Delete layers of keras pretrained model - python

I want to use vgg16 pre-trained model of keras. I have notice some strange behavior when trying to change the model.
1) I have add some layers of the per-trained model. My problem is that tensorboard is showing the layers of the model that I didn't add into the sequence model. This is strange because I have also deleted the imported model. I think this have to do with the dependency between layers so I want to remove this dependencies. How can I do this?
For example in this picture there is two layers that I didn't add but they are showing in the graph
vgg16_model = keras.applications.vgg16.VGG16()
cnnModel = keras.models.Sequential()
for layer in vgg16_model.layers[0:13]:
cnnModel.add(layer)
for layer in vgg16_model.layers[14:16]:
cnnModel.add(layer)
for layer in vgg16_model.layers[17:21]:
cnnModel.add(layer)
cnnModel.add(keras.layers.Dense(2048, name="compress_1"))
cnnModel.add(keras.layers.Dense(1024, name="compress_2"))
cnnModel.add(keras.layers.Dense(512, name="compress_3"))
for layer in cnnModel.layers[0:4]:
layer.trainable = False
del vgg16_model
2) the second problem occurs when using cnnModel.pop(). In fact I have add all the layers but I do a pop to the layer I don't want before adding the next one this is the error I get.
Layer block4_conv2 has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use `get_output_at(node_index)` instead.
And this is the code I am using:
for layer in vgg16_model.layers[0:14]:
cnnModel.add(layer)
cnnModel.pop()
for layer in vgg16_model.layers[14:17]:
cnnModel.add(layer)
cnnModel.pop()
for layer in vgg16_model.layers[17:21]:
cnnModel.add(layer)
cnnModel.pop() is working the problem only occurs when trying to add the next layer.
Thank you for your help.

You can try using Model instead of Sequential, like:
vgg16_model = keras.applications.vgg16.VGG16()
drop_layers = [13, 16]
input_layer = x = vgg16_model.input
for i, layer in enumerate(vgg16_model.layers[1:], 1):
if i not in drop_layers:
x = layer(x)
x = keras.layers.Dense(2048, name="compress_1")(x)
x = keras.layers.Dense(1024, name="compress_2")(x)
x = keras.layers.Dense(512, name="compress_3")(x)
cnnModel = keras.models.Model(inputs = input_layer, outputs = x)
for layer in cnnModel.layers[0:4]:
layer.trainable = False
del vgg16_model

Related

Adding Dropout Layers to Segmentation_Models Resnet34 with Keras

I want to use the Segmentation_Models UNet (with ResNet34 Backbone) for uncertainty estimation, so i want to add some Dropout Layers into the upsampling part. The Model is not Sequential, so i think i have to reconnect some outputs to the new Dropout Layers and the following layer inputs to the output of Dropout.
I'm not sure, whats the right way to do this. I'm currently trying this:
# create model
model = sm.Unet('resnet34', classes=1, activation='sigmoid', encoder_weights='imagenet')
# define optimizer, loss and metrics
optim = tf.keras.optimizers.Adam(0.001)
total_loss = sm.losses.binary_focal_dice_loss # or sm.losses.categorical_focal_dice_loss
metrics = ['accuracy', sm.metrics.IOUScore(threshold=0.5), sm.metrics.FScore(threshold=0.5)]
# get input layer
updated_model_layers = model.layers[0]
# iterate over old model and add Dropout after given Convolutions
for layer in model.layers[1:]:
# take old layer and add to new Model
updated_model_layers = layer(updated_model_layers.output)
# after some convolutions, add Dropout
if layer.name in ['decoder_stage0b_conv', 'decoder_stage0a_conv', 'decoder_stage1a_conv', 'decoder_stage1b_conv', 'decoder_stage2a_conv',
'decoder_stage2b_conv', 'decoder_stage3a_conv', 'decoder_stage3b_conv', 'decoder_stage4a_conv']:
if (uncertain):
# activate dropout in predictions
next_layer = Dropout(0.1) (updated_model_layers, training=True)
else:
# add dropout layer
next_layer = Dropout(0.1) (updated_model_layers)
# add reconnected Droput Layer
updated_model_layers = next_layer
model = Model(model.layers[0], updated_model_layers)
This throws the following Error: AttributeError: 'KerasTensor' object has no attribute 'output'
But I think I'm doing something wrong. Does anybody have a Solution for this?
There is a problem with the Resnet model you are using. It is complex and has Add and Concatenate layers (residual layers, I guess), which take as input a list of tensors from several "subnetworks". In other words, the network is not linear, so you can't walk through the model with a simple loop.
Regarding your error, in the loop of your code: layer is a layer and updated_model_layers is a tensor (functional API). Therefore, updated_model_layers.output does not exist. You confuse the two a bit

How to split a Keras model, with a non-sequential architecture like ResNet, into sub-models?

My model is a resnet-152 i wanna cutting it into two submodels and the problem is with the second one i can't figure out how to build a model from an intermediate layer to the output
I tried this code from this response and it doesn't work for me here is my code:
def getLayerIndexByName(model, layername):
for idx, layer in enumerate(model.layers):
if layer.name == layername:
return idx
idx = getLayerIndexByName(resnet, 'res3a_branch2a')
input_shape = resnet.layers[idx].get_input_shape_at(0) # which is here in my case (None, 55, 55, 256)
layer_input = Input(shape=input_shape[1:]) # as keras will add the batch shape
# create the new nodes for each layer in the path
x = layer_input
for layer in resnet.layers[idx:]:
x = layer(x)
# create the model
new_model = Model(layer_input, x)
And i am getting this error:
ValueError: Input 0 is incompatible with layer res3a_branch1: expected axis -1 of input shape to have value 256 but got shape (None, 28, 28, 512).
I also tried this function:
def split(model, start, end):
confs = model.get_config()
kept_layers = set()
for i, l in enumerate(confs['layers']):
if i == 0:
confs['layers'][0]['config']['batch_input_shape'] = model.layers[start].input_shape
if i != start:
confs['layers'][0]['name'] += str(random.randint(0, 100000000)) # rename the input layer to avoid conflicts on merge
confs['layers'][0]['config']['name'] = confs['layers'][0]['name']
elif i < start or i > end:
continue
kept_layers.add(l['name'])
# filter layers
layers = [l for l in confs['layers'] if l['name'] in kept_layers]
layers[1]['inbound_nodes'][0][0][0] = layers[0]['name']
# set conf
confs['layers'] = layers
confs['input_layers'][0][0] = layers[0]['name']
confs['output_layers'][0][0] = layers[-1]['name']
# create new model
submodel = Model.from_config(confs)
for l in submodel.layers:
orig_l = model.get_layer(l.name)
if orig_l is not None:
l.set_weights(orig_l.get_weights())
return submodel
and i am getting this error:
ValueError: Unknown layer: Scale
as my resnet152 contains a Scale layer.
Here is a working version:
import resnet # pip install resnet
from keras.models import Model
from keras.layers import Input
def getLayerIndexByName(model, layername):
for idx, layer in enumerate(model.layers):
if layer.name == layername:
return idx
resnet = resnet.ResNet152(weights='imagenet')
idx = getLayerIndexByName(resnet, 'res3a_branch2a')
model1 = Model(inputs=resnet.input, outputs=resnet.get_layer('res3a_branch2a').output)
input_shape = resnet.layers[idx].get_input_shape_at(0) # get the input shape of desired layer
print(input_shape[1:])
layer_input = Input(shape=input_shape[1:]) # a new input tensor to be able to feed the desired layer
# create the new nodes for each layer in the path
x = layer_input
for layer in resnet.layers[idx:]:
x = layer(x)
# create the model
model2 = Model(layer_input, x)
model2.summary()
Here is the error:
ValueError: Input 0 is incompatible with layer res3a_branch1: expected axis -1 of input shape to have value 256 but got shape (None, 28, 28, 512)
As I mentioned in the comments section since the ResNet model does not have a linear architecture (i.e. it has skip connections and a layer may be connected to multiple layers), you can't simply go through the layers of the model one after another in a loop and apply a layer on the output of previous layer in the loop (i.e. unlike the models with a linear architecture for which this method works).
So you need to find the connectivity of the layers and traverse that connectivity map to be able to construct a sub-model of the original model. Currently, this solution comes to my mind:
Specify the last layer of your sub-model.
Start from that layer and find all the connected layers to it.
Get the output of those connected layers.
Apply the last layer on the collected output.
Obviously step #3 implies a recursion: to get the output of connected layers (i.e. X), we first need to find their connected layers (i.e. Y), get their outputs (i.e. outputs of Y) and then apply them on those outputs (i.e. apply X on outputs of Y). Further, to find the connected layer you need to know a bit about the internals of Keras which has been covered in this answer. So we come up with this solution:
from keras.applications.resnet50 import ResNet50
from keras import models
from keras import layers
resnet = ResNet50()
# this is the split point, i.e. the starting layer in our sub-model
starting_layer_name = 'activation_46'
# create a new input layer for our sub-model we want to construct
new_input = layers.Input(batch_shape=resnet.get_layer(starting_layer_name).get_input_shape_at(0))
layer_outputs = {}
def get_output_of_layer(layer):
# if we have already applied this layer on its input(s) tensors,
# just return its already computed output
if layer.name in layer_outputs:
return layer_outputs[layer.name]
# if this is the starting layer, then apply it on the input tensor
if layer.name == starting_layer_name:
out = layer(new_input)
layer_outputs[layer.name] = out
return out
# find all the connected layers which this layer
# consumes their output
prev_layers = []
for node in layer._inbound_nodes:
prev_layers.extend(node.inbound_layers)
# get the output of connected layers
pl_outs = []
for pl in prev_layers:
pl_outs.extend([get_output_of_layer(pl)])
# apply this layer on the collected outputs
out = layer(pl_outs[0] if len(pl_outs) == 1 else pl_outs)
layer_outputs[layer.name] = out
return out
# note that we start from the last layer of our desired sub-model.
# this layer could be any layer of the original model as long as it is
# reachable from the starting layer
new_output = get_output_of_layer(resnet.layers[-1])
# create the sub-model
model = models.Model(new_input, new_output)
Important notes:
This solution assumes that each layer in the original model has been used only once, i.e. it does not work for Siamese networks where a layer may be shared and therefore might be applied more than once on different input tensors.
If you want to have a proper split of a model into multiple sub-models, then it makes sense to use only those layers for split point (e.g. indicated by starting_layer_name in the above code) which are NOT in a branch (e.g. in ResNet the activation layers after merge layers are a good option, but the res3a_branch2a you have selected is not a good option since it's in a branch). To get a better view of the original architecture of the model, you can always plot its diagram using plot_model() utility function:
from keras.applications.resnet50 import ResNet50
from keras.utils import plot_model
resnet = ResNet50()
plot_model(model, to_file='resnet_model.png')
Since new nodes are created after constructing a sub-model, don't try to construct another sub-model which has overlap (i.e. if it does not have overlap, it's OK!) with the previous sub-model in the same run of the code above; otherwise, you may encounter errors.
In the case, when there is a layer with index middle, that is connected only to the previous layer (# middle-1) and all layers after are not connected directly to layers before it, we can use the fact that every model is saved as a list of layers and create two partial models this way:
model1 = keras.models.Model(inputs=model.input, outputs=model.layers[middle - 1].output)
input = keras.Input(shape=model.layers[middle-1].output_shape[1:])
# layers is a dict in the form {name : output}
layers = {}
layers[model.layers[middle-1].name] = input
for layer in model.layers[middle:]:
if type(layer.input) == list:
x = []
for layer_input in layer.input:
x.append(layers[layer_input.name.split('/')[0]])
else:
x = layers[layer.input.name.split('/')[0]]
y = layer(x)
layers[layer.name] = y
model2 = keras.Model(inputs = [input], outputs = [y])
Then it is easy to check that model2.predict(model1.predict(x)) gives same results as model.predict(x)
I had a similar problem with slicing an Inception CNN for transfer learning, to set only the layers after a certain point to trainable.
def get_layers_above(cutoff_layer,model):
def get_next_level(layer,model):
def wrap_list(val):
if type(val) is list:
return val
return [val]
r=[]
for output_t in wrap_list(layer.output):
r+=[x for x in model.layers if output_t.name in [y.name for y in wrap_list(x.input)]]
return r
visited=set()
to_visit=set([cutoff_layer])
while to_visit:
layer=to_visit.pop()
to_visit.update(get_next_level(layer,model))
visited.add(layer)
return list(visited)
I went with an iterative instead of a recursive solution because breadth-first traverse with sets seems like a safer solution for a network with many converging branches.
it should be used like this (InceptionV3 for example)
model = tf.keras.applications.InceptionV3(include_top=False,weights='imagenet',input_shape=(299,299,3))
layers=get_layers_above(model.get_layer('mixed9'),model)
print([l.name for l in layers])
output
['batch_normalization_89',
'conv2d_93',
'activation_86',
'activation_91',
'mixed10',
'activation_88',
'batch_normalization_85',
'activation_93',
'batch_normalization_90',
'conv2d_87',
'conv2d_86',
'batch_normalization_86',
'activation_85',
'conv2d_91',
'batch_normalization_91',
'batch_normalization_87',
'activation_90',
'mixed9',
'batch_normalization_92',
'batch_normalization_88',
'activation_87',
'concatenate_1',
'activation_89',
'conv2d_88',
'conv2d_92',
'average_pooling2d_8',
'activation_92',
'mixed9_1',
'conv2d_89',
'conv2d_85',
'conv2d_90',
'batch_normalization_93']

Make fixed timestep length LSTM Keras model free timestep length

I have a Keras LSTM multitask model that performs two tasks. One is a sequence tagging task (so I predict a label per token). The other is a global classification task over the whole sequence using a CNN that is stacked on the hidden states of the LSTM.
In my setup (don't ask why) I only need the CNN task during training, but the labels it predicts have no use on the final product. So, on Keras, one can train a LSTM model without especifiying the input sequence lenght. like this:
l_input = Input(shape=(None,), dtype="int32", name=input_name)
However, if I add the CNN stacked on the LSTM hidden states I need to set a fixed sequence length for the model.
l_input = Input(shape=(timesteps_size,), dtype="int32", name=input_name)
The problem is that once I have trained the model with a fixed timestep_size I can no longer use it to predict longer sequences.
In other frameworks this is not a problem. But in Keras, I cannot get rid of the CNN and change the expected input shape of the model once it has been trained.
Here is a simplified version of the model
l_input = Input(shape=(timesteps_size,), dtype="int32")
l_embs = Embedding(len(input.keys()), 100)(l_input)
l_blstm = Bidirectional(GRU(300, return_sequences=True))(l_embs)
# Sequential output
l_out1 = TimeDistributed(Dense(len(labels.keys()),
activation="softmax"))(l_blstm)
# Global output
conv1 = Conv1D( filters=5 , kernel_size=10 )( l_embs )
conv1 = Flatten()(MaxPooling1D(pool_size=2)( conv1 ))
conv2 = Conv1D( filters=5 , kernel_size=8 )( l_embs )
conv2 = Flatten()(MaxPooling1D(pool_size=2)( conv2 ))
conv = Concatenate()( [conv1,conv2] )
conv = Dense(50, activation="relu")(conv)
l_out2 = Dense( len(global_labels.keys()) ,activation='softmax')(conv)
model = Model(input=input, output=[l_out1, l_out2])
optimizer = Adam()
model.compile(optimizer=optimizer,
loss="categorical_crossentropy",
metrics=["accuracy"])
I would like to know if anyone here has faced this issue, and if there are any solutions to delete layers from a model after training and, more important, how to reshape input layer sizes after training.
Thanks
Variable timesteps length makes a problem not because of using convolution layers (actually the good thing about convolution layers is that they do not depend on the input size). Rather, using Flatten layers cause the problem here since they need an input with specified size. Instead, you can use Global Pooling layers. Further, I think stacking convolution and pooling layers on top of each other might give a better result instead of using two separate convolution layers and merging them (although this depends on the specific problem and dataset you are working on). So considering these two points it might be better to write your model like this:
# Global output
conv1 = Conv1D(filters=16, kernel_size=5)(l_embs)
conv1 = MaxPooling1D(pool_size=2)(conv1)
conv2 = Conv1D(filters=32, kernel_size=5)(conv1)
conv2 = MaxPooling1D(pool_size=2)(conv2)
gpool = GlobalAveragePooling1D()(conv2)
x = Dense(50, activation="relu")(gpool)
l_out2 = Dense(len(global_labels.keys()), activation='softmax')(x)
model = Model(inputs=l_input, outputs=[l_out1, l_out2])
You may need to tune the number of conv+maxpool layers, number of filters, kernel size and even add dropout or batch normalization layers.
As a side note, using TimeDistributed on a Dense layer is redundant as the Dense layer is applied on the last axis.

Delete last layer and insert three Conv2D layers in Keras

I have a model in Keras for classification that I trained on some dataset. Call that model "classification_model". That model is saved in "classification.h5". Model for detection is the same, except that we delete last convolutional layer, and add three Conv2D layers of size (3,3). So, our model for detection "detection_model" should look like this:
detection_model = classification_model[: last_conv_index] + Conv2d + Conv2d + Conv2d.
How can we implement that in Keras?
Well, load your classification model and use Keras functional API to construct your new model:
model = load_model("classification.h5")
last_conv_layer_output = model.layers[last_conv_index].output
conv = Conv2D(...)(last_conv_layer_output)
conv = Conv2D(...)(conv)
output = Conv2D(...)(conv)
new_model = Model(model.inputs, output)
# compile the new model and save it ...

Keras retrieve value of node before activation function

Imagine a fully-connected neural network with its last two layers of the following structure:
[Dense]
units = 612
activation = softplus
[Dense]
units = 1
activation = sigmoid
The output value of the net is 1, but I'd like to know what the input x to the sigmoidal function was (must be some high number, since sigm(x) is 1 here).
Folllowing indraforyou's answer I managed to retrieve the output and weights of Keras layers:
outputs = [layer.output for layer in model.layers[-2:]]
functors = [K.function( [model.input]+[K.learning_phase()], [out] ) for out in outputs]
test_input = np.array(...)
layer_outs = [func([test_input, 0.]) for func in functors]
print layer_outs[-1][0] # -> array([[ 1.]])
dense_0_out = layer_outs[-2][0] # shape (612, 1)
dense_1_weights = model.layers[-1].weights[0].get_value() # shape (1, 612)
dense_1_bias = model.layers[-1].weights[1].get_value()
x = np.dot(dense_0_out, dense_1_weights) + dense_1_bias
print x # -> -11.7
How can x be a negative number? In that case the last layers output should be a number closer to 0.0 than 1.0. Are dense_0_out or dense_1_weights the wrong outputs or weights?
Since you're using get_value(), I'll assume that you're using Theano backend. To get the value of the node before the sigmoid activation, you can traverse the computation graph.
The graph can be traversed starting from outputs (the result of some computation) down to its inputs using the owner field.
In your case, what you want is the input x of the sigmoid activation op. The output of the sigmoid op is model.output. Putting these together, the variable x is model.output.owner.inputs[0].
If you print out this value, you'll see Elemwise{add,no_inplace}.0, which is an element-wise addition op. It can be verified from the source code of Dense.call():
def call(self, inputs):
output = K.dot(inputs, self.kernel)
if self.use_bias:
output = K.bias_add(output, self.bias)
if self.activation is not None:
output = self.activation(output)
return output
The input to the activation function is the output of K.bias_add().
With a small modification of your code, you can get the value of the node before activation:
x = model.output.owner.inputs[0]
func = K.function([model.input] + [K.learning_phase()], [x])
print func([test_input, 0.])
For anyone using TensorFlow backend: use x = model.output.op.inputs[0] instead.
I can see a simple way just changing a little the model structure. (See at the end how to use the existing model and change only the ending).
The advantages of this method are:
You don't have to guess if you're doing the right calculations
You don't need to care about the dropout layers and how to implement a dropout calculation
This is a pure Keras solution (applies to any backend, either Theano or Tensorflow).
There are two possible solutions below:
Option 1 - Create a new model from start with the proposed structure
Option 2 - Reuse an existing model changing only its ending
Model structure
You could just have the last dense separated in two layers at the end:
[Dense]
units = 612
activation = softplus
[Dense]
units = 1
#no activation
[Activation]
activation = sigmoid
Then you simply get the output of the last dense layer.
I'd say you should create two models, one for training, the other for checking this value.
Option 1 - Building the models from the beginning:
from keras.models import Model
#build the initial part of the model the same way you would
#add the Dense layer without an activation:
#if using the functional Model API
denseOut = Dense(1)(outputFromThePreviousLayer)
sigmoidOut = Activation('sigmoid')(denseOut)
#if using the sequential model - will need the functional API
model.add(Dense(1))
sigmoidOut = Activation('sigmoid')(model.output)
Create two models from that, one for training, one for checking the output of dense:
#if using the functional API
checkingModel = Model(yourInputs, denseOut)
#if using the sequential model:
checkingModel = model
trainingModel = Model(checkingModel.inputs, sigmoidOut)
Use trianingModel for training normally. The two models share weights, so training one is training the other.
Use checkingModel just to see the outputs of the Dense layer, using checkingModel.predict(X)
Option 2 - Building this from an existing model:
from keras.models import Model
#find the softplus dense layer and get its output:
softplusOut = oldModel.layers[indexForSoftplusLayer].output
#or should this be the output from the dropout? Whichever comes immediately after the last Dense(1)
#recreate the dense layer
outDense = Dense(1, name='newDense', ...)(softPlusOut)
#create the new model
checkingModel = Model(oldModel.inputs,outDense)
It's important, since you created a new Dense layer, to get the weights from the old one:
wgts = oldModel.layers[indexForDense].get_weights()
checkingModel.get_layer('newDense').set_weights(wgts)
In this case, training the old model will not update the last dense layer in the new model, so, let's create a trainingModel:
outSigmoid = Activation('sigmoid')(checkingModel.output)
trainingModel = Model(checkingModel.inputs,outSigmoid)
Use checkingModel for checking the values you want with checkingModel.predict(X). And train the trainingModel.
So this is for fellow googlers, the working of the keras API has changed significantly since the accepted answer was posted. The working code for extracting a layer's output before activation (for tensorflow backend) is:
model = Your_Keras_Model()
the_tensor_you_need = model.output.op.inputs[0] #<- this is indexable, if there are multiple inputs to this node then you can find it with indexing.
In my case, the final layer was a dense layer with activation softmax, so the tensor output I needed was <tf.Tensor 'predictions/BiasAdd:0' shape=(?, 1000) dtype=float32>.
(TF backend)
Solution for Conv layers.
I had the same question, and to rewrite a model's configuration was not an option.
The simple hack would be to perform the call function manually. It gives control over the activation.
Copy-paste from the Keras source, with self changed to layer. You can do the same with any other layer.
def conv_no_activation(layer, inputs, activation=False):
if layer.rank == 1:
outputs = K.conv1d(
inputs,
layer.kernel,
strides=layer.strides[0],
padding=layer.padding,
data_format=layer.data_format,
dilation_rate=layer.dilation_rate[0])
if layer.rank == 2:
outputs = K.conv2d(
inputs,
layer.kernel,
strides=layer.strides,
padding=layer.padding,
data_format=layer.data_format,
dilation_rate=layer.dilation_rate)
if layer.rank == 3:
outputs = K.conv3d(
inputs,
layer.kernel,
strides=layer.strides,
padding=layer.padding,
data_format=layer.data_format,
dilation_rate=layer.dilation_rate)
if layer.use_bias:
outputs = K.bias_add(
outputs,
layer.bias,
data_format=layer.data_format)
if activation and layer.activation is not None:
outputs = layer.activation(outputs)
return outputs
Now we need to modify the main function a little. First, identify the layer by its name. Then retrieve activations from the previous layer. And at last, compute the output from the target layer.
def get_output_activation_control(model, images, layername, activation=False):
"""Get activations for the input from specified layer"""
inp = model.input
layer_id, layer = [(n, l) for n, l in enumerate(model.layers) if l.name == layername][0]
prev_layer = model.layers[layer_id - 1]
conv_out = conv_no_activation(layer, prev_layer.output, activation=activation)
functor = K.function([inp] + [K.learning_phase()], [conv_out])
return functor([images])
Here is a tiny test. I'm using VGG16 model.
a_relu = get_output_activation_control(vgg_model, img, 'block4_conv1', activation=True)[0]
a_no_relu = get_output_activation_control(vgg_model, img, 'block4_conv1', activation=False)[0]
print(np.sum(a_no_relu < 0))
> 245293
Set all negatives to zero to compare with the results retrieved after an embedded in VGG16 ReLu operation.
a_no_relu[a_no_relu < 0] = 0
print(np.allclose(a_relu, a_no_relu))
> True
easy way to define new layer with new activation function:
def change_layer_activation(layer):
if isinstance(layer, keras.layers.Conv2D):
config = layer.get_config()
config["activation"] = "linear"
new = keras.layers.Conv2D.from_config(config)
elif isinstance(layer, keras.layers.Dense):
config = layer.get_config()
config["activation"] = "linear"
new = keras.layers.Dense.from_config(config)
weights = [x.numpy() for x in layer.weights]
return new, weights
I had the same problem but none of the other answers worked for me. Im using a newer version of Keras with Tensorflow so some answers dont work now. Also the structure of the model is given so i can't change it easely. The general idea is to create a copy of the original model that will work exactly like the original one but spliting the activation from the outputs layers. Once this is done we can easely access the outputs values before the activation is applied.
First we will create a copy of the original model but with no activation on the outputs layers. This will be done using Keras clone_model function (See Docs).
from tensorflow.keras.models import clone_model
from tensorflow.keras.layers import Activation
original_model = get_model()
def f(layer):
config = layer.get_config()
if not isinstance(layer, Activation) and layer.name in original_model.output_names:
config.pop('activation', None)
layer_copy = layer.__class__.from_config(config)
return layer_copy
copy_model = clone_model(model, clone_function=f)
This alone will only make a clone with new weights so we must copy the original_model weights to the new one:
copy_model.build(original_model.input_shape)
copy_model.set_weights(original_model.get_weights())
Now we will add the activations layers:
from tensorflow.keras.models import Model
old_outputs = [ original_model.get_layer(name=name) for name in copy_model.output_names ]
new_outputs = [ Activation(old_output.activation)(output) if old_output.activation else output
for output, old_output in zip(copy_model.outputs, old_outputs) ]
copy_model = Model(copy_model.inputs, new_outputs)
Finally we could create a new model whose evaluation will be the outputs with no activation applied:
no_activation_outputs = [ copy_model.get_layer(name=name).output for name in original_model.output_names ]
no_activation_model = Model(copy.inputs, no_activation_outputs)
Now we could use copy_model like the original_model and no_activation_model to access pre-activation outputs. Actually you could even modify the code to split a custom set of layers instead of the outputs.

Categories