am doing at the moment:
num = 40
plot.savefig('hanning40.pdf') #problem line
I have to run the program for several different numbers, so I'd like to do a loop. But inserting the variable like this doesn't work:
plot.savefig('hanning', num, '.pdf')
How do I insert a variable into a Python string?
See also
If you tried using + to concatenate a number with a string (or between strings, etc.) and got an error message, see How can I concatenate str and int objects?.
If you are trying to assemble a URL with variable data, do not use ordinary string formatting, because it is error-prone and more difficult than necessary. Specialized tools are available. See Add params to given URL in Python.
If you are trying to assemble a SQL query, do not use ordinary string formatting, because it is a major security risk. This is the cause of "SQL injection" which costs real companies huge amounts of money every year. See for example Python: best practice and securest way to connect to MySQL and execute queries for proper techniques.
If you just want to print (output) the string, you can prepare it this way first, or if you don't need the string for anything else, print each piece of the output individually using a single call to print. See How can I print multiple things (fixed text and/or variable values) on the same line, all at once? for details on both approaches.
Using f-strings:
plot.savefig(f'hanning{num}.pdf')
This was added in 3.6 and is the new preferred way.
Using str.format():
plot.savefig('hanning{0}.pdf'.format(num))
String concatenation:
plot.savefig('hanning' + str(num) + '.pdf')
Conversion Specifier:
plot.savefig('hanning%s.pdf' % num)
Using local variable names (neat trick):
plot.savefig('hanning%(num)s.pdf' % locals())
Using string.Template:
plot.savefig(string.Template('hanning${num}.pdf').substitute(locals()))
See also:
Fancier Output Formatting - The Python Tutorial
Python 3's f-Strings: An Improved String Formatting Syntax (Guide) - RealPython
With the introduction of formatted string literals ("f-strings" for short) in Python 3.6, it is now possible to write this with a briefer syntax:
>>> name = "Fred"
>>> f"He said his name is {name}."
'He said his name is Fred.'
With the example given in the question, it would look like this
plot.savefig(f'hanning{num}.pdf')
plot.savefig('hanning(%d).pdf' % num)
The % operator, when following a string, allows you to insert values into that string via format codes (the %d in this case). For more details, see the Python documentation:
printf-style String Formatting
You can use + as the normal string concatenation function as well as str().
"hello " + str(10) + " world" == "hello 10 world"
In general, you can create strings using:
stringExample = "someString " + str(someNumber)
print(stringExample)
plot.savefig(stringExample)
If you would want to put multiple values into the string you could make use of format
nums = [1,2,3]
plot.savefig('hanning{0}{1}{2}.pdf'.format(*nums))
Would result in the string hanning123.pdf. This can be done with any array.
Special cases
Depending on why variable data is being used with strings, the general-purpose approaches may not be appropriate.
If you need to prepare an SQL query
Do not use any of the usual techniques for assembling a string. Instead, use your SQL library's functionality for parameterized queries.
A query is code, so it should not be thought about like normal text. Using the library will make sure that any inserted text is properly escaped. If any part of the query could possibly come from outside the program in any way, that is an opportunity for a malevolent user to perform SQL injection. This is widely considered one of the important computer security problems, costing real companies huge amounts of money every year and causing problems for countless customers. Even if you think you know the data is "safe", there is no real upside to using any other approach.
The syntax will depend on the library you are using and is outside the scope of this answer.
If you need to prepare a URL query string
See Add params to given URL in Python. Do not do it yourself; there is no practical reason to make your life harder.
Writing to a file
While it's possible to prepare a string ahead of time, it may be simpler and more memory efficient to just write each piece of data with a separate .write call. Of course, non-strings will still need to be converted to string before writing, which may complicate the code. There is not a one-size-fits-all answer here, but choosing badly will generally not matter very much.
If you are simply calling print
The built-in print function accepts a variable number of arguments, and can take in any object and stringify it using str. Before trying string formatting, consider whether simply passing multiple arguments will do what you want. (You can also use the sep keyword argument to control spacing between the arguments.)
# display a filename, as an example
print('hanning', num, '.pdf', sep='')
Of course, there may be other reasons why it is useful for the program to assemble a string; so by all means do so where appropriate.
It's important to note that print is a special case. The only functions that work this way are ones that are explicitly written to work this way. For ordinary functions and methods, like input, or the savefig method of Matplotlib plots, we need to prepare a string ourselves.
Concatenation
Python supports using + between two strings, but not between strings and other types. To work around this, we need to convert other values to string explicitly: 'hanning' + str(num) + '.pdf'.
Template-based approaches
Most ways to solve the problem involve having some kind of "template" string that includes "placeholders" that show where information should be added, and then using some function or method to add the missing information.
f-strings
This is the recommended approach when possible. It looks like f'hanning{num}.pdf'. The names of variables to insert appear directly in the string. It is important to note that there is not actually such a thing as an "f-string"; it's not a separate type. Instead, Python will translate the code ahead of time:
>>> def example(num):
... return f'hanning{num}.pdf'
...
>>> import dis
>>> dis.dis(example)
2 0 LOAD_CONST 1 ('hanning')
2 LOAD_FAST 0 (num)
4 FORMAT_VALUE 0
6 LOAD_CONST 2 ('.pdf')
8 BUILD_STRING 3
10 RETURN_VALUE
Because it's a special syntax, it can access opcodes that aren't used in other approaches.
str.format
This is the recommended approach when f-strings aren't possible - mainly, because the template string needs to be prepared ahead of time and filled in later. It looks like 'hanning{}.pdf'.format(num), or 'hanning{num}.pdf'.format(num=num)'. Here, format is a method built in to strings, which can accept arguments either by position or keyword.
Particularly for str.format, it's useful to know that the built-in locals, globals and vars functions return dictionaries that map variable names to the contents of those variables. Thus, rather than something like '{a}{b}{c}'.format(a=a, b=b, c=c), we can use something like '{a}{b}{c}'.format(**locals()), unpacking the locals() dict.
str.format_map
This is a rare variation on .format. It looks like 'hanning{num}.pdf'.format_map({'num': num}). Rather than accepting keyword arguments, it accepts a single argument which is a mapping.
That probably doesn't sound very useful - after all, rather than 'hanning{num}.pdf'.format_map(my_dict), we could just as easily write 'hanning{num}.pdf'.format(**my_dict). However, this is useful for mappings that determine values on the fly, rather than ordinary dicts. In these cases, unpacking with ** might not work, because the set of keys might not be determined ahead of time; and trying to unpack keys based on the template is unwieldy (imagine: 'hanning{num}.pdf'.format(num=my_mapping[num]), with a separate argument for each placeholder).
string.Formatter
The string standard library module contains a rarely used Formatter class. Using it looks like string.Formatter().format('hanning{num}.pdf', num=num). The template string uses the same syntax again. This is obviously clunkier than just calling .format on the string; the motivation is to allow users to subclass Formatter to define a different syntax for the template string.
All of the above approaches use a common "formatting language" (although string.Formatter allows changing it); there are many other things that can be put inside the {}. Explaining how it works is beyond the scope of this answer; please consult the documentation. Do keep in mind that literal { and } characters need to be escaped by doubling them up. The syntax is presumably inspired by C#.
The % operator
This is a legacy way to solve the problem, inspired by C and C++. It has been discouraged for a long time, but is still supported. It looks like 'hanning%s.pdf' % num, for simple cases. As you'd expect, literal '%' symbols in the template need to be doubled up to escape them.
It has some issues:
It seems like the conversion specifier (the letter after the %) should match the type of whatever is being interpolated, but that's not actually the case. Instead, the value is converted to the specified type, and then to string from there. This isn't normally necessary; converting directly to string works most of the time, and converting to other types first doesn't help most of the rest of the time. So 's' is almost always used (unless you want the repr of the value, using 'r'). Despite that, the conversion specifier is a mandatory part of the syntax.
Tuples are handled specially: passing a tuple on the right-hand side is the way to provide multiple arguments. This is an ugly special case that's necessary because we aren't using function-call syntax. As a result, if you actually want to format a tuple into a single placeholder, it must be wrapped in a 1-tuple.
Other sequence types are not handled specially, and the different behaviour can be a gotcha.
string.Template
The string standard library module contains a rarely used Template class. Instances provide substitute and safe_substitute methods that work similarly to the built-in .format (safe_substitute will leave placeholders intact rather than raising an exception when the arguments don't match). This should also be considered a legacy approach to the problem.
It looks like string.Template('hanning$num.pdf').substitute(num=num), and is inspired by traditional Perl syntax. It's obviously clunkier than the .format approach, since a separate class has to be used before the method is available. Braces ({}) can be used optionally around the name of the variable, to avoid ambiguity. Similarly to the other methods, literal '$' in the template needs to be doubled up for escaping.
I had a need for an extended version of this: instead of embedding a single number in a string, I needed to generate a series of file names of the form 'file1.pdf', 'file2.pdf' etc. This is how it worked:
['file' + str(i) + '.pdf' for i in range(1,4)]
You can make dict and substitute variables in your string.
var = {"name": "Abdul Jalil", "age": 22}
temp_string = "My name is %(name)s. I am %(age)s years old." % var
I have a list that I have successfully converted into a python statment
ex:
from operator import mul,add,sub,abs
l = ['add(4,mul(3,abs(-3)))']
I was wondering what would I use to RUN this string as actual python code? I should be expecting a output of 13. I want to input the 0th value of the list into a function that is able to run this value as actual python code.
You don't want to run this as Python code. You're trying to parse expressions in some language that isn't Python, even if it may be superficially similar. Even if it's a proper subset of Python, unless, say, __import__('os').system('rm -rf /') happens to be a valid string in the language that you want to handle by erasing the hard drive, using eval or exec is a bad idea.
If the grammar is a proper subset of Python, you can still use the ast module for parsing, and then write your own interpreter for the parsed nodes.
However, I think what you really want to do here is build a very simple parser for your very simple language. This is a great opportunity to learn how to use a parsing library like pyparsing or a parser-generator tool like pybison, or to build a simple recursive-descent parser from scratch. But for something this simple, even basic string operations (splitting on/finding parentheses) should be sufficient.
Here's an intentionally stupid example (which you definitely shouldn't turn in if you want a good grade) to show how easy it is:
import operator
OPERATORS = operator.__dict__
def evaluate_expression(expr):
try:
return int(expr)
except ValueError:
pass
op, _, args = expr.rpartition('(')
rest, _, thisop = op.rpartition(',')
args = args.rstrip(')').split(',')
argvalues = map(int, args)
thisvalue = OPERATORS[thisop](*argvalues)
if rest:
return evaluate_expression('{},{}'.format(rest, thisvalue))
return thisvalue
while True:
expr = input()
print(evaluate_expression(expr))
Normally, you want to find the outermost expression, then evaluate it recursively—that's a lot easier than finding the rightmost, substituting it into the string, and evaluating the result recursively. Again, I'm just showing how easy it is to do even if you don't do it the easy way.
use exec like this:
exec('add(4,mul(3,abs(-3)))')
That should work
more about exec
If you want to evaluate a Python expression, use eval. This returns the value of the evaluated expression. So, for example:
>>> eval(l[0])
13
>>> results = [eval(expr) for expr in l]
>>> results
[13]
However, any time you find yourself using eval (or exec or related functionality), you're almost always doing something wrong. This blog post explains some of the reasons why.
since you're evaluating an expression, eval would suit you better than exec. Example:
x = -3
y = eval('add(4,mul(3,abs(x)))')
print y
Note the security implication of exec and eval, since they can execute arbitrary code, including for example deleting all files you have access, installing Trojans to your doc files, etc.
Check out also ast.literal_eval for python 2.6+.
I want to take advantage of the cStyleComment variable, but rather than just ignoring these comments I want to process them specially. Is there any way to make pyparsing call my handler on the piece of input, which it recognizes as a comment, before it's going to be thrown away?
I'm processing some C code, which contain some "special" directives inside comments.
There is nothing inherent in any of the xxxStyleComment expressions that are defined in pyparsing that causes them to be ignored. They are there as a convenience, especially since some comment formats are easy to get wrong. They don't get ignored unless you call the ignore method on your larger grammar, as in:
cHeaderParser.ignore(cStyleComment)
(where cHeaderParser might be something you wrote to read through .h files to extract API information, for instance.)
And having pyparsing callback to a handler is built-in, just use cStyleComment.setParseAction(commentHandler). Pyparsing can handle parse actions with any of these signatures:
def commentHandler(inputString, locn, tokens):
def commentHandler(locn, tokens):
def commentHandler(tokens):
def commentHandler():
If your commentHandler returns a string or list of strings, or a new ParseResults, these will be used to replace the input tokens - if it returns None, or omits the return statement, then the tokens object is used. You can also modify the tokens object in place (such as adding new results names).
So you could write something like this that would uppercase your comments:
def commentHandler(tokens):
return tokens[0].upper()
cStyleComment.setParseAction(commentHandler)
(a parse action as simple as this could even be written cStyleComment.setParseAction(lambda t:t[0].upper()))
When writing a transforming parse action like this, one would likely use transformString rather then parseString,
print cStyleComment.transformString(source)
This will print the original source, but all of the comments will be uppercased.