Multiple dataframe dates and groups conditions - python

A B C D E
0 2002-01-13 Dan 2002-01-15 26 -1
1 2002-01-13 Dan 2002-01-15 10 0
2 2002-01-13 Dan 2002-01-15 16 1
3 2002-01-13 Vic 2002-01-17 14 0
4 2002-01-13 Vic 2002-01-03 18 0
5 2002-01-28 Mel 2002-02-08 37 0
6 2002-01-28 Mel 2002-02-06 29 0
7 2002-01-28 Mel 2002-02-10 20 0
8 2002-01-28 Rob 2002-02-12 30 -1
9 2002-01-28 Rob 2002-02-12 48 1
10 2002-01-28 Rob 2002-02-12 0 1
11 2002-01-28 Rob 2002-02-01 19 0
Wen answered a very similar question an hour ago, but I forgot to include some conditions. I´ll write them down in bold style:
I want to create a new df['F'] column, with next conditions, per each B group and ignoring zeros in D column:
F=D value, where A dates are nearest to 10 days later than C date and where E=0.
If E=0 doesn´t exist in the nearest A date to 10 days (case of 2002-01-28 Rob), F will be the mean of D values when E=-1 and E=1.
If there are two C dates at the same distance to 10 days from A (case of 2002-01-28 Mel), F will be the mean of these same-period D values.
Output should be:
A B C D E F
0 2002-01-13 Dan 2002-01-15 26 -1 10
1 2002-01-13 Dan 2002-01-15 10 0 10
2 2002-01-13 Dan 2002-01-15 16 1 10
3 2002-01-13 Vic 2002-01-17 14 0 14
4 2002-01-13 Vic 2002-01-03 18 0 14
5 2002-01-28 Mel 2002-02-08 37 0 33
6 2002-01-28 Mel 2002-02-06 29 0 33
7 2002-01-28 Mel 2002-02-10 20 0 33
8 2002-01-28 Rob 2002-02-12 30 -1 39
9 2002-01-28 Rob 2002-02-12 48 1 39
10 2002-01-28 Rob 2002-02-12 0 1 39
11 2002-01-28 Rob 2002-02-01 19 0 39
Wen answered:
df['F']=abs((df.C-df.A).dt.days-10)# get the days different
df['F']=df.B.map(df.loc[df.F==df.groupby('B').F.transform('min')].groupby('B').D.mean())# find the min value for the different , and get the mean
df
But now I can´t get to insert the new conditions (that I´ve put in bold style).

Change the mapper to
m=df.loc[(df.F==df.groupby('B').F.transform('min'))&(df.D!=0)].groupby('B').apply(lambda x : x['D'][x['E']==0].mean() if (x['E']==0).any() else x['D'].mean())
df['F']=df.B.map(m)

Related

In Selenium see if the 'a' anchor tag contains the text I want, and then extract multiple td's of text in the same row

For my python code, I have been trying to scrape data from NCAAF Stats. I have been having issues extracting the td's text after I evaluate if the anchor tag 'a', contains the text I want. I want to be able to find the teams amount of tds, points, and ppg. I have been able to successfully find the school by text in selenium, but after that I am unable to extract the info I want. Here is what I have coded so far.
from selenium import webdriver
driver = webdriver.Chrome('C:\\Users\\Carl\\Downloads\\chromedriver.exe')
driver.get('https://www.ncaa.com/stats/football/fbs/current/team/27')
# I plan to make a while or for loop later, that is why I used f strings
team = "Coastal Carolina"
first = driver.find_element_by_xpath(f'//a[text()="{team}"]')
# This was the way another similiarly asked question was answered but did not work
#tds = driver.find_element_by_xpath(f'//td//a[text()="{apples}"]/../td[4]').text
# This grabs data from the very first row of data... not the one I want
tds = first.find_element_by_xpath('//following-sibling::td[4]').text
total_points = first.find_element_by_xpath('//following-sibling::td[10]').text
ppg = first.find_element_by_xpath('//following-sibling::td[11]').text
print(tds, total_points, ppg)
driver.quit()
I have tried to look around for a similarly asked question and was able to find this snippet
tds = driver.find_element_by_xpath(f'//td//a[text()="{apples}"]/../td[4]').text
it unfortunately did not help me out much. The html structure looks like this. I appreciate any help, and thank you!
No need to use Selenium, the page isn't dynamic. Just use pandas to parse the table for you:
import pandas as pd
url = 'https://www.ncaa.com/stats/football/fbs/current/team/27'
dfs = pd.read_html(url)[0]
Output:
print(df)
Rank Team G TDs PAT 2PT Def Pts FG Saf Pts PPG
0 1 Ohio St. 6 39 39 0 0 6 0 291.0 48.5
1 2 Pittsburgh 6 40 36 0 0 4 1 290.0 48.3
2 3 Coastal Carolina 7 43 42 0 0 6 1 320.0 45.7
3 4 Alabama 7 41 40 1 0 9 0 315.0 45.0
4 5 Ole Miss 6 35 30 1 0 6 1 262.0 43.7
5 6 Cincinnati 6 36 34 1 0 3 0 261.0 43.5
6 7 Oklahoma 7 35 34 1 1 17 0 299.0 42.7
7 - SMU 7 40 36 1 0 7 0 299.0 42.7
8 9 Texas 7 38 37 0 0 8 1 291.0 41.6
9 10 Western Ky. 6 31 27 1 0 10 0 245.0 40.8
10 11 Tennessee 7 36 36 0 0 7 1 275.0 39.3
11 12 Wake Forest 6 28 24 2 0 12 0 232.0 38.7
12 13 UTSA 7 33 33 0 0 13 0 270.0 38.6
13 14 Michigan 6 28 25 1 0 12 0 231.0 38.5
14 15 Georgia 7 34 33 0 0 10 1 269.0 38.4
15 16 Baylor 7 35 35 0 0 7 1 268.0 38.3
16 17 Houston 6 30 28 0 0 5 0 223.0 37.2
17 - TCU 6 29 28 0 0 7 0 223.0 37.2
18 19 Marshall 7 34 33 0 0 7 0 258.0 36.9
19 - North Carolina 7 34 32 2 0 6 0 258.0 36.9
20 21 Nevada 6 26 24 1 0 12 0 218.0 36.3
21 22 Virginia 7 31 29 2 0 10 2 253.0 36.1
22 23 Fresno St. 7 32 27 1 0 10 0 251.0 35.9
23 - Memphis 7 33 26 3 0 7 0 251.0 35.9
24 25 Texas Tech 7 32 31 0 0 9 0 250.0 35.7
25 26 Auburn 7 29 28 1 0 12 1 242.0 34.6
26 27 Florida 7 33 29 1 0 4 0 241.0 34.4
27 - Missouri 7 31 31 0 0 8 0 241.0 34.4
28 29 Liberty 7 33 29 1 0 3 1 240.0 34.3
29 - Michigan St. 7 30 30 0 0 10 0 240.0 34.3
30 31 UCF 6 28 26 0 0 3 1 205.0 34.2
31 32 Oregon St. 6 27 27 0 0 5 0 204.0 34.0
32 33 Oregon 6 26 26 0 0 7 0 203.0 33.8
33 34 Iowa St. 6 23 22 0 0 14 0 202.0 33.7
34 35 UCLA 7 30 28 0 0 9 0 235.0 33.6
35 36 San Diego St. 6 25 24 1 0 7 0 197.0 32.8
36 37 LSU 7 29 29 0 0 8 0 227.0 32.4
37 38 Louisville 6 24 23 0 0 9 0 194.0 32.3
38 - Miami (FL) 6 24 22 1 0 8 1 194.0 32.3
39 - NC State 6 25 24 0 0 6 1 194.0 32.3
40 41 Southern California 6 22 19 3 0 12 0 193.0 32.2
41 42 Tulane 7 31 23 4 0 2 0 223.0 31.9
42 43 Arizona St. 7 30 25 2 0 4 0 221.0 31.6
43 44 Utah 6 25 22 1 0 5 0 189.0 31.5
44 45 Air Force 7 29 27 1 0 5 1 220.0 31.4
45 46 App State 7 27 24 0 0 11 0 219.0 31.3
46 47 Arkansas 7 27 25 0 0 10 0 217.0 31.0
47 - Army West Point 6 25 22 0 0 4 1 186.0 31.0
48 - Notre Dame 6 23 20 2 0 8 0 186.0 31.0
49 - Western Mich. 7 28 25 0 0 8 0 217.0 31.0

How to look for same columns from one dataframe in other dataframe pandas python?

I have one dataframe like this,
tabla_aciertos= {'Numeros_acertados' : [5,5,5,4,4,3,4,2,3,3,1,2,2],'Estrellas_acertadas': [2,1,0,2,1,2,0,2,1,0,2,1,0]}
categorias = [1,2,3,4,5,6,7,8,9,10,11,12,13]
categoria_de_premios = pd.DataFrame (tabla_aciertos,index = [categorias] )
categoria_de_premios
Numeros_acertados Estrellas_acertadas
1 5 2
2 5 1
3 5 0
4 4 2
5 4 1
6 3 2
7 4 0
8 2 2
9 3 1
10 3 0
11 1 2
12 2 1
13 2 0
and another df :
sorteos_anteriores.iloc[:,:]
uno dos tres cuatro cinco Estrella1 Estrella2 bolas_Acertadas estrellas_Acertadas
Fecha
2020-10-13 5 14 38 41 46 1 10 0 1
2020-09-10 11 15 35 41 50 5 8 1 0
2020-06-10 4 21 36 41 47 9 11 0 0
2020-02-10 6 12 15 40 45 3 9 0 0
2020-09-29 4 14 16 41 44 11 12 0 1
... ... ... ... ... ... ... ... ... ...
2004-12-03 15 24 28 44 47 4 5 0 0
2004-05-03 4 7 33 37 39 1 5 0 1
2004-02-27 14 18 19 31 37 4 5 0 0
2004-02-20 7 13 39 47 50 2 5 1 0
2004-02-13 16 29 32 36 41 7 9 0 0
1363 rows × 9 columns
Now I need to see in each and every row of the df "sorteos_anteriores" is in one of the all row from the first df, "tabla_aciertos" .
Let me give you one example,
Inmagine in "sorteos_anteriores" you have in:
2019-11-2 in the column "bolas_Acertadas"= 5 and "estrellas_Acertadas= 1". Now you go to fist table, "tabla_aciertos" and you find that in (index 2 = "Numeros_acertados" = 5 and Estrellas_acertadas=1) . You have won a second (index=2) class prize. You should create a new column "Prize" in "sorteos_anteriores" and in each row write a number from 1 to 13 if you have some kind of prize of 0 or Nan if you not.
I have try :
sorteos_anteriores ['categorias'] = sorteos_anteriores(sorteos_anteriores.loc[:,'bolas_Acertadas':'estrellas_Acertadas'] == tabla_premios.iloc[ : ,0:2])
Also with where and merge, but nothing works.
Thanks for your help.
Thanks to Cuina Max I could do it.
answer here
# supposing that the indexes, starting from one, correspond to the the premiums
categoria_de_premios['Categoria'] = df.index
# Merge using pd.merge and the appropriate arguments
sorteos_anteriores = (sorteos_anteriores.merge(
categoria_de_premios,
how='outer',
left_on=['bolas_Acertadas','estrellas_Acertadas'],
right_on=['Numeros_acertados', 'Estrellas_acertadas']
)).drop(columns=['Numeros_acertados', 'Estrellas_acertadas'])

Conditional filling of column based on string

I have a dataset which I have to fill conditional or dropping the conditional rows. But, I am still unsuccessful.
Idx Fruits Days Name
0 60 20
1 15 85.5
2 10 62 Peter
3 40 90 Maria
4 5 10.2
5 92 66
6 65 87 John
7 50 1 Eric
8 50 0 Maria
9 80 87 John
Now, I have some empty cells. I can fill with fillna or regex or can drop empty cells.
I want only first starting cells until the string starts, either dropping or filling with "."
Like below
Idx Fruits Days Name
0 60 20 .
1 15 85.5 .
2 10 62 Peter
3 40 90 Maria
4 5 10.2
5 92 66
6 65 87 John
7 50 1 Eric
8 50 0 Maria
9 80 87 John
and
Idx Fruits Days Name
2 10 62 Peter
3 40 90 Maria
4 5 10.2
5 92 66
6 65 87 John
7 50 1 Eric
8 50 0 Maria
9 80 87 John
Is there any possibility using pandas? or any looping?
You can try this:
df['Name'] = df['Name'].replace('', np.nan)
df['Name'] = df['Name'].where(df['Name'].ffill().notna(), '.')
print(df)
Idx Fruits Days Name
0 0 60 20.0 .
1 1 15 85.5 .
2 2 10 62.0 Peter
3 3 40 90.0 Maria
4 4 5 10.2
5 5 92 66.0
6 6 65 87.0 John
7 7 50 1.0 Eric
8 8 50 0.0 Maria
9 9 80 87.0 John

Comparing Two Data Frames in python

I have two data frames. I have to compare the two data frames and get the position of the unmatched data using python.
Note:
The First column will always not be unique.
Data Frame 1:
0 1 2 3 4
0 1 Dhoni 24 Kota 60000.0
1 2 Raina 90 Delhi 41500.0
2 3 Kholi 67 Ahmedabad 20000.0
3 4 Ashwin 45 Bhopal 8500.0
4 5 Watson 64 Mumbai 6500.0
5 6 KL Rahul 19 Indore 4500.0
6 7 Hardik 24 Bengaluru 1000.0
Data Frame 2
0 1 2 3 4
0 3 Kholi 67 Ahmedabad 20000.0
1 7 Hardik 24 Bengaluru 1000.0
2 4 Ashwin 45 Bhopal 8500.0
3 2 Raina 90 Delhi 41500.0
4 6 KL Rahul 19 Chennai 4500.0
5 1 Dhoni 24 Kota 60000.0
6 5 Watson 64 Mumbai 6500.0
I expect the output of (3,5)-(Indore - Chennai).
df1=pd.DataFrame({'A':['Dhoni','Raina','KL Rahul'],'B':[24,90,67],'C':['Kota','Delhi','Indore'],'D':[6000.0,41500.0,4500.0]})
df2=pd.DataFrame({'A':['Dhoni','Raina','KL Rahul'],'B':[24,90,67],'C':['Kota','Delhi','Chennai'],'D':[6000.0,41500.0,4500.0]})
df1['df']='df1'
df2['df']='df2'
df=pd.concat([df1,df2],sort=False).drop_duplicates(subset=['A','B','C','D'],keep=False)
print(df)
A B C D df
2 KL Rahul 67 Indore 4500.0 df1
2 KL Rahul 67 Chennai 4500.0 df2
I have added df column to show, from which df difference comes from

python - add indicator for 10 most recent dates

I'm using Python, and I have data with a team name and dates of games that have been played, it looks something like this (except there are a few hundred rows):
team date
0 TOR 2016/10/15
1 LAK 2016/10/20
2 CGY 2016/11/03
3 BUF 2016/10/30
4 PIT 2016/10/27
5 CHI 2016/11/05
6 VAN 2016/10/20
7 BUF 2016/10/16
8 STL 2016/10/13
9 BUF 2016/10/29
10 MIN 2016/10/29
11 PIT 2016/11/05
12 CHI 2016/10/18
13 BOS 2016/10/29
14 PIT 2016/10/20
15 COL 2016/10/20
16 MTL 2016/10/20
17 MTL 2016/11/05
18 BOS 2016/11/03
19 EDM 2016/11/05
20 NSH 2016/11/01
I would like to add indicator columns to show which are the most recent 10 games for each team, as well as the most recent 5 games for each team. With a 1 if they are in this group, and a 0 if they are not.
I'm stumped. Any ideas would be much appreciated!
I think you can use SeriesGroupBy.nsmallest with numpy.where for selecting indices by isin:
df.date = pd.to_datetime(df.date)
#in real data use nsmallest(10)
idx = df.groupby('team')['date'].nsmallest(2).index.get_level_values(1)
df['indicator'] = np.where(df.index.isin(idx), 1, 0)
print (df)
team date indicator
0 TOR 2016-10-15 1
1 LAK 2016-10-20 1
2 CGY 2016-11-03 1
3 BUF 2016-10-30 0
4 PIT 2016-10-27 1
5 CHI 2016-11-05 1
6 VAN 2016-10-20 1
7 BUF 2016-10-16 1
8 STL 2016-10-13 1
9 BUF 2016-10-29 1
10 MIN 2016-10-29 1
11 PIT 2016-11-05 0
12 CHI 2016-10-18 1
13 BOS 2016-10-29 1
14 PIT 2016-10-20 1
15 COL 2016-10-20 1
16 MTL 2016-10-20 1
17 MTL 2016-11-05 1
18 BOS 2016-11-03 1
19 EDM 2016-11-05 1
20 NSH 2016-11-01 1

Categories