Logarithm over x - python

Since the following expansion for the logarithm holds:
log(1-x)=-x-x^2/2-x^3/3-...
one can calculate the following functions which have removable singularities at x:
log(1-x)/x=-1-x/2-...
(log(1-x)/x+1)/x=-1/2-x/3-...
((log(1-x)/x+1)/x+1/2)/x=-1/3-x/4-...
I am trying to use NumPy for these calculations, and specifically the log1p function, which is accurate near x=0. However, convergence for the aforementioned functions is still problematic.
Do you have any ideas for any existing functions implementing these formulas or should I write one myself using the previous expansions, which will not be as efficient, however?

The simplest thing to do is something like
In [17]: def logf(x, eps=1e-6):
...: if abs(x) < eps:
...: return -0.5 - x/3.
...: else:
...: return (1. + log1p(-x)/x)/x
and play a bit with the threshold eps.
If you want a numpy-like, vectorized solution, replace an if with a np.where
>>> np.where(x > eps, 1. + log1p(-x)/x) / x, -0.5 - x/3.)

Why not successively take the Square of the candidate, after initially extracting the exponent component? When the square results in a number greater than 2, divide by two, and set the bit in the mantissa of your result that corresponds to the iteration. This is a much quicker and simpler way of determining log base 2, which can then in a single multiplication, be transformed to the e or 10 base.

Some predefined functions don't work at singularity points. One simple-minded solution is to compute the series by adding terms from a peculiar sequence.
For your example, the sequence would be :
sum = 0
for i in range(n):
sum+= x^k/k
sum = -sum
for log(1-x)
Then you keep adding a lot of terms or until the last term is under a small threshold.

Related

Handling operations with infinities in python

I have a piece of code that does a simple calculation.
import numpy as np
#Constants
R = 8.314462
T = 298.15
e = -678.692
e_overkbT = e*1000/(R*T)
#Independent variable
mu = np.linspace(-2000,2000,1000)
mu_overkbT = mu*1000/(R*T)
#Calculation
aa = (np.exp(mu_overkbT- e_overkbT))
theta = aa/(1+aa)
For negative values of 'mu', 'aa' is very small and thus the variable "theta" is very close to 0. For positive values of 'mu', 'aa' is very large. Thus for large numbers 'theta' approaches 1. (large number over large number + 1).
For large values of 'aa' python rounds 'theta' to be 1, which is fine. However, eventually for large enough numbers python will say 'aa' is 'inf'. Thus in the final step of calculating 'theta' I encounter a runtime error of dividing 'inf'/'inf'.
I need someway to handle this error such that it gives me '1' as the result for 'theta'. I can't reduce the range of the variable 'mu' and stop before the error, because this calculation is inside of a large function that changes the value of 'e', and thus this error does not always occur at the same spot.
Thanks.
Such overflow happens very often when using the exponential function on large terms. Other than the good very good comment noting that exp(x)/(1+exp(x)) = 1/(1+exp(-x)), another general approach in case you don't find easy transformations is to use the logarithm to make intermediary numbers more manageable, and then in the end to reverse this operation. This is especially true with products of many large (or very small) terms, which by applying the logarithm become a simple sum.
If you don't mind a dependency on SciPy, you can replace
aa = (np.exp(mu_overkbT- e_overkbT))
theta = aa/(1+aa)
with
from scipy.special import expit
theta = expit(mu_overkbT- e_overkbT)
expit is an implementation of the logistic sigmoid function. It handles very large positive and negative numbers correctly. Note that 1/(1 + np.exp(-x)) will generate a warning for large negative values (but it still correctly returns 0):
In [148]: x = -1500
In [149]: 1/(1 + np.exp(-x))
<ipython-input-149-0afe09c93af3>:1: RuntimeWarning: overflow encountered in exp
1/(1 + np.exp(-x))
Out[149]: 0.0

How to iterate through the Cartesian product of ten lists (ten elements each) faster? (Probability and Dice)

I'm trying to solve this task.
I wrote function for this purpose which uses itertools.product() for Cartesian product of input iterables:
def probability(dice_number, sides, target):
from itertools import product
from decimal import Decimal
FOUR_PLACES = Decimal('0.0001')
total_number_of_experiment_outcomes = sides ** dice_number
target_hits = 0
sides_combinations = product(range(1, sides+1), repeat=dice_number)
for side_combination in sides_combinations:
if sum(side_combination) == target:
target_hits += 1
p = Decimal(str(target_hits / total_number_of_experiment_outcomes)).quantize(FOUR_PLACES)
return float(p)
When calling probability(2, 6, 3) output is 0.0556, so works fine.
But calling probability(10, 10, 50) calculates veeery long (hours?), but there must be a better way:)
for side_combination in sides_combinations: takes to long to iterate through huge number of sides_combinations.
Please, can you help me to find out how to speed up calculation of result, i want too sleep tonight..
I guess the problem is to find the distribution of the sum of dice. An efficient way to do that is via discrete convolution. The distribution of the sum of variables is the convolution of their probability mass functions (or densities, in the continuous case). Convolution is an n-ary operator, so you can compute it conveniently just two pmf's at a time (the current distribution of the total so far, and the next one in the list). Then from the final result, you can read off the probabilities for each possible total. The first element in the result is the probability of the smallest possible total, and the last element is the probability of the largest possible total. In between you can figure out which one corresponds to the particular sum you're looking for.
The hard part of this is the convolution, so work on that first. It's just a simple summation, but it's just a little tricky to get the limits of the summation correct. My advice is to work with integers or rationals so you can do exact arithmetic.
After that you just need to construct an appropriate pmf for each input die. The input is just [1, 1, 1, ... 1] if you're using integers (you'll have to normalize eventually) or [1/n, 1/n, 1/n, ..., 1/n] if rationals, where n = number of faces. Also you'll need to label the indices of the output correctly -- again this is just a little tricky to get it right.
Convolution is a very general approach for summations of variables. It can be made even more efficient by implementing convolution via the fast Fourier transform, since FFT(conv(A, B)) = FFT(A) FFT(B). But at this point I don't think you need to worry about that.
If someone still interested in solution which avoids very-very-very long iteration process through all itertools.product Cartesian products, here it is:
def probability(dice_number, sides, target):
if dice_number == 1:
return (1 <= target <= sides**dice_number) / sides
return sum([probability(dice_number-1, sides, target-x) \
for x in range(1,sides+1)]) / sides
But you should add caching of probability function results, if you won't - calculation of probability will takes very-very-very long time as well)
P.S. this code is 100% not mine, i took it from the internet, i'm not such smart to product it by myself, hope you'll enjoy it as much as i.

Integer optimization/maximization in numpy

I need to estimate the size of a population, by finding the value of n which maximises scipy.misc.comb(n, a)/n**b where a and b are constants. n, a and b are all integers.
Obviously, I could just have a loop in range(SOME_HUGE_NUMBER), calculate the value for each n and break out of the loop once I reach an inflexion in the curve. But I wondered if there was an elegant way of doing this with (say) numpy/scipy, or is there some other elegant way of doing this just in pure Python (e.g. like an integer equivalent of Newton's method?)
As long as your number n is reasonably small (smaller than approx. 1500), my guess for the fastest way to do this is to actually try all possible values. You can do this quickly by using numpy:
import numpy as np
import scipy.misc as misc
nMax = 1000
a = 77
b = 100
n = np.arange(1, nMax+1, dtype=np.float64)
val = misc.comb(n, a)/n**b
print("Maximized for n={:d}".format(int(n[val.argmax()]+0.5)))
# Maximized for n=181
This is not especially elegant but rather fast for that range of n. Problem is that for n>1484 the numerator can already get too large to be stored in a float. This method will then fail, as you will run into overflows. But this is not only a problem of numpy.ndarray not working with python integers. Even with them, you would not be able to compute:
misc.comb(10000, 1000, exact=True)/10000**1001
as you want to have a float result in your division of two numbers larger than the maximum a float in python can hold (max_10_exp = 1024 on my system. See sys.float_info().). You couldn't use your range in that case, as well. If you really want to do something like that, you will have to take more care numerically.
You essentially have a nicely smooth function of n that you want to maximise. n is required to be integral but we can consider the function instead to be a function of the reals. In this case, the maximising integral value of n must be close to (next to) the maximising real value.
We could convert comb to a real function by using the gamma function and use numerical optimisation techniques to find the maximum. Another approach is to replace the factorials with Stirling's approximation. This gives a moderately complicated but tractable algebraic expression. This expression is not hard to differentiate and set to zero to find the extrema.
I did this and obtained
n * (b + (n-a) * log((n-a)/n) ) = a * b - a/2
This is not straightforward to solve algebraically but easy enough numerically (e.g. using Newton's method, as you suggest).
I may have made a mistake in the algebra, but I typed the a = 77, b = 100 example into Wolfram Alpha and got 180.58 so the approach seems to work.

Python using scipy.optimise to find the solution to an equation

I want to solve an equation using scipy.optimise
I want to find the solution, n, for the equation
a**n + b**n = c**n
where
a=2.3
b=2.4
c=2.94
I have a list of triplets (a,b,c) I want to experiment with and I know the range of the exponent n will always be 2.0 < n < 4.0. Could I use this fact to speed up the convergence of the solution.
If your function is scalar, and accepts a scalar (your case), and if you know that:
your solution is in a given interval, and the function is continuous in the same interval (your case)
you are interested in one solution, not necessarily in all (if more than 1) solutions in that interval
You can speed up the solution using the bisection algorithm, implemented here in scipy, which requires the conditions above to guarantee convergence.
The idea behind the algorithm is quite simple, with log convergence.
See this fundamental calculus theorem on which the algorithm is based.
EDIT: I couldn't resist, here you have a MWE
import scipy.optimize as opt
def sol(a,b,c):
f = lambda n : a**n + b**n - c**n
return opt.bisect(f,2,4)
print(sol(2.3,2.4,2.94)
>3.1010655957
As requested in the comments, here's how to do it using mpmath.
We supply the a, b, c parameters as strings rather than as Python floats for maximum accuracy. Converting strings to mpf (mp floats) will be as accurate as the current precision allows. If instead we convert from Python floats then we'd be using numbers that suffer from the imprecision inherent in Python floats.
mp.dps allows us to set the precision in the form of the number of decimal digits.
The mpmath findroot function accepts an initial approximation argument. This can be a single value, or it may be an interval, given as a list or a tuple. It's ok to use Python floats in that interval.
from mpmath import mp
mp.dps = 30
a, b, c = [mp.mpf(u) for u in ('2.3', '2.4', '2.94')]
def f(x):
return a**x + b**x - c**x
x = mp.findroot(f, [2, 4])
print(x, f(x))
output
3.10106559575904097402104750305 -3.15544362088404722164691426113e-30
By default, findroot uses a simple secant solver. The docs recommend using the 'anderson' or 'ridder' solvers when supplying an interval, but for this equation all 3 solvers give identical results.

mrdivide function in MATLAB: what is it doing, and how can I do it in Python?

I have this line of MATLAB code:
a/b
I am using these inputs:
a = [1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9]
b = ones(25, 18)
This is the result (a 1x25 matrix):
[5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
What is MATLAB doing? I am trying to duplicate this behavior in Python, and the mrdivide documentation in MATLAB was unhelpful. Where does the 5 come from, and why are the rest of the values 0?
I have tried this with other inputs and receive similar results, usually just a different first element and zeros filling the remainder of the matrix. In Python when I use linalg.lstsq(b.T,a.T), all of the values in the first matrix returned (i.e. not the singular one) are 0.2. I have already tried right division in Python and it gives something completely off with the wrong dimensions.
I understand what a least square approximation is, I just need to know what mrdivide is doing.
Related:
Array division- translating from MATLAB to Python
MRDIVIDE or the / operator actually solves the xb = a linear system, as opposed to MLDIVIDE or the \ operator which will solve the system bx = a.
To solve a system xb = a with a non-symmetric, non-invertible matrix b, you can either rely on mridivide(), which is done via factorization of b with Gauss elimination, or pinv(), which is done via Singular Value Decomposition, and zero-ing of the singular values below a (default) tolerance level.
Here is the difference (for the case of mldivide): What is the difference between PINV and MLDIVIDE when I solve A*x=b?
When the system is overdetermined, both algorithms provide the
same answer. When the system is underdetermined, PINV will return the
solution x, that has the minimum norm (min NORM(x)). MLDIVIDE will
pick the solution with least number of non-zero elements.
In your example:
% solve xb = a
a = [1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9];
b = ones(25, 18);
the system is underdetermined, and the two different solutions will be:
x1 = a/b; % MRDIVIDE: sparsest solution (min L0 norm)
x2 = a*pinv(b); % PINV: minimum norm solution (min L2)
>> x1 = a/b
Warning: Rank deficient, rank = 1, tol = 2.3551e-014.
ans =
5.0000 0 0 ... 0
>> x2 = a*pinv(b)
ans =
0.2 0.2 0.2 ... 0.2
In both cases the approximation error of xb-a is non-negligible (non-exact solution) and the same, i.e. norm(x1*b-a) and norm(x2*b-a) will return the same result.
What is MATLAB doing?
A great break-down of the algorithms (and checks on properties) invoked by the '\' operator, depending upon the structure of matrix b is given in this post in scicomp.stackexchange.com. I am assuming similar options apply for the / operator.
For your example, MATLAB is most probably doing a Gaussian elimination, giving the sparsest solution amongst a infinitude (that's where the 5 comes from).
What is Python doing?
Python, in linalg.lstsq uses pseudo-inverse/SVD, as demonstrated above (that's why you get a vector of 0.2's). In effect, the following will both give you the same result as MATLAB's pinv():
from numpy import *
a = array([1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9])
b = ones((25, 18))
# xb = a: solve b.T x.T = a.T instead
x2 = linalg.lstsq(b.T, a.T)[0]
x2 = dot(a, linalg.pinv(b))
TL;DR: A/B = np.linalg.solve(B.conj().T, A.conj().T).conj().T
I did not find the earlier answers to create a satisfactory substitute, so I dug into Matlab's reference documents for mrdivide further and found the solution. I cannot explain the actual mathematics here or take credit for coming up with the answer. I'm just following Matlab's explanation. Additionally, I wanted to post the actual detail from Matlab to give credit. If it's a copyright issue, someone tell me and I'll remove the actual text.
%/ Slash or right matrix divide.
% A/B is the matrix division of B into A, which is roughly the
% same as A*INV(B) , except it is computed in a different way.
% More precisely, A/B = (B'\A')'. See MLDIVIDE for details.
%
% C = MRDIVIDE(A,B) is called for the syntax 'A / B' when A or B is an
% object.
%
% See also MLDIVIDE, RDIVIDE, LDIVIDE.
% Copyright 1984-2005 The MathWorks, Inc.
Note that the ' symbol indicates the complex conjugate transpose. In python using numpy, that requires .conj().T chained together.
Per this handy "cheat sheet" of numpy for matlab users, linalg.lstsq(b,a) -- linalg is numpy.linalg.linalg, a light-weight version of the full scipy.linalg.
a/b finds the least square solution to the system of linear equations bx = a
if b is invertible, this is a*inv(b), but if it isn't, the it is the x which minimises norm(bx-a)
You can read more about least squares on wikipedia.
according to matlab documentation, mrdivide will return at most k non-zero values, where k is the computed rank of b. my guess is that matlab in your case solves the least squares problem given by replacing b by b(:1) (which has the same rank). In this case the moore-penrose inverse b2 = b(1,:); inv(b2*b2')*b2*a' is defined and gives the same answer

Categories