This question already has answers here:
TypeError: Missing 1 required positional argument: 'self'
(8 answers)
Closed 2 years ago.
I know a similar question has been asked/answered several times. But please do read on ..
I am trying to create a Class from a string value as described in "Convert string to Python Class Object" in Python 3.6.
utils.py
class Foo(object):
def __init__(self):
print("In the constructor of Foo")
def What(self):
print("so what ... ")
class FooParam(object):
def __init__(self, v):
self.value = v
print("In the constructor of FooParam")
def What(self):
print("Value=" % self.value)
print("So what now ...")
welcome.py
def TEST1():
m = importlib.import_module("utils")
c = getattr(m, "Foo")
c.What()
if __name__ == '__main__':
TEST1()
Error
TypeError: What() missing 1 required positional argument: 'self'
So what am I doing wrong ?
Also how can I create an object of "FooParam" and pass a value to the constructor.
Once you import the module just access with the variable you stored imported module:
m = importlib.import_module("utils")
foo = m.Foo()
foo.What()
import_module performs the same steps as import.
This c = getattr(m, "Foo") line of code is equivalent f = Foo so that means you are not creating an instance instead you are getting a reference to that class.
I suspect that c is the class Foo but not an instance of the class.
This is equivalent to simply calling
Foo.what()
Which is why self is not defined!
Whereas what you want is to create an instance of the class (giving it a 'self' property), then call its method, i.e.
foo_instance = Foo()
foo_instance.What()
so try replacing c.What() with..
foo_instance = c()
foo_instance.What()
for FooParam:
#import the class FooParam
c = getattr(m, "FooParam")
#create an instance of the class, initializing its values (and self)
fooparam_instance = c(3.14)
#call its method!
fooparam_instance.What()
on the whole I would rename the variable c, to something like foo_import and fooparam_import respectively :)
Related
This question already has an answer here:
__metaclass__ in Python 3
(1 answer)
Closed 3 years ago.
Two notable ways to create a class are shown below:
class Klass:
pass
Klass = type("Klass", tuple(), dict())
I would like to override the constructor (__call__) while still using the class keyword instead of doing something else, like directly calling type. I really do want to override (__call__), not __init__
My failed attempts are shown below:
Attempt 1
class Foo:
#classmethod
def __call__(*args):
print("arr har")
return super(type(args[0]), args[0]).__call__(*args)
instance = Foo()
# did not print "arr har"
Attempt 2
class BarMeta(type):
def __call__(*args):
print("hello world")
return super(type(args[0]), args[0]).__call__(*args[1:])
Attempt 2A
class Bar:
__metaclass__ = BarMeta
instance = Bar()
# did not print "hello world"
Attempt 2B
Baz = BarMeta("Baz", tuple(), dict())
instance = Baz()
# Did print "hello world," but we weren't able to use the `class` keyword to create `Baz`
All credit does to Aran-Fey, who posted the answer as a comment, instead of as an answer:
class BarMeta(type):
def __call__(*args):
print("hello world")
return super(type(args[0]), args[0]).__call__(*args[1:])
class Bar(metaclass=BarMeta):
pass
instance = Bar()
This question already has an answer here:
Assign external function to class variable in Python
(1 answer)
Closed 3 years ago.
In my class I'd like to call a non-member function whose reference is stored in a member variable. My issue is that it tries to pass self to the function as the first argument. How can I avoid this?
class MyClass:
my_useful_static_function = crcmod.mkCrcFun(0x11021, True)
def __init__(self):
# this gets called with the first argument as self :(
result = self.my_useful_static_function()
Use staticmethod:
class MyClass:
my_useful_static_function = staticmethod(crcmod.mkCrcFun(0x11021, True))
def __init__(self):
result = self.my_useful_static_function()
You need to use staticmethod like so:
class Foo:
#staticmethod
def my_method():
print("This is a static method")
def my_other_method(self):
print("This is not static")
# This works
Foo.my_method()
# This won't work
Foo.my_other_method()
# This works though
foo_instance = Foo()
foo_instance.my_other_method()
This question already has answers here:
Python NameError: name is not defined
(4 answers)
Closed 4 years ago.
class one(object):
b=squares
def squares(self):
print('hi')
getting the following error:
NameError: name 'squares' is not defined
This should work for you. Let me explain it. First code should go inside of methods, these methods can be combined into classes. You shouldn't place code in the class directly.
In Python when an object is instantiated the __init__(self) method is called directly. This method takes the self argument which will hold the attributes and functions available for this class. In our case, I added an attribute called self.size = 5. Then we call the squares(self) function. Notice we access it as self.function_name().
Then in that function we pass the self argument. Notice how we can access the self.size attribute from this function.
class one(object):
def __init__(self):
self.size = 5
b = self.squares()
def squares(self):
print('hi' + str(self.size))
o = one()
If you want a generic function not tied to your object. Then you need to define it before the class.
def squares(a):
return a*a
class One():
def __init__(self, a):
self.num = a
self.example()
def example(self):
b=squares(self.num)
print(b)
obj = One(4)
If I have a class ...
class MyClass:
def method(arg):
print(arg)
... which I use to create an object ...
my_object = MyClass()
... on which I call method("foo") like so ...
>>> my_object.method("foo")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: method() takes exactly 1 positional argument (2 given)
... why does Python tell me I gave it two arguments, when I only gave one?
In Python, this:
my_object.method("foo")
... is syntactic sugar, which the interpreter translates behind the scenes into:
MyClass.method(my_object, "foo")
... which, as you can see, does indeed have two arguments - it's just that the first one is implicit, from the point of view of the caller.
This is because most methods do some work with the object they're called on, so there needs to be some way for that object to be referred to inside the method. By convention, this first argument is called self inside the method definition:
class MyNewClass:
def method(self, arg):
print(self)
print(arg)
If you call method("foo") on an instance of MyNewClass, it works as expected:
>>> my_new_object = MyNewClass()
>>> my_new_object.method("foo")
<__main__.MyNewClass object at 0x29045d0>
foo
Occasionally (but not often), you really don't care about the object that your method is bound to, and in that circumstance, you can decorate the method with the builtin staticmethod() function to say so:
class MyOtherClass:
#staticmethod
def method(arg):
print(arg)
... in which case you don't need to add a self argument to the method definition, and it still works:
>>> my_other_object = MyOtherClass()
>>> my_other_object.method("foo")
foo
In simple words
In Python you should add self as the first parameter to all defined methods in classes:
class MyClass:
def method(self, arg):
print(arg)
Then you can use your method according to your intuition:
>>> my_object = MyClass()
>>> my_object.method("foo")
foo
For a better understanding, you can also read the answers to this question: What is the purpose of self?
Something else to consider when this type of error is encountered:
I was running into this error message and found this post helpful. Turns out in my case I had overridden an __init__() where there was object inheritance.
The inherited example is rather long, so I'll skip to a more simple example that doesn't use inheritance:
class MyBadInitClass:
def ___init__(self, name):
self.name = name
def name_foo(self, arg):
print(self)
print(arg)
print("My name is", self.name)
class MyNewClass:
def new_foo(self, arg):
print(self)
print(arg)
my_new_object = MyNewClass()
my_new_object.new_foo("NewFoo")
my_bad_init_object = MyBadInitClass(name="Test Name")
my_bad_init_object.name_foo("name foo")
Result is:
<__main__.MyNewClass object at 0x033C48D0>
NewFoo
Traceback (most recent call last):
File "C:/Users/Orange/PycharmProjects/Chapter9/bad_init_example.py", line 41, in <module>
my_bad_init_object = MyBadInitClass(name="Test Name")
TypeError: object() takes no parameters
PyCharm didn't catch this typo. Nor did Notepad++ (other editors/IDE's might).
Granted, this is a "takes no parameters" TypeError, it isn't much different than "got two" when expecting one, in terms of object initialization in Python.
Addressing the topic: An overloading initializer will be used if syntactically correct, but if not it will be ignored and the built-in used instead. The object won't expect/handle this and the error is thrown.
In the case of the sytax error: The fix is simple, just edit the custom init statement:
def __init__(self, name):
self.name = name
Newcomer to Python, I had this issue when I was using the Python's ** feature in a wrong way. Trying to call this definition from somewhere:
def create_properties_frame(self, parent, **kwargs):
using a call without a double star was causing the problem:
self.create_properties_frame(frame, kw_gsp)
TypeError: create_properties_frame() takes 2 positional arguments but 3 were given
The solution is to add ** to the argument:
self.create_properties_frame(frame, **kw_gsp)
As mentioned in other answers - when you use an instance method you need to pass self as the first argument - this is the source of the error.
With addition to that,it is important to understand that only instance methods take self as the first argument in order to refer to the instance.
In case the method is Static you don't pass self, but a cls argument instead (or class_).
Please see an example below.
class City:
country = "USA" # This is a class level attribute which will be shared across all instances (and not created PER instance)
def __init__(self, name, location, population):
self.name = name
self.location = location
self.population = population
# This is an instance method which takes self as the first argument to refer to the instance
def print_population(self, some_nice_sentence_prefix):
print(some_nice_sentence_prefix +" In " +self.name + " lives " +self.population + " people!")
# This is a static (class) method which is marked with the #classmethod attribute
# All class methods must take a class argument as first param. The convention is to name is "cls" but class_ is also ok
#classmethod
def change_country(cls, new_country):
cls.country = new_country
Some tests just to make things more clear:
# Populate objects
city1 = City("New York", "East", "18,804,000")
city2 = City("Los Angeles", "West", "10,118,800")
#1) Use the instance method: No need to pass "self" - it is passed as the city1 instance
city1.print_population("Did You Know?") # Prints: Did You Know? In New York lives 18,804,000 people!
#2.A) Use the static method in the object
city2.change_country("Canada")
#2.B) Will be reflected in all objects
print("city1.country=",city1.country) # Prints Canada
print("city2.country=",city2.country) # Prints Canada
It occurs when you don't specify the no of parameters the __init__() or any other method looking for.
For example:
class Dog:
def __init__(self):
print("IN INIT METHOD")
def __unicode__(self,):
print("IN UNICODE METHOD")
def __str__(self):
print("IN STR METHOD")
obj = Dog("JIMMY", 1, 2, 3, "WOOF")
When you run the above programme, it gives you an error like that:
TypeError: __init__() takes 1 positional argument but 6 were given
How we can get rid of this thing?
Just pass the parameters, what __init__() method looking for
class Dog:
def __init__(self, dogname, dob_d, dob_m, dob_y, dogSpeakText):
self.name_of_dog = dogname
self.date_of_birth = dob_d
self.month_of_birth = dob_m
self.year_of_birth = dob_y
self.sound_it_make = dogSpeakText
def __unicode__(self, ):
print("IN UNICODE METHOD")
def __str__(self):
print("IN STR METHOD")
obj = Dog("JIMMY", 1, 2, 3, "WOOF")
print(id(obj))
If you want to call method without creating object, you can change method to static method.
class MyClass:
#staticmethod
def method(arg):
print(arg)
MyClass.method("i am a static method")
I get this error when I'm sleep-deprived, and create a class using def instead of class:
def MyClass():
def __init__(self, x):
self.x = x
a = MyClass(3)
-> TypeError: MyClass() takes 0 positional arguments but 1 was given
You should actually create a class:
class accum:
def __init__(self):
self.acc = 0
def accumulator(self, var2add, end):
if not end:
self.acc+=var2add
return self.acc
In my case, I forgot to add the ()
I was calling the method like this
obj = className.myMethod
But it should be is like this
obj = className.myMethod()
If I have a class ...
class MyClass:
def method(arg):
print(arg)
... which I use to create an object ...
my_object = MyClass()
... on which I call method("foo") like so ...
>>> my_object.method("foo")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: method() takes exactly 1 positional argument (2 given)
... why does Python tell me I gave it two arguments, when I only gave one?
In Python, this:
my_object.method("foo")
... is syntactic sugar, which the interpreter translates behind the scenes into:
MyClass.method(my_object, "foo")
... which, as you can see, does indeed have two arguments - it's just that the first one is implicit, from the point of view of the caller.
This is because most methods do some work with the object they're called on, so there needs to be some way for that object to be referred to inside the method. By convention, this first argument is called self inside the method definition:
class MyNewClass:
def method(self, arg):
print(self)
print(arg)
If you call method("foo") on an instance of MyNewClass, it works as expected:
>>> my_new_object = MyNewClass()
>>> my_new_object.method("foo")
<__main__.MyNewClass object at 0x29045d0>
foo
Occasionally (but not often), you really don't care about the object that your method is bound to, and in that circumstance, you can decorate the method with the builtin staticmethod() function to say so:
class MyOtherClass:
#staticmethod
def method(arg):
print(arg)
... in which case you don't need to add a self argument to the method definition, and it still works:
>>> my_other_object = MyOtherClass()
>>> my_other_object.method("foo")
foo
In simple words
In Python you should add self as the first parameter to all defined methods in classes:
class MyClass:
def method(self, arg):
print(arg)
Then you can use your method according to your intuition:
>>> my_object = MyClass()
>>> my_object.method("foo")
foo
For a better understanding, you can also read the answers to this question: What is the purpose of self?
Something else to consider when this type of error is encountered:
I was running into this error message and found this post helpful. Turns out in my case I had overridden an __init__() where there was object inheritance.
The inherited example is rather long, so I'll skip to a more simple example that doesn't use inheritance:
class MyBadInitClass:
def ___init__(self, name):
self.name = name
def name_foo(self, arg):
print(self)
print(arg)
print("My name is", self.name)
class MyNewClass:
def new_foo(self, arg):
print(self)
print(arg)
my_new_object = MyNewClass()
my_new_object.new_foo("NewFoo")
my_bad_init_object = MyBadInitClass(name="Test Name")
my_bad_init_object.name_foo("name foo")
Result is:
<__main__.MyNewClass object at 0x033C48D0>
NewFoo
Traceback (most recent call last):
File "C:/Users/Orange/PycharmProjects/Chapter9/bad_init_example.py", line 41, in <module>
my_bad_init_object = MyBadInitClass(name="Test Name")
TypeError: object() takes no parameters
PyCharm didn't catch this typo. Nor did Notepad++ (other editors/IDE's might).
Granted, this is a "takes no parameters" TypeError, it isn't much different than "got two" when expecting one, in terms of object initialization in Python.
Addressing the topic: An overloading initializer will be used if syntactically correct, but if not it will be ignored and the built-in used instead. The object won't expect/handle this and the error is thrown.
In the case of the sytax error: The fix is simple, just edit the custom init statement:
def __init__(self, name):
self.name = name
Newcomer to Python, I had this issue when I was using the Python's ** feature in a wrong way. Trying to call this definition from somewhere:
def create_properties_frame(self, parent, **kwargs):
using a call without a double star was causing the problem:
self.create_properties_frame(frame, kw_gsp)
TypeError: create_properties_frame() takes 2 positional arguments but 3 were given
The solution is to add ** to the argument:
self.create_properties_frame(frame, **kw_gsp)
As mentioned in other answers - when you use an instance method you need to pass self as the first argument - this is the source of the error.
With addition to that,it is important to understand that only instance methods take self as the first argument in order to refer to the instance.
In case the method is Static you don't pass self, but a cls argument instead (or class_).
Please see an example below.
class City:
country = "USA" # This is a class level attribute which will be shared across all instances (and not created PER instance)
def __init__(self, name, location, population):
self.name = name
self.location = location
self.population = population
# This is an instance method which takes self as the first argument to refer to the instance
def print_population(self, some_nice_sentence_prefix):
print(some_nice_sentence_prefix +" In " +self.name + " lives " +self.population + " people!")
# This is a static (class) method which is marked with the #classmethod attribute
# All class methods must take a class argument as first param. The convention is to name is "cls" but class_ is also ok
#classmethod
def change_country(cls, new_country):
cls.country = new_country
Some tests just to make things more clear:
# Populate objects
city1 = City("New York", "East", "18,804,000")
city2 = City("Los Angeles", "West", "10,118,800")
#1) Use the instance method: No need to pass "self" - it is passed as the city1 instance
city1.print_population("Did You Know?") # Prints: Did You Know? In New York lives 18,804,000 people!
#2.A) Use the static method in the object
city2.change_country("Canada")
#2.B) Will be reflected in all objects
print("city1.country=",city1.country) # Prints Canada
print("city2.country=",city2.country) # Prints Canada
It occurs when you don't specify the no of parameters the __init__() or any other method looking for.
For example:
class Dog:
def __init__(self):
print("IN INIT METHOD")
def __unicode__(self,):
print("IN UNICODE METHOD")
def __str__(self):
print("IN STR METHOD")
obj = Dog("JIMMY", 1, 2, 3, "WOOF")
When you run the above programme, it gives you an error like that:
TypeError: __init__() takes 1 positional argument but 6 were given
How we can get rid of this thing?
Just pass the parameters, what __init__() method looking for
class Dog:
def __init__(self, dogname, dob_d, dob_m, dob_y, dogSpeakText):
self.name_of_dog = dogname
self.date_of_birth = dob_d
self.month_of_birth = dob_m
self.year_of_birth = dob_y
self.sound_it_make = dogSpeakText
def __unicode__(self, ):
print("IN UNICODE METHOD")
def __str__(self):
print("IN STR METHOD")
obj = Dog("JIMMY", 1, 2, 3, "WOOF")
print(id(obj))
If you want to call method without creating object, you can change method to static method.
class MyClass:
#staticmethod
def method(arg):
print(arg)
MyClass.method("i am a static method")
I get this error when I'm sleep-deprived, and create a class using def instead of class:
def MyClass():
def __init__(self, x):
self.x = x
a = MyClass(3)
-> TypeError: MyClass() takes 0 positional arguments but 1 was given
You should actually create a class:
class accum:
def __init__(self):
self.acc = 0
def accumulator(self, var2add, end):
if not end:
self.acc+=var2add
return self.acc
In my case, I forgot to add the ()
I was calling the method like this
obj = className.myMethod
But it should be is like this
obj = className.myMethod()