Python overload operator = [duplicate] - python

Is there a magic method that can overload the assignment operator, like __assign__(self, new_value)?
I'd like to forbid a re-bind for an instance:
class Protect():
def __assign__(self, value):
raise Exception("This is an ex-parrot")
var = Protect() # once assigned...
var = 1 # this should raise Exception()
Is it possible? Is it insane? Should I be on medicine?

The way you describe it is absolutely not possible. Assignment to a name is a fundamental feature of Python and no hooks have been provided to change its behavior.
However, assignment to a member in a class instance can be controlled as you want, by overriding .__setattr__().
class MyClass(object):
def __init__(self, x):
self.x = x
self._locked = True
def __setattr__(self, name, value):
if self.__dict__.get("_locked", False) and name == "x":
raise AttributeError("MyClass does not allow assignment to .x member")
self.__dict__[name] = value
>>> m = MyClass(3)
>>> m.x
3
>>> m.x = 4
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 7, in __setattr__
AttributeError: MyClass does not allow assignment to .x member
Note that there is a member variable, _locked, that controls whether the assignment is permitted. You can unlock it to update the value.

No, as assignment is a language intrinsic which doesn't have a modification hook.

I don't think it's possible. The way I see it, assignment to a variable doesn't do anything to the object it previously referred to: it's just that the variable "points" to a different object now.
In [3]: class My():
...: def __init__(self, id):
...: self.id=id
...:
In [4]: a = My(1)
In [5]: b = a
In [6]: a = 1
In [7]: b
Out[7]: <__main__.My instance at 0xb689d14c>
In [8]: b.id
Out[8]: 1 # the object is unchanged!
However, you can mimic the desired behavior by creating a wrapper object with __setitem__() or __setattr__() methods that raise an exception, and keep the "unchangeable" stuff inside.

Inside a module, this is absolutely possible, via a bit of dark magic.
import sys
tst = sys.modules['tst']
class Protect():
def __assign__(self, value):
raise Exception("This is an ex-parrot")
var = Protect() # once assigned...
Module = type(tst)
class ProtectedModule(Module):
def __setattr__(self, attr, val):
exists = getattr(self, attr, None)
if exists is not None and hasattr(exists, '__assign__'):
exists.__assign__(val)
super().__setattr__(attr, val)
tst.__class__ = ProtectedModule
The above example assumes the code resides in a module named tst. You can do this in the repl by changing tst to __main__.
If you want to protect access through the local module, make all writes to it through tst.var = newval.

Using the top-level namespace, this is impossible. When you run
var = 1
It stores the key var and the value 1 in the global dictionary. It is roughly equivalent to calling globals().__setitem__('var', 1). The problem is that you cannot replace the global dictionary in a running script (you probably can by messing with the stack, but that is not a good idea). However you can execute code in a secondary namespace, and provide a custom dictionary for its globals.
class myglobals(dict):
def __setitem__(self, key, value):
if key=='val':
raise TypeError()
dict.__setitem__(self, key, value)
myg = myglobals()
dict.__setitem__(myg, 'val', 'protected')
import code
code.InteractiveConsole(locals=myg).interact()
That will fire up a REPL which almost operates normally, but refuses any attempts to set the variable val. You could also use execfile(filename, myg). Note this doesn't protect against malicious code.

I will burn in Python hell, but what's life without a little fun.
Important disclaimers:
I only provide this example for fun
I'm 100% sure I don't understand this well
It might not even be safe to do this, in any sense
I don't think this is practical
I don't think this is a good idea
I don't even want to seriously try to implement this
This doesn't work for jupyter (probably ipython too)*
Maybe you can't overload assignment, but you can (at least with Python ~3.9) achieve what you want even at the top-level namespace. It will be hard doing it "properly" for all cases, but here's a small example by hacking audithooks:
import sys
import ast
import inspect
import dis
import types
def hook(name, tup):
if name == "exec" and tup:
if tup and isinstance(tup[0], types.CodeType):
# Probably only works for my example
code = tup[0]
# We want to parse that code and find if it "stores" a variable.
# The ops for the example code would look something like this:
# ['LOAD_CONST', '<0>', 'STORE_NAME', '<0>',
# 'LOAD_CONST', 'POP_TOP', 'RETURN_VALUE', '<0>']
store_instruction_arg = None
instructions = [dis.opname[op] for op in code.co_code]
# Track the index so we can find the '<NUM>' index into the names
for i, instruction in enumerate(instructions):
# You might need to implement more logic here
# or catch more cases
if instruction == "STORE_NAME":
# store_instruction_arg in our case is 0.
# This might be the wrong way to parse get this value,
# but oh well.
store_instruction_arg = code.co_code[i + 1]
break
if store_instruction_arg is not None:
# code.co_names here is: ('a',)
var_name = code.co_names[store_instruction_arg]
# Check if the variable name has been previously defined.
# Will this work inside a function? a class? another
# module? Well... :D
if var_name in globals():
raise Exception("Cannot re-assign variable")
# Magic
sys.addaudithook(hook)
And here's the example:
>>> a = "123"
>>> a = 123
Traceback (most recent call last):
File "<stdin>", line 21, in hook
Exception: Cannot re-assign variable
>>> a
'123'
*For Jupyter I found another way that looked a tiny bit cleaner because I parsed the AST instead of the code object:
import sys
import ast
def hook(name, tup):
if name == "compile" and tup:
ast_mod = tup[0]
if isinstance(ast_mod, ast.Module):
assign_token = None
for token in ast_mod.body:
if isinstance(token, ast.Assign):
target, value = token.targets[0], token.value
var_name = target.id
if var_name in globals():
raise Exception("Can't re-assign variable")
sys.addaudithook(hook)

No there isn't
Think about it, in your example you are rebinding the name var to a new value.
You aren't actually touching the instance of Protect.
If the name you wish to rebind is in fact a property of some other entity i.e
myobj.var then you can prevent assigning a value to the property/attribute of the entity.
But I assume thats not what you want from your example.

Yes, It's possible, you can handle __assign__ via modify ast.
pip install assign
Test with:
class T():
def __assign__(self, v):
print('called with %s' % v)
b = T()
c = b
You will get
>>> import magic
>>> import test
called with c
The project is at https://github.com/RyanKung/assign
And the simpler gist: https://gist.github.com/RyanKung/4830d6c8474e6bcefa4edd13f122b4df

Generally, the best approach I found is overriding __ilshift__ as a setter and __rlshift__ as a getter, being duplicated by the property decorator.
It is almost the last operator being resolved just (| & ^) and logical are lower.
It is rarely used (__lrshift__ is less, but it can be taken to account).
Within using of PyPi assign package only forward assignment can be controlled, so actual 'strength' of the operator is lower.
PyPi assign package example:
class Test:
def __init__(self, val, name):
self._val = val
self._name = name
self.named = False
def __assign__(self, other):
if hasattr(other, 'val'):
other = other.val
self.set(other)
return self
def __rassign__(self, other):
return self.get()
def set(self, val):
self._val = val
def get(self):
if self.named:
return self._name
return self._val
#property
def val(self):
return self._val
x = Test(1, 'x')
y = Test(2, 'y')
print('x.val =', x.val)
print('y.val =', y.val)
x = y
print('x.val =', x.val)
z: int = None
z = x
print('z =', z)
x = 3
y = x
print('y.val =', y.val)
y.val = 4
output:
x.val = 1
y.val = 2
x.val = 2
z = <__main__.Test object at 0x0000029209DFD978>
Traceback (most recent call last):
File "E:\packages\pyksp\pyksp\compiler2\simple_test2.py", line 44, in <module>
print('y.val =', y.val)
AttributeError: 'int' object has no attribute 'val'
The same with shift:
class Test:
def __init__(self, val, name):
self._val = val
self._name = name
self.named = False
def __ilshift__(self, other):
if hasattr(other, 'val'):
other = other.val
self.set(other)
return self
def __rlshift__(self, other):
return self.get()
def set(self, val):
self._val = val
def get(self):
if self.named:
return self._name
return self._val
#property
def val(self):
return self._val
x = Test(1, 'x')
y = Test(2, 'y')
print('x.val =', x.val)
print('y.val =', y.val)
x <<= y
print('x.val =', x.val)
z: int = None
z <<= x
print('z =', z)
x <<= 3
y <<= x
print('y.val =', y.val)
y.val = 4
output:
x.val = 1
y.val = 2
x.val = 2
z = 2
y.val = 3
Traceback (most recent call last):
File "E:\packages\pyksp\pyksp\compiler2\simple_test.py", line 45, in <module>
y.val = 4
AttributeError: can't set attribute
So <<= operator within getting value at a property is the much more visually clean solution and it is not attempting user to make some reflective mistakes like:
var1.val = 1
var2.val = 2
# if we have to check type of input
var1.val = var2
# but it could be accendently typed worse,
# skipping the type-check:
var1.val = var2.val
# or much more worse:
somevar = var1 + var2
var1 += var2
# sic!
var1 = var2

In the global namespace this is not possible, but you could take advantage of more advanced Python metaprogramming to prevent multiple instances of a the Protect object from being created. The Singleton pattern is good example of this.
In the case of a Singleton you would ensure that once instantiated, even if the original variable referencing the instance is reassigned, that the object would persist. Any subsequent instances would just return a reference to the same object.
Despite this pattern, you would never be able to prevent a global variable name itself from being reassigned.

As mentioned by other people, there is no way to do it directly. It can be overridden for class members though, which is good for many cases.
As Ryan Kung mentioned, the AST of a package can be instrumented so that all assignments can have a side effect if the class assigned implements specific method(s). Building on his work to handle object creation and attribute assignment cases, the modified code and a full description is available here:
https://github.com/patgolez10/assignhooks
The package can be installed as: pip3 install assignhooks
Example <testmod.py>:
class SampleClass():
name = None
def __assignpre__(self, lhs_name, rhs_name, rhs):
print('PRE: assigning %s = %s' % (lhs_name, rhs_name))
# modify rhs if needed before assignment
if rhs.name is None:
rhs.name = lhs_name
return rhs
def __assignpost__(self, lhs_name, rhs_name):
print('POST: lhs', self)
print('POST: assigning %s = %s' % (lhs_name, rhs_name))
def myfunc():
b = SampleClass()
c = b
print('b.name', b.name)
to instrument it, e.g. <test.py>
import assignhooks
assignhooks.instrument.start() # instrument from now on
import testmod
assignhooks.instrument.stop() # stop instrumenting
# ... other imports and code bellow ...
testmod.myfunc()
Will produce:
$ python3 ./test.py
POST: lhs <testmod.SampleClass object at 0x1041dcc70>
POST: assigning b = SampleClass
PRE: assigning c = b
POST: lhs <testmod.SampleClass object at 0x1041dcc70>
POST: assigning c = b
b.name b

Beginning Python 3.8, it is possible to hint that a value is read-only using typing.Final. What this means is that nothing changes at runtime, allowing anyone to change the value, but if you're using any linter that can read type-hints then it's going to warn the user if they attempt to assign it.
from typing import Final
x: Final[int] = 3
x = 5 # Cannot assign to final name "x" (mypy)
This makes for way cleaner code, but it puts full trust in the user to respect it at runtime, making no attempt to stop users from changing values.
Another common pattern is to expose functions instead of module constants, like sys.getrecursionlimit and sys.setrecursionlimit.
def get_x() -> int:
return 3
Although users can do module.get_x = my_get_x, there's an obvious attempt on the user's part to break it, which can't be fixed. In this way we can prevent people from "accidentally" changing values in our module with minimal complexity.

A ugly solution is to reassign on destructor. But it's no real overload assignment.
import copy
global a
class MyClass():
def __init__(self):
a = 1000
# ...
def __del__(self):
a = copy.copy(self)
a = MyClass()
a = 1

Related

How to implement structure data type in python [duplicate]

Is there a way to conveniently define a C-like structure in Python? I'm tired of writing stuff like:
class MyStruct():
def __init__(self, field1, field2, field3):
self.field1 = field1
self.field2 = field2
self.field3 = field3
Update: Data Classes
With the introduction of Data Classes in Python 3.7 we get very close.
The following example is similar to the NamedTuple example below, but the resulting object is mutable and it allows for default values.
from dataclasses import dataclass
#dataclass
class Point:
x: float
y: float
z: float = 0.0
p = Point(1.5, 2.5)
print(p) # Point(x=1.5, y=2.5, z=0.0)
This plays nicely with the new typing module in case you want to use more specific type annotations.
I've been waiting desperately for this! If you ask me, Data Classes and the new NamedTuple declaration, combined with the typing module are a godsend!
Improved NamedTuple declaration
Since Python 3.6 it became quite simple and beautiful (IMHO), as long as you can live with immutability.
A new way of declaring NamedTuples was introduced, which allows for type annotations as well:
from typing import NamedTuple
class User(NamedTuple):
name: str
class MyStruct(NamedTuple):
foo: str
bar: int
baz: list
qux: User
my_item = MyStruct('foo', 0, ['baz'], User('peter'))
print(my_item) # MyStruct(foo='foo', bar=0, baz=['baz'], qux=User(name='peter'))
Use a named tuple, which was added to the collections module in the standard library in Python 2.6. It's also possible to use Raymond Hettinger's named tuple recipe if you need to support Python 2.4.
It's nice for your basic example, but also covers a bunch of edge cases you might run into later as well. Your fragment above would be written as:
from collections import namedtuple
MyStruct = namedtuple("MyStruct", "field1 field2 field3")
The newly created type can be used like this:
m = MyStruct("foo", "bar", "baz")
You can also use named arguments:
m = MyStruct(field1="foo", field2="bar", field3="baz")
You can use a tuple for a lot of things where you would use a struct in C (something like x,y coordinates or RGB colors for example).
For everything else you can use dictionary, or a utility class like this one:
>>> class Bunch:
... def __init__(self, **kwds):
... self.__dict__.update(kwds)
...
>>> mystruct = Bunch(field1=value1, field2=value2)
I think the "definitive" discussion is here, in the published version of the Python Cookbook.
Perhaps you are looking for Structs without constructors:
class Sample:
name = ''
average = 0.0
values = None # list cannot be initialized here!
s1 = Sample()
s1.name = "sample 1"
s1.values = []
s1.values.append(1)
s1.values.append(2)
s1.values.append(3)
s2 = Sample()
s2.name = "sample 2"
s2.values = []
s2.values.append(4)
for v in s1.values: # prints 1,2,3 --> OK.
print v
print "***"
for v in s2.values: # prints 4 --> OK.
print v
How about a dictionary?
Something like this:
myStruct = {'field1': 'some val', 'field2': 'some val'}
Then you can use this to manipulate values:
print myStruct['field1']
myStruct['field2'] = 'some other values'
And the values don't have to be strings. They can be pretty much any other object.
dF: that's pretty cool... I didn't
know that I could access the fields in
a class using dict.
Mark: the situations that I wish I had
this are precisely when I want a tuple
but nothing as "heavy" as a
dictionary.
You can access the fields of a class using a dictionary because the fields of a class, its methods and all its properties are stored internally using dicts (at least in CPython).
...Which leads us to your second comment. Believing that Python dicts are "heavy" is an extremely non-pythonistic concept. And reading such comments kills my Python Zen. That's not good.
You see, when you declare a class you are actually creating a pretty complex wrapper around a dictionary - so, if anything, you are adding more overhead than by using a simple dictionary. An overhead which, by the way, is meaningless in any case. If you are working on performance critical applications, use C or something.
I would also like to add a solution that uses slots:
class Point:
__slots__ = ["x", "y"]
def __init__(self, x, y):
self.x = x
self.y = y
Definitely check the documentation for slots but a quick explanation of slots is that it is python's way of saying: "If you can lock these attributes and only these attributes into the class such that you commit that you will not add any new attributes once the class is instantiated (yes you can add new attributes to a class instance, see example below) then I will do away with the large memory allocation that allows for adding new attributes to a class instance and use just what I need for these slotted attributes".
Example of adding attributes to class instance (thus not using slots):
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
p1 = Point(3,5)
p1.z = 8
print(p1.z)
Output: 8
Example of trying to add attributes to class instance where slots was used:
class Point:
__slots__ = ["x", "y"]
def __init__(self, x, y):
self.x = x
self.y = y
p1 = Point(3,5)
p1.z = 8
Output: AttributeError: 'Point' object has no attribute 'z'
This can effectively works as a struct and uses less memory than a class (like a struct would, although I have not researched exactly how much). It is recommended to use slots if you will be creating a large amount of instances of the object and do not need to add attributes. A point object is a good example of this as it is likely that one may instantiate many points to describe a dataset.
You can subclass the C structure that is available in the standard library. The ctypes module provides a Structure class. The example from the docs:
>>> from ctypes import *
>>> class POINT(Structure):
... _fields_ = [("x", c_int),
... ("y", c_int)]
...
>>> point = POINT(10, 20)
>>> print point.x, point.y
10 20
>>> point = POINT(y=5)
>>> print point.x, point.y
0 5
>>> POINT(1, 2, 3)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: too many initializers
>>>
>>> class RECT(Structure):
... _fields_ = [("upperleft", POINT),
... ("lowerright", POINT)]
...
>>> rc = RECT(point)
>>> print rc.upperleft.x, rc.upperleft.y
0 5
>>> print rc.lowerright.x, rc.lowerright.y
0 0
>>>
You can also pass the init parameters to the instance variables by position
# Abstract struct class
class Struct:
def __init__ (self, *argv, **argd):
if len(argd):
# Update by dictionary
self.__dict__.update (argd)
else:
# Update by position
attrs = filter (lambda x: x[0:2] != "__", dir(self))
for n in range(len(argv)):
setattr(self, attrs[n], argv[n])
# Specific class
class Point3dStruct (Struct):
x = 0
y = 0
z = 0
pt1 = Point3dStruct()
pt1.x = 10
print pt1.x
print "-"*10
pt2 = Point3dStruct(5, 6)
print pt2.x, pt2.y
print "-"*10
pt3 = Point3dStruct (x=1, y=2, z=3)
print pt3.x, pt3.y, pt3.z
print "-"*10
Whenever I need an "instant data object that also behaves like a dictionary" (I don't think of C structs!), I think of this cute hack:
class Map(dict):
def __init__(self, **kwargs):
super(Map, self).__init__(**kwargs)
self.__dict__ = self
Now you can just say:
struct = Map(field1='foo', field2='bar', field3=42)
self.assertEquals('bar', struct.field2)
self.assertEquals(42, struct['field3'])
Perfectly handy for those times when you need a "data bag that's NOT a class", and for when namedtuples are incomprehensible...
Some the answers here are massively elaborate. The simplest option I've found is (from: http://norvig.com/python-iaq.html):
class Struct:
"A structure that can have any fields defined."
def __init__(self, **entries): self.__dict__.update(entries)
Initialising:
>>> options = Struct(answer=42, linelen=80, font='courier')
>>> options.answer
42
adding more:
>>> options.cat = "dog"
>>> options.cat
dog
edit: Sorry didn't see this example already further down.
You access C-Style struct in python in following way.
class cstruct:
var_i = 0
var_f = 0.0
var_str = ""
if you just want use object of cstruct
obj = cstruct()
obj.var_i = 50
obj.var_f = 50.00
obj.var_str = "fifty"
print "cstruct: obj i=%d f=%f s=%s" %(obj.var_i, obj.var_f, obj.var_str)
if you want to create an array of objects of cstruct
obj_array = [cstruct() for i in range(10)]
obj_array[0].var_i = 10
obj_array[0].var_f = 10.00
obj_array[0].var_str = "ten"
#go ahead and fill rest of array instaces of struct
#print all the value
for i in range(10):
print "cstruct: obj_array i=%d f=%f s=%s" %(obj_array[i].var_i, obj_array[i].var_f, obj_array[i].var_str)
Note:
instead of 'cstruct' name, please use your struct name
instead of var_i, var_f, var_str, please define your structure's member variable.
This might be a bit late but I made a solution using Python Meta-Classes (decorator version below too).
When __init__ is called during run time, it grabs each of the arguments and their value and assigns them as instance variables to your class. This way you can make a struct-like class without having to assign every value manually.
My example has no error checking so it is easier to follow.
class MyStruct(type):
def __call__(cls, *args, **kwargs):
names = cls.__init__.func_code.co_varnames[1:]
self = type.__call__(cls, *args, **kwargs)
for name, value in zip(names, args):
setattr(self , name, value)
for name, value in kwargs.iteritems():
setattr(self , name, value)
return self
Here it is in action.
>>> class MyClass(object):
__metaclass__ = MyStruct
def __init__(self, a, b, c):
pass
>>> my_instance = MyClass(1, 2, 3)
>>> my_instance.a
1
>>>
I posted it on reddit and /u/matchu posted a decorator version which is cleaner. I'd encourage you to use it unless you want to expand the metaclass version.
>>> def init_all_args(fn):
#wraps(fn)
def wrapped_init(self, *args, **kwargs):
names = fn.func_code.co_varnames[1:]
for name, value in zip(names, args):
setattr(self, name, value)
for name, value in kwargs.iteritems():
setattr(self, name, value)
return wrapped_init
>>> class Test(object):
#init_all_args
def __init__(self, a, b):
pass
>>> a = Test(1, 2)
>>> a.a
1
>>>
I wrote a decorator which you can use on any method to make it so that all of the arguments passed in, or any defaults, are assigned to the instance.
def argumentsToAttributes(method):
argumentNames = method.func_code.co_varnames[1:]
# Generate a dictionary of default values:
defaultsDict = {}
defaults = method.func_defaults if method.func_defaults else ()
for i, default in enumerate(defaults, start = len(argumentNames) - len(defaults)):
defaultsDict[argumentNames[i]] = default
def newMethod(self, *args, **kwargs):
# Use the positional arguments.
for name, value in zip(argumentNames, args):
setattr(self, name, value)
# Add the key word arguments. If anything is missing, use the default.
for name in argumentNames[len(args):]:
setattr(self, name, kwargs.get(name, defaultsDict[name]))
# Run whatever else the method needs to do.
method(self, *args, **kwargs)
return newMethod
A quick demonstration. Note that I use a positional argument a, use the default value for b, and a named argument c. I then print all 3 referencing self, to show that they've been properly assigned before the method is entered.
class A(object):
#argumentsToAttributes
def __init__(self, a, b = 'Invisible', c = 'Hello'):
print(self.a)
print(self.b)
print(self.c)
A('Why', c = 'Nothing')
Note that my decorator should work with any method, not just __init__.
I don't see this answer here, so I figure I'll add it since I'm leaning Python right now and just discovered it. The Python tutorial (Python 2 in this case) gives the following simple and effective example:
class Employee:
pass
john = Employee() # Create an empty employee record
# Fill the fields of the record
john.name = 'John Doe'
john.dept = 'computer lab'
john.salary = 1000
That is, an empty class object is created, then instantiated, and the fields are added dynamically.
The up-side to this is its really simple. The downside is it isn't particularly self-documenting (the intended members aren't listed anywhere in the class "definition"), and unset fields can cause problems when accessed. Those two problems can be solved by:
class Employee:
def __init__ (self):
self.name = None # or whatever
self.dept = None
self.salary = None
Now at a glance you can at least see what fields the program will be expecting.
Both are prone to typos, john.slarly = 1000 will succeed. Still, it works.
Here is a solution which uses a class (never instantiated) to hold data. I like that this way involves very little typing and does not require any additional packages etc.
class myStruct:
field1 = "one"
field2 = "2"
You can add more fields later, as needed:
myStruct.field3 = 3
To get the values, the fields are accessed as usual:
>>> myStruct.field1
'one'
Personally, I like this variant too. It extends #dF's answer.
class struct:
def __init__(self, *sequential, **named):
fields = dict(zip(sequential, [None]*len(sequential)), **named)
self.__dict__.update(fields)
def __repr__(self):
return str(self.__dict__)
It supports two modes of initialization (that can be blended):
# Struct with field1, field2, field3 that are initialized to None.
mystruct1 = struct("field1", "field2", "field3")
# Struct with field1, field2, field3 that are initialized according to arguments.
mystruct2 = struct(field1=1, field2=2, field3=3)
Also, it prints nicer:
print(mystruct2)
# Prints: {'field3': 3, 'field1': 1, 'field2': 2}
There is a python package exactly for this purpose. see cstruct2py
cstruct2py is a pure python library for generate python classes from C code and use them to pack and unpack data. The library can parse C headres (structs, unions, enums, and arrays declarations) and emulate them in python. The generated pythonic classes can parse and pack the data.
For example:
typedef struct {
int x;
int y;
} Point;
after generating pythonic class...
p = Point(x=0x1234, y=0x5678)
p.packed == "\x34\x12\x00\x00\x78\x56\x00\x00"
How to use
First we need to generate the pythonic structs:
import cstruct2py
parser = cstruct2py.c2py.Parser()
parser.parse_file('examples/example.h')
Now we can import all names from the C code:
parser.update_globals(globals())
We can also do that directly:
A = parser.parse_string('struct A { int x; int y;};')
Using types and defines from the C code
a = A()
a.x = 45
print a
buf = a.packed
b = A(buf)
print b
c = A('aaaa11112222', 2)
print c
print repr(c)
The output will be:
{'x':0x2d, 'y':0x0}
{'x':0x2d, 'y':0x0}
{'x':0x31316161, 'y':0x32323131}
A('aa111122', x=0x31316161, y=0x32323131)
Clone
For clone cstruct2py run:
git clone https://github.com/st0ky/cstruct2py.git --recursive
Here is a quick and dirty trick:
>>> ms = Warning()
>>> ms.foo = 123
>>> ms.bar = 'akafrit'
How does it works? It just re-use the builtin class Warning (derived from Exception) and use it as it was you own defined class.
The good points are that you do not need to import or define anything first, that "Warning" is a short name, and that it also makes clear you are doing something dirty which should not be used elsewhere than a small script of yours.
By the way, I tried to find something even simpler like ms = object() but could not (this last exemple is not working). If you have one, I am interested.
NamedTuple is comfortable. but there no one shares the performance and storage.
from typing import NamedTuple
import guppy # pip install guppy
import timeit
class User:
def __init__(self, name: str, uid: int):
self.name = name
self.uid = uid
class UserSlot:
__slots__ = ('name', 'uid')
def __init__(self, name: str, uid: int):
self.name = name
self.uid = uid
class UserTuple(NamedTuple):
# __slots__ = () # AttributeError: Cannot overwrite NamedTuple attribute __slots__
name: str
uid: int
def get_fn(obj, attr_name: str):
def get():
getattr(obj, attr_name)
return get
if 'memory test':
obj = [User('Carson', 1) for _ in range(1000000)] # Cumulative: 189138883
obj_slot = [UserSlot('Carson', 1) for _ in range(1000000)] # 77718299 <-- winner
obj_namedtuple = [UserTuple('Carson', 1) for _ in range(1000000)] # 85718297
print(guppy.hpy().heap()) # Run this function individually.
"""
Index Count % Size % Cumulative % Kind (class / dict of class)
0 1000000 24 112000000 34 112000000 34 dict of __main__.User
1 1000000 24 64000000 19 176000000 53 __main__.UserTuple
2 1000000 24 56000000 17 232000000 70 __main__.User
3 1000000 24 56000000 17 288000000 87 __main__.UserSlot
...
"""
if 'performance test':
obj = User('Carson', 1)
obj_slot = UserSlot('Carson', 1)
obj_tuple = UserTuple('Carson', 1)
time_normal = min(timeit.repeat(get_fn(obj, 'name'), repeat=20))
print(time_normal) # 0.12550550000000005
time_slot = min(timeit.repeat(get_fn(obj_slot, 'name'), repeat=20))
print(time_slot) # 0.1368690000000008
time_tuple = min(timeit.repeat(get_fn(obj_tuple, 'name'), repeat=20))
print(time_tuple) # 0.16006120000000124
print(time_tuple/time_slot) # 1.1694481584580898 # The slot is almost 17% faster than NamedTuple on Windows. (Python 3.7.7)
If your __dict__ is not using, please choose between __slots__ (higher performance and storage) and NamedTuple (clear for reading and use)
You can review this link(Usage of slots
) to get more __slots__ information.
https://stackoverflow.com/a/32448434/159695 does not work in Python3.
https://stackoverflow.com/a/35993/159695 works in Python3.
And I extends it to add default values.
class myStruct:
def __init__(self, **kwds):
self.x=0
self.__dict__.update(kwds) # Must be last to accept assigned member variable.
def __repr__(self):
args = ['%s=%s' % (k, repr(v)) for (k,v) in vars(self).items()]
return '%s(%s)' % ( self.__class__.__qualname__, ', '.join(args) )
a=myStruct()
b=myStruct(x=3,y='test')
c=myStruct(x='str')
>>> a
myStruct(x=0)
>>> b
myStruct(x=3, y='test')
>>> c
myStruct(x='str')
The following solution to a struct is inspired by the namedtuple implementation and some of the previous answers. However, unlike the namedtuple it is mutable, in it's values, but like the c-style struct immutable in the names/attributes, which a normal class or dict isn't.
_class_template = """\
class {typename}:
def __init__(self, *args, **kwargs):
fields = {field_names!r}
for x in fields:
setattr(self, x, None)
for name, value in zip(fields, args):
setattr(self, name, value)
for name, value in kwargs.items():
setattr(self, name, value)
def __repr__(self):
return str(vars(self))
def __setattr__(self, name, value):
if name not in {field_names!r}:
raise KeyError("invalid name: %s" % name)
object.__setattr__(self, name, value)
"""
def struct(typename, field_names):
class_definition = _class_template.format(
typename = typename,
field_names = field_names)
namespace = dict(__name__='struct_%s' % typename)
exec(class_definition, namespace)
result = namespace[typename]
result._source = class_definition
return result
Usage:
Person = struct('Person', ['firstname','lastname'])
generic = Person()
michael = Person('Michael')
jones = Person(lastname = 'Jones')
In [168]: michael.middlename = 'ben'
Traceback (most recent call last):
File "<ipython-input-168-b31c393c0d67>", line 1, in <module>
michael.middlename = 'ben'
File "<string>", line 19, in __setattr__
KeyError: 'invalid name: middlename'
If you don't have a 3.7 for #dataclass and need mutability, the following code might work for you. It's quite self-documenting and IDE-friendly (auto-complete), prevents writing things twice, is easily extendable and it is very simple to test that all instance variables are completely initialized:
class Params():
def __init__(self):
self.var1 : int = None
self.var2 : str = None
def are_all_defined(self):
for key, value in self.__dict__.items():
assert (value is not None), "instance variable {} is still None".format(key)
return True
params = Params()
params.var1 = 2
params.var2 = 'hello'
assert(params.are_all_defined)
The best way I found to do this was to use a custom dictionary class as explained in this post: https://stackoverflow.com/a/14620633/8484485
If iPython autocompletion support is needed, simply define the dir() function like this:
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def __dir__(self):
return self.keys()
You then define your pseudo struct like so: (this one is nested)
my_struct=AttrDict ({
'com1':AttrDict ({
'inst':[0x05],
'numbytes':2,
'canpayload':False,
'payload':None
})
})
You can then access the values inside my_struct like this:
print(my_struct.com1.inst)
=>[5]
The cleanest way I can think of is to use a class decorator that lets you declare a static class and rewrite it to act as a struct with normal, named properties:
from as_struct import struct
#struct
class Product():
name = 'unknown product'
quantity = -1
sku = '-'
# create instance
p = Product('plush toy', sku='12-345-6789')
# check content:
p.name # plush toy
p.quantity # -1
p.sku # 12-345-6789
Using the following decorator code:
def struct(struct_class):
# create a new init
def struct_init(self, *args, **kwargs):
i = 0 # we really don't need enumerate() here...
for value in args:
name = member_names[i]
default_value = member_values[i]
setattr(self, name, value if value is not None else default_value)
i += 1 # ...we just need to inc an int
for key,value in kwargs.items():
i = member_names.index(key)
default_value = member_values[i]
setattr(self, key, value if value is not None else default_value)
# extract the struct members
member_names = []
member_values = []
for attr_name in dir(struct_class):
if not attr_name.startswith('_'):
value = getattr(struct_class, attr_name)
if not callable(value):
member_names.append(attr_name)
member_values.append(value)
# rebind and return
struct_class.init = struct_init
return struct_class
Which works by taking the class, extracting the field names and their default values, then rewriting the class's __init__ function to set self attributes based on knowing which argument index maps to which property name.
I think Python structure dictionary is suitable for this requirement.
d = dict{}
d[field1] = field1
d[field2] = field2
d[field2] = field3
Extending #gz.'s (generally superior to this one) answer, for a quick and dirty namedtuple structure we can do:
import collections
x = collections.namedtuple('foobar', 'foo bar')(foo=1,bar=2)
y = collections.namedtuple('foobar', 'foo bar')(foo=3,bar=4)
print(x,y)
>foobar(foo=1, bar=2) foobar(foo=3, bar=4)

Python: Class private attributes [duplicate]

I am generally confused about the difference between a "property" and an "attribute", and can't find a great resource to concisely detail the differences.
Properties are a special kind of attribute. Basically, when Python encounters the following code:
spam = SomeObject()
print(spam.eggs)
it looks up eggs in spam, and then examines eggs to see if it has a __get__, __set__, or __delete__ method — if it does, it's a property. If it is a property, instead of just returning the eggs object (as it would for any other attribute) it will call the __get__ method (since we were doing lookup) and return whatever that method returns.
More information about Python's data model and descriptors.
With a property you have complete control on its getter, setter and deleter methods, which you don't have (if not using caveats) with an attribute.
class A(object):
_x = 0
'''A._x is an attribute'''
#property
def x(self):
'''
A.x is a property
This is the getter method
'''
return self._x
#x.setter
def x(self, value):
"""
This is the setter method
where I can check it's not assigned a value < 0
"""
if value < 0:
raise ValueError("Must be >= 0")
self._x = value
>>> a = A()
>>> a._x = -1
>>> a.x = -1
Traceback (most recent call last):
File "ex.py", line 15, in <module>
a.x = -1
File "ex.py", line 9, in x
raise ValueError("Must be >= 0")
ValueError: Must be >= 0
In general speaking terms a property and an attribute are the same thing. However, there is a property decorator in Python which provides getter/setter access to an attribute (or other data).
class MyObject(object):
# This is a normal attribute
foo = 1
#property
def bar(self):
return self.foo
#bar.setter
def bar(self, value):
self.foo = value
obj = MyObject()
assert obj.foo == 1
assert obj.bar == obj.foo
obj.bar = 2
assert obj.foo == 2
assert obj.bar == obj.foo
The property allows you to get and set values like you would normal attributes, but underneath there is a method being called translating it into a getter and setter for you. It's really just a convenience to cut down on the boilerplate of calling getters and setters.
Lets say for example, you had a class that held some x and y coordinates for something you needed. To set them you might want to do something like:
myObj.x = 5
myObj.y = 10
That is much easier to look at and think about than writing:
myObj.setX(5)
myObj.setY(10)
The problem is, what if one day your class changes such that you need to offset your x and y by some value? Now you would need to go in and change your class definition and all of the code that calls it, which could be really time consuming and error prone. The property allows you to use the former syntax while giving you the flexibility of change of the latter.
In Python, you can define getters, setters, and delete methods with the property function. If you just want the read property, there is also a #property decorator you can add above your method.
http://docs.python.org/library/functions.html#property
I learnt 2 differences from site of Bernd Klein, in summary:
1. A property is a more convenient way to achieve data encapsulation
For example, let's say you have a public attribute length. Later on, your project requires you to encapsulate it, i.e. to change it to private and provide a getter and setter => you have to change the the code you wrote before:
# Old code
obj1.length = obj1.length + obj2.length
# New code (using private attributes and getter and setter)
obj1.set_length(obj1.get_length() + obj2.get_length()) # => this is ugly
If you use #property and #length.setter => you don't need to change that old code.
2. A property can encapsulate multiple attributes
class Person:
def __init__(self, name, physic_health, mental_health):
self.name = name
self.__physic_health = physic_health
self.__mental_health = mental_health
#property
def condition(self):
health = self.__physic_health + self.__mental_health
if(health < 5.0):
return "I feel bad!"
elif health < 8.0:
return "I am ok!"
else:
return "Great!"
In this example, __physic_health and __mental_health are private and cannot be accessed directly from outside.
There is also one not obvious difference that i use to cache or refresh data , often we have a function connected to class attribute. For instance i need to read file once and keep content assigned to the attribute so the value is cached:
class Misc():
def __init__(self):
self.test = self.test_func()
def test_func(self):
print 'func running'
return 'func value'
cl = Misc()
print cl.test
print cl.test
Output:
func running
func value
func value
We accessed the attribute twice but our function was fired only once. Changing the above example to use property will cause attribute's value refresh each time you access it:
class Misc():
#property
def test(self):
print 'func running'
return 'func value'
cl = Misc()
print cl.test
print cl.test
Output:
func running
func value
func running
func value
I like to think that, if you want to set a restriction for an attribute, use a property.
Although all attributes are public, generally programmers differentiate public and private attributes with an underscore(_). Consider the following class,
class A:
def __init__(self):
self.b = 3 # To show public
self._c = 4 # To show private
Here, b attribute is intended to be accessed from outside class A. But, readers of this class might wonder, can b attribute be set from outside class A?
If we intend to not set b from outside, we can show this intention with #property.
class A:
def __init__(self):
self._c = 4 # To show private
#property
def b(self):
return 3
Now, b can't be set.
a = A()
print(a.b) # prints 3
a.b = 7 # Raises AttributeError
Or, if you wish to set only certain values,
class A:
#property
def b(self):
return self._b
#b.setter
def b(self, val):
if val < 0:
raise ValueError("b can't be negative")
self._b = val
a = A()
a.b = 6 # OK
a.b = -5 # Raises ValueError

What's the difference between a Python "property" and "attribute"?

I am generally confused about the difference between a "property" and an "attribute", and can't find a great resource to concisely detail the differences.
Properties are a special kind of attribute. Basically, when Python encounters the following code:
spam = SomeObject()
print(spam.eggs)
it looks up eggs in spam, and then examines eggs to see if it has a __get__, __set__, or __delete__ method — if it does, it's a property. If it is a property, instead of just returning the eggs object (as it would for any other attribute) it will call the __get__ method (since we were doing lookup) and return whatever that method returns.
More information about Python's data model and descriptors.
With a property you have complete control on its getter, setter and deleter methods, which you don't have (if not using caveats) with an attribute.
class A(object):
_x = 0
'''A._x is an attribute'''
#property
def x(self):
'''
A.x is a property
This is the getter method
'''
return self._x
#x.setter
def x(self, value):
"""
This is the setter method
where I can check it's not assigned a value < 0
"""
if value < 0:
raise ValueError("Must be >= 0")
self._x = value
>>> a = A()
>>> a._x = -1
>>> a.x = -1
Traceback (most recent call last):
File "ex.py", line 15, in <module>
a.x = -1
File "ex.py", line 9, in x
raise ValueError("Must be >= 0")
ValueError: Must be >= 0
In general speaking terms a property and an attribute are the same thing. However, there is a property decorator in Python which provides getter/setter access to an attribute (or other data).
class MyObject(object):
# This is a normal attribute
foo = 1
#property
def bar(self):
return self.foo
#bar.setter
def bar(self, value):
self.foo = value
obj = MyObject()
assert obj.foo == 1
assert obj.bar == obj.foo
obj.bar = 2
assert obj.foo == 2
assert obj.bar == obj.foo
The property allows you to get and set values like you would normal attributes, but underneath there is a method being called translating it into a getter and setter for you. It's really just a convenience to cut down on the boilerplate of calling getters and setters.
Lets say for example, you had a class that held some x and y coordinates for something you needed. To set them you might want to do something like:
myObj.x = 5
myObj.y = 10
That is much easier to look at and think about than writing:
myObj.setX(5)
myObj.setY(10)
The problem is, what if one day your class changes such that you need to offset your x and y by some value? Now you would need to go in and change your class definition and all of the code that calls it, which could be really time consuming and error prone. The property allows you to use the former syntax while giving you the flexibility of change of the latter.
In Python, you can define getters, setters, and delete methods with the property function. If you just want the read property, there is also a #property decorator you can add above your method.
http://docs.python.org/library/functions.html#property
I learnt 2 differences from site of Bernd Klein, in summary:
1. A property is a more convenient way to achieve data encapsulation
For example, let's say you have a public attribute length. Later on, your project requires you to encapsulate it, i.e. to change it to private and provide a getter and setter => you have to change the the code you wrote before:
# Old code
obj1.length = obj1.length + obj2.length
# New code (using private attributes and getter and setter)
obj1.set_length(obj1.get_length() + obj2.get_length()) # => this is ugly
If you use #property and #length.setter => you don't need to change that old code.
2. A property can encapsulate multiple attributes
class Person:
def __init__(self, name, physic_health, mental_health):
self.name = name
self.__physic_health = physic_health
self.__mental_health = mental_health
#property
def condition(self):
health = self.__physic_health + self.__mental_health
if(health < 5.0):
return "I feel bad!"
elif health < 8.0:
return "I am ok!"
else:
return "Great!"
In this example, __physic_health and __mental_health are private and cannot be accessed directly from outside.
There is also one not obvious difference that i use to cache or refresh data , often we have a function connected to class attribute. For instance i need to read file once and keep content assigned to the attribute so the value is cached:
class Misc():
def __init__(self):
self.test = self.test_func()
def test_func(self):
print 'func running'
return 'func value'
cl = Misc()
print cl.test
print cl.test
Output:
func running
func value
func value
We accessed the attribute twice but our function was fired only once. Changing the above example to use property will cause attribute's value refresh each time you access it:
class Misc():
#property
def test(self):
print 'func running'
return 'func value'
cl = Misc()
print cl.test
print cl.test
Output:
func running
func value
func running
func value
I like to think that, if you want to set a restriction for an attribute, use a property.
Although all attributes are public, generally programmers differentiate public and private attributes with an underscore(_). Consider the following class,
class A:
def __init__(self):
self.b = 3 # To show public
self._c = 4 # To show private
Here, b attribute is intended to be accessed from outside class A. But, readers of this class might wonder, can b attribute be set from outside class A?
If we intend to not set b from outside, we can show this intention with #property.
class A:
def __init__(self):
self._c = 4 # To show private
#property
def b(self):
return 3
Now, b can't be set.
a = A()
print(a.b) # prints 3
a.b = 7 # Raises AttributeError
Or, if you wish to set only certain values,
class A:
#property
def b(self):
return self._b
#b.setter
def b(self, val):
if val < 0:
raise ValueError("b can't be negative")
self._b = val
a = A()
a.b = 6 # OK
a.b = -5 # Raises ValueError

Getting an instance name inside class __init__() [duplicate]

This question already has answers here:
Getting the name of a variable as a string
(32 answers)
Closed 3 years ago.
While building a new class object in python, I want to be able to create a default value based on the instance name of the class without passing in an extra argument. How can I accomplish this? Here's the basic pseudo-code I'm trying for:
class SomeObject():
defined_name = u""
def __init__(self, def_name=None):
if def_name == None:
def_name = u"%s" % (<INSTANCE NAME>)
self.defined_name = def_name
ThisObject = SomeObject()
print ThisObject.defined_name # Should print "ThisObject"
Well, there is almost a way to do it:
#!/usr/bin/env python
import traceback
class SomeObject():
def __init__(self, def_name=None):
if def_name == None:
(filename,line_number,function_name,text)=traceback.extract_stack()[-2]
def_name = text[:text.find('=')].strip()
self.defined_name = def_name
ThisObject = SomeObject()
print ThisObject.defined_name
# ThisObject
The traceback module allows you to peek at the code used to call SomeObject().
With a little string wrangling, text[:text.find('=')].strip() you can
guess what the def_name should be.
However, this hack is brittle. For example, this doesn't work so well:
ThisObject,ThatObject = SomeObject(),SomeObject()
print ThisObject.defined_name
# ThisObject,ThatObject
print ThatObject.defined_name
# ThisObject,ThatObject
So if you were to use this hack, you have to bear in mind that you must call SomeObject()
using simple python statement:
ThisObject = SomeObject()
By the way, as a further example of using traceback, if you define
def pv(var):
# stack is a list of 4-tuples: (filename, line number, function name, text)
# see http://docs.python.org/library/traceback.html#module-traceback
#
(filename,line_number,function_name,text)=traceback.extract_stack()[-2]
# ('x_traceback.py', 18, 'f', 'print_var(y)')
print('%s: %s'%(text[text.find('(')+1:-1],var))
then you can call
x=3.14
pv(x)
# x: 3.14
to print both the variable name and its value.
Instances don't have names. By the time the global name ThisObject gets bound to the instance created by evaluating the SomeObject constructor, the constructor has finished running.
If you want an object to have a name, just pass the name along in the constructor.
def __init__(self, name):
self.name = name
You can create a method inside your class that check all variables in the current frame and use hash() to look for the self variable.
The solution proposed here will return all the variables pointing to the instance object.
In the class below, isinstance() is used to avoid problems when applying hash(), since some objects like a numpy.array or a list, for example, are unhashable.
import inspect
class A(object):
def get_my_name(self):
ans = []
frame = inspect.currentframe().f_back
tmp = dict(frame.f_globals.items() + frame.f_locals.items())
for k, var in tmp.items():
if isinstance(var, self.__class__):
if hash(self) == hash(var):
ans.append(k)
return ans
The following test has been done:
def test():
a = A()
b = a
c = b
print c.get_my_name()
The result is:
test()
#['a', 'c', 'b']
This cannot work, just imagine this: a = b = TheMagicObjet(). Names have no effect on Values, they just point to them.
One horrible, horrible way to accomplish this is to reverse the responsibilities:
class SomeObject():
def __init__(self, def_name):
self.defined_name = def_name
globals()[def_name] = self
SomeObject("ThisObject")
print ThisObject.defined_name
If you wanted to support something other than global scope, you'd have to do something even more awful.
In Python, all data is stored in objects. Additionally, a name can be bound with an object, after which that name can be used to look up that object.
It makes no difference to the object what names, if any, it might be bound to. It might be bound to dozens of different names, or none. Also, Python does not have any "back links" that point from an object to a name.
Consider this example:
foo = 1
bar = foo
baz = foo
Now, suppose you have the integer object with value 1, and you want to work backwards and find its name. What would you print? Three different names have that object bound to them, and all are equally valid.
print(bar is foo) # prints True
print(baz is foo) # prints True
In Python, a name is a way to access an object, so there is no way to work with names directly. You could search through various name spaces until you find a name that is bound with the object of interest, but I don't recommend this.
How do I get the string representation of a variable in python?
There is a famous presentation called "Code Like a Pythonista" that summarizes this situation as "Other languages have 'variables'" and "Python has 'names'"
http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html#other-languages-have-variables
If you want an unique instance name for a class, try __repr__() or id(self)
class Some:
def __init__(self):
print(self.__repr__()) # = hex(id(self))
print(id(self))
It will print the memory address of the instance, which is unique.
Inspired by the answers of unutbu and Saullo Castro, I have created a more sophisticated class that can even be subclassed. It solves what was asked for in the question.
"create a default value based on the instance name of the class
without passing in an extra argument."
Here's what it does, when an instance of this class or a subclass is created:
Go up in the frame stack until the first frame which does not belong to a method of the current instance.
Inspect this frame to get the attributes self.creation_(name/file/module/function/line/text).
Perform an an additional check whether an object with name self.creation_name was actually defined in the frame's locals() namespace to make 100% sure the found creation_name is correct or raise an error otherwise.
The Code:
import traceback, threading, time
class InstanceCreationError(Exception):
pass
class RememberInstanceCreationInfo:
def __init__(self):
for frame, line in traceback.walk_stack(None):
varnames = frame.f_code.co_varnames
if varnames is ():
break
if frame.f_locals[varnames[0]] not in (self, self.__class__):
break
# if the frame is inside a method of this instance,
# the first argument usually contains either the instance or
# its class
# we want to find the first frame, where this is not the case
else:
raise InstanceCreationError("No suitable outer frame found.")
self._outer_frame = frame
self.creation_module = frame.f_globals["__name__"]
self.creation_file, self.creation_line, self.creation_function, \
self.creation_text = \
traceback.extract_stack(frame, 1)[0]
self.creation_name = self.creation_text.split("=")[0].strip()
super().__init__()
threading.Thread(target=self._check_existence_after_creation).start()
def _check_existence_after_creation(self):
while self._outer_frame.f_lineno == self.creation_line:
time.sleep(0.01)
# this is executed as soon as the line number changes
# now we can be sure the instance was actually created
error = InstanceCreationError(
"\nCreation name not found in creation frame.\ncreation_file: "
"%s \ncreation_line: %s \ncreation_text: %s\ncreation_name ("
"might be wrong): %s" % (
self.creation_file, self.creation_line, self.creation_text,
self.creation_name))
nameparts = self.creation_name.split(".")
try:
var = self._outer_frame.f_locals[nameparts[0]]
except KeyError:
raise error
finally:
del self._outer_frame
# make sure we have no permament inter frame reference
# which could hinder garbage collection
try:
for name in nameparts[1:]: var = getattr(var, name)
except AttributeError:
raise error
if var is not self: raise error
def __repr__(self):
return super().__repr__()[
:-1] + " with creation_name '%s'>" % self.creation_name
A simple example:
class MySubclass(RememberInstanceCreationInfo):
def __init__(self):
super().__init__()
def print_creation_info(self):
print(self.creation_name, self.creation_module, self.creation_function,
self.creation_line, self.creation_text, sep=", ")
instance = MySubclass()
instance.print_creation_info()
#out: instance, __main__, <module>, 68, instance = MySubclass()
If the creation name cannot be determined properly an error is raised:
variable, another_instance = 2, MySubclass()
# InstanceCreationError:
# Creation name not found in creation frame.
# creation_file: /.../myfile.py
# creation_line: 71
# creation_text: variable, another_instance = 2, MySubclass()
# creation_name (might be wrong): variable, another_instance
I think that names matters if they are the pointers to any object..
no matters if:
foo = 1
bar = foo
I know that foo points to 1 and bar points to the same value 1 into the same memory space.
but supose that I want to create a class with a function that adds a object to it.
Class Bag(object):
def __init__(self):
some code here...
def addItem(self,item):
self.__dict__[somewaytogetItemName] = item
So, when I instantiate the class bag like below:
newObj1 = Bag()
newObj2 = Bag()
newObj1.addItem(newObj2)I can do this to get an attribute of newObj1:
newObj1.newObj2
The best way is really to pass the name to the constructor as in the chosen answer. However, if you REALLY want to avoid asking the user to pass the name to the constructor, you can do the following hack:
If you are creating the instance with 'ThisObject = SomeObject()' from the command line, you can get the object name from the command string in command history:
import readline
import re
class SomeObject():
def __init__(self):
cmd = readline.get_history_item(readline.get_current_history_length())
self.name = re.split('=| ',cmd)[0]
If you are creating the instance using 'exec' command, you can handle this with:
if cmd[0:4] == 'exec': self.name = re.split('\'|=| ',cmd)[1] # if command performed using 'exec'
else: self.name = re.split('=| ',cmd)[0]

C-like structures in Python

Is there a way to conveniently define a C-like structure in Python? I'm tired of writing stuff like:
class MyStruct():
def __init__(self, field1, field2, field3):
self.field1 = field1
self.field2 = field2
self.field3 = field3
Update: Data Classes
With the introduction of Data Classes in Python 3.7 we get very close.
The following example is similar to the NamedTuple example below, but the resulting object is mutable and it allows for default values.
from dataclasses import dataclass
#dataclass
class Point:
x: float
y: float
z: float = 0.0
p = Point(1.5, 2.5)
print(p) # Point(x=1.5, y=2.5, z=0.0)
This plays nicely with the new typing module in case you want to use more specific type annotations.
I've been waiting desperately for this! If you ask me, Data Classes and the new NamedTuple declaration, combined with the typing module are a godsend!
Improved NamedTuple declaration
Since Python 3.6 it became quite simple and beautiful (IMHO), as long as you can live with immutability.
A new way of declaring NamedTuples was introduced, which allows for type annotations as well:
from typing import NamedTuple
class User(NamedTuple):
name: str
class MyStruct(NamedTuple):
foo: str
bar: int
baz: list
qux: User
my_item = MyStruct('foo', 0, ['baz'], User('peter'))
print(my_item) # MyStruct(foo='foo', bar=0, baz=['baz'], qux=User(name='peter'))
Use a named tuple, which was added to the collections module in the standard library in Python 2.6. It's also possible to use Raymond Hettinger's named tuple recipe if you need to support Python 2.4.
It's nice for your basic example, but also covers a bunch of edge cases you might run into later as well. Your fragment above would be written as:
from collections import namedtuple
MyStruct = namedtuple("MyStruct", "field1 field2 field3")
The newly created type can be used like this:
m = MyStruct("foo", "bar", "baz")
You can also use named arguments:
m = MyStruct(field1="foo", field2="bar", field3="baz")
You can use a tuple for a lot of things where you would use a struct in C (something like x,y coordinates or RGB colors for example).
For everything else you can use dictionary, or a utility class like this one:
>>> class Bunch:
... def __init__(self, **kwds):
... self.__dict__.update(kwds)
...
>>> mystruct = Bunch(field1=value1, field2=value2)
I think the "definitive" discussion is here, in the published version of the Python Cookbook.
Perhaps you are looking for Structs without constructors:
class Sample:
name = ''
average = 0.0
values = None # list cannot be initialized here!
s1 = Sample()
s1.name = "sample 1"
s1.values = []
s1.values.append(1)
s1.values.append(2)
s1.values.append(3)
s2 = Sample()
s2.name = "sample 2"
s2.values = []
s2.values.append(4)
for v in s1.values: # prints 1,2,3 --> OK.
print v
print "***"
for v in s2.values: # prints 4 --> OK.
print v
How about a dictionary?
Something like this:
myStruct = {'field1': 'some val', 'field2': 'some val'}
Then you can use this to manipulate values:
print myStruct['field1']
myStruct['field2'] = 'some other values'
And the values don't have to be strings. They can be pretty much any other object.
dF: that's pretty cool... I didn't
know that I could access the fields in
a class using dict.
Mark: the situations that I wish I had
this are precisely when I want a tuple
but nothing as "heavy" as a
dictionary.
You can access the fields of a class using a dictionary because the fields of a class, its methods and all its properties are stored internally using dicts (at least in CPython).
...Which leads us to your second comment. Believing that Python dicts are "heavy" is an extremely non-pythonistic concept. And reading such comments kills my Python Zen. That's not good.
You see, when you declare a class you are actually creating a pretty complex wrapper around a dictionary - so, if anything, you are adding more overhead than by using a simple dictionary. An overhead which, by the way, is meaningless in any case. If you are working on performance critical applications, use C or something.
I would also like to add a solution that uses slots:
class Point:
__slots__ = ["x", "y"]
def __init__(self, x, y):
self.x = x
self.y = y
Definitely check the documentation for slots but a quick explanation of slots is that it is python's way of saying: "If you can lock these attributes and only these attributes into the class such that you commit that you will not add any new attributes once the class is instantiated (yes you can add new attributes to a class instance, see example below) then I will do away with the large memory allocation that allows for adding new attributes to a class instance and use just what I need for these slotted attributes".
Example of adding attributes to class instance (thus not using slots):
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
p1 = Point(3,5)
p1.z = 8
print(p1.z)
Output: 8
Example of trying to add attributes to class instance where slots was used:
class Point:
__slots__ = ["x", "y"]
def __init__(self, x, y):
self.x = x
self.y = y
p1 = Point(3,5)
p1.z = 8
Output: AttributeError: 'Point' object has no attribute 'z'
This can effectively works as a struct and uses less memory than a class (like a struct would, although I have not researched exactly how much). It is recommended to use slots if you will be creating a large amount of instances of the object and do not need to add attributes. A point object is a good example of this as it is likely that one may instantiate many points to describe a dataset.
You can subclass the C structure that is available in the standard library. The ctypes module provides a Structure class. The example from the docs:
>>> from ctypes import *
>>> class POINT(Structure):
... _fields_ = [("x", c_int),
... ("y", c_int)]
...
>>> point = POINT(10, 20)
>>> print point.x, point.y
10 20
>>> point = POINT(y=5)
>>> print point.x, point.y
0 5
>>> POINT(1, 2, 3)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: too many initializers
>>>
>>> class RECT(Structure):
... _fields_ = [("upperleft", POINT),
... ("lowerright", POINT)]
...
>>> rc = RECT(point)
>>> print rc.upperleft.x, rc.upperleft.y
0 5
>>> print rc.lowerright.x, rc.lowerright.y
0 0
>>>
You can also pass the init parameters to the instance variables by position
# Abstract struct class
class Struct:
def __init__ (self, *argv, **argd):
if len(argd):
# Update by dictionary
self.__dict__.update (argd)
else:
# Update by position
attrs = filter (lambda x: x[0:2] != "__", dir(self))
for n in range(len(argv)):
setattr(self, attrs[n], argv[n])
# Specific class
class Point3dStruct (Struct):
x = 0
y = 0
z = 0
pt1 = Point3dStruct()
pt1.x = 10
print pt1.x
print "-"*10
pt2 = Point3dStruct(5, 6)
print pt2.x, pt2.y
print "-"*10
pt3 = Point3dStruct (x=1, y=2, z=3)
print pt3.x, pt3.y, pt3.z
print "-"*10
Whenever I need an "instant data object that also behaves like a dictionary" (I don't think of C structs!), I think of this cute hack:
class Map(dict):
def __init__(self, **kwargs):
super(Map, self).__init__(**kwargs)
self.__dict__ = self
Now you can just say:
struct = Map(field1='foo', field2='bar', field3=42)
self.assertEquals('bar', struct.field2)
self.assertEquals(42, struct['field3'])
Perfectly handy for those times when you need a "data bag that's NOT a class", and for when namedtuples are incomprehensible...
Some the answers here are massively elaborate. The simplest option I've found is (from: http://norvig.com/python-iaq.html):
class Struct:
"A structure that can have any fields defined."
def __init__(self, **entries): self.__dict__.update(entries)
Initialising:
>>> options = Struct(answer=42, linelen=80, font='courier')
>>> options.answer
42
adding more:
>>> options.cat = "dog"
>>> options.cat
dog
edit: Sorry didn't see this example already further down.
You access C-Style struct in python in following way.
class cstruct:
var_i = 0
var_f = 0.0
var_str = ""
if you just want use object of cstruct
obj = cstruct()
obj.var_i = 50
obj.var_f = 50.00
obj.var_str = "fifty"
print "cstruct: obj i=%d f=%f s=%s" %(obj.var_i, obj.var_f, obj.var_str)
if you want to create an array of objects of cstruct
obj_array = [cstruct() for i in range(10)]
obj_array[0].var_i = 10
obj_array[0].var_f = 10.00
obj_array[0].var_str = "ten"
#go ahead and fill rest of array instaces of struct
#print all the value
for i in range(10):
print "cstruct: obj_array i=%d f=%f s=%s" %(obj_array[i].var_i, obj_array[i].var_f, obj_array[i].var_str)
Note:
instead of 'cstruct' name, please use your struct name
instead of var_i, var_f, var_str, please define your structure's member variable.
This might be a bit late but I made a solution using Python Meta-Classes (decorator version below too).
When __init__ is called during run time, it grabs each of the arguments and their value and assigns them as instance variables to your class. This way you can make a struct-like class without having to assign every value manually.
My example has no error checking so it is easier to follow.
class MyStruct(type):
def __call__(cls, *args, **kwargs):
names = cls.__init__.func_code.co_varnames[1:]
self = type.__call__(cls, *args, **kwargs)
for name, value in zip(names, args):
setattr(self , name, value)
for name, value in kwargs.iteritems():
setattr(self , name, value)
return self
Here it is in action.
>>> class MyClass(object):
__metaclass__ = MyStruct
def __init__(self, a, b, c):
pass
>>> my_instance = MyClass(1, 2, 3)
>>> my_instance.a
1
>>>
I posted it on reddit and /u/matchu posted a decorator version which is cleaner. I'd encourage you to use it unless you want to expand the metaclass version.
>>> def init_all_args(fn):
#wraps(fn)
def wrapped_init(self, *args, **kwargs):
names = fn.func_code.co_varnames[1:]
for name, value in zip(names, args):
setattr(self, name, value)
for name, value in kwargs.iteritems():
setattr(self, name, value)
return wrapped_init
>>> class Test(object):
#init_all_args
def __init__(self, a, b):
pass
>>> a = Test(1, 2)
>>> a.a
1
>>>
I wrote a decorator which you can use on any method to make it so that all of the arguments passed in, or any defaults, are assigned to the instance.
def argumentsToAttributes(method):
argumentNames = method.func_code.co_varnames[1:]
# Generate a dictionary of default values:
defaultsDict = {}
defaults = method.func_defaults if method.func_defaults else ()
for i, default in enumerate(defaults, start = len(argumentNames) - len(defaults)):
defaultsDict[argumentNames[i]] = default
def newMethod(self, *args, **kwargs):
# Use the positional arguments.
for name, value in zip(argumentNames, args):
setattr(self, name, value)
# Add the key word arguments. If anything is missing, use the default.
for name in argumentNames[len(args):]:
setattr(self, name, kwargs.get(name, defaultsDict[name]))
# Run whatever else the method needs to do.
method(self, *args, **kwargs)
return newMethod
A quick demonstration. Note that I use a positional argument a, use the default value for b, and a named argument c. I then print all 3 referencing self, to show that they've been properly assigned before the method is entered.
class A(object):
#argumentsToAttributes
def __init__(self, a, b = 'Invisible', c = 'Hello'):
print(self.a)
print(self.b)
print(self.c)
A('Why', c = 'Nothing')
Note that my decorator should work with any method, not just __init__.
I don't see this answer here, so I figure I'll add it since I'm leaning Python right now and just discovered it. The Python tutorial (Python 2 in this case) gives the following simple and effective example:
class Employee:
pass
john = Employee() # Create an empty employee record
# Fill the fields of the record
john.name = 'John Doe'
john.dept = 'computer lab'
john.salary = 1000
That is, an empty class object is created, then instantiated, and the fields are added dynamically.
The up-side to this is its really simple. The downside is it isn't particularly self-documenting (the intended members aren't listed anywhere in the class "definition"), and unset fields can cause problems when accessed. Those two problems can be solved by:
class Employee:
def __init__ (self):
self.name = None # or whatever
self.dept = None
self.salary = None
Now at a glance you can at least see what fields the program will be expecting.
Both are prone to typos, john.slarly = 1000 will succeed. Still, it works.
Here is a solution which uses a class (never instantiated) to hold data. I like that this way involves very little typing and does not require any additional packages etc.
class myStruct:
field1 = "one"
field2 = "2"
You can add more fields later, as needed:
myStruct.field3 = 3
To get the values, the fields are accessed as usual:
>>> myStruct.field1
'one'
Personally, I like this variant too. It extends #dF's answer.
class struct:
def __init__(self, *sequential, **named):
fields = dict(zip(sequential, [None]*len(sequential)), **named)
self.__dict__.update(fields)
def __repr__(self):
return str(self.__dict__)
It supports two modes of initialization (that can be blended):
# Struct with field1, field2, field3 that are initialized to None.
mystruct1 = struct("field1", "field2", "field3")
# Struct with field1, field2, field3 that are initialized according to arguments.
mystruct2 = struct(field1=1, field2=2, field3=3)
Also, it prints nicer:
print(mystruct2)
# Prints: {'field3': 3, 'field1': 1, 'field2': 2}
There is a python package exactly for this purpose. see cstruct2py
cstruct2py is a pure python library for generate python classes from C code and use them to pack and unpack data. The library can parse C headres (structs, unions, enums, and arrays declarations) and emulate them in python. The generated pythonic classes can parse and pack the data.
For example:
typedef struct {
int x;
int y;
} Point;
after generating pythonic class...
p = Point(x=0x1234, y=0x5678)
p.packed == "\x34\x12\x00\x00\x78\x56\x00\x00"
How to use
First we need to generate the pythonic structs:
import cstruct2py
parser = cstruct2py.c2py.Parser()
parser.parse_file('examples/example.h')
Now we can import all names from the C code:
parser.update_globals(globals())
We can also do that directly:
A = parser.parse_string('struct A { int x; int y;};')
Using types and defines from the C code
a = A()
a.x = 45
print a
buf = a.packed
b = A(buf)
print b
c = A('aaaa11112222', 2)
print c
print repr(c)
The output will be:
{'x':0x2d, 'y':0x0}
{'x':0x2d, 'y':0x0}
{'x':0x31316161, 'y':0x32323131}
A('aa111122', x=0x31316161, y=0x32323131)
Clone
For clone cstruct2py run:
git clone https://github.com/st0ky/cstruct2py.git --recursive
Here is a quick and dirty trick:
>>> ms = Warning()
>>> ms.foo = 123
>>> ms.bar = 'akafrit'
How does it works? It just re-use the builtin class Warning (derived from Exception) and use it as it was you own defined class.
The good points are that you do not need to import or define anything first, that "Warning" is a short name, and that it also makes clear you are doing something dirty which should not be used elsewhere than a small script of yours.
By the way, I tried to find something even simpler like ms = object() but could not (this last exemple is not working). If you have one, I am interested.
NamedTuple is comfortable. but there no one shares the performance and storage.
from typing import NamedTuple
import guppy # pip install guppy
import timeit
class User:
def __init__(self, name: str, uid: int):
self.name = name
self.uid = uid
class UserSlot:
__slots__ = ('name', 'uid')
def __init__(self, name: str, uid: int):
self.name = name
self.uid = uid
class UserTuple(NamedTuple):
# __slots__ = () # AttributeError: Cannot overwrite NamedTuple attribute __slots__
name: str
uid: int
def get_fn(obj, attr_name: str):
def get():
getattr(obj, attr_name)
return get
if 'memory test':
obj = [User('Carson', 1) for _ in range(1000000)] # Cumulative: 189138883
obj_slot = [UserSlot('Carson', 1) for _ in range(1000000)] # 77718299 <-- winner
obj_namedtuple = [UserTuple('Carson', 1) for _ in range(1000000)] # 85718297
print(guppy.hpy().heap()) # Run this function individually.
"""
Index Count % Size % Cumulative % Kind (class / dict of class)
0 1000000 24 112000000 34 112000000 34 dict of __main__.User
1 1000000 24 64000000 19 176000000 53 __main__.UserTuple
2 1000000 24 56000000 17 232000000 70 __main__.User
3 1000000 24 56000000 17 288000000 87 __main__.UserSlot
...
"""
if 'performance test':
obj = User('Carson', 1)
obj_slot = UserSlot('Carson', 1)
obj_tuple = UserTuple('Carson', 1)
time_normal = min(timeit.repeat(get_fn(obj, 'name'), repeat=20))
print(time_normal) # 0.12550550000000005
time_slot = min(timeit.repeat(get_fn(obj_slot, 'name'), repeat=20))
print(time_slot) # 0.1368690000000008
time_tuple = min(timeit.repeat(get_fn(obj_tuple, 'name'), repeat=20))
print(time_tuple) # 0.16006120000000124
print(time_tuple/time_slot) # 1.1694481584580898 # The slot is almost 17% faster than NamedTuple on Windows. (Python 3.7.7)
If your __dict__ is not using, please choose between __slots__ (higher performance and storage) and NamedTuple (clear for reading and use)
You can review this link(Usage of slots
) to get more __slots__ information.
https://stackoverflow.com/a/32448434/159695 does not work in Python3.
https://stackoverflow.com/a/35993/159695 works in Python3.
And I extends it to add default values.
class myStruct:
def __init__(self, **kwds):
self.x=0
self.__dict__.update(kwds) # Must be last to accept assigned member variable.
def __repr__(self):
args = ['%s=%s' % (k, repr(v)) for (k,v) in vars(self).items()]
return '%s(%s)' % ( self.__class__.__qualname__, ', '.join(args) )
a=myStruct()
b=myStruct(x=3,y='test')
c=myStruct(x='str')
>>> a
myStruct(x=0)
>>> b
myStruct(x=3, y='test')
>>> c
myStruct(x='str')
The following solution to a struct is inspired by the namedtuple implementation and some of the previous answers. However, unlike the namedtuple it is mutable, in it's values, but like the c-style struct immutable in the names/attributes, which a normal class or dict isn't.
_class_template = """\
class {typename}:
def __init__(self, *args, **kwargs):
fields = {field_names!r}
for x in fields:
setattr(self, x, None)
for name, value in zip(fields, args):
setattr(self, name, value)
for name, value in kwargs.items():
setattr(self, name, value)
def __repr__(self):
return str(vars(self))
def __setattr__(self, name, value):
if name not in {field_names!r}:
raise KeyError("invalid name: %s" % name)
object.__setattr__(self, name, value)
"""
def struct(typename, field_names):
class_definition = _class_template.format(
typename = typename,
field_names = field_names)
namespace = dict(__name__='struct_%s' % typename)
exec(class_definition, namespace)
result = namespace[typename]
result._source = class_definition
return result
Usage:
Person = struct('Person', ['firstname','lastname'])
generic = Person()
michael = Person('Michael')
jones = Person(lastname = 'Jones')
In [168]: michael.middlename = 'ben'
Traceback (most recent call last):
File "<ipython-input-168-b31c393c0d67>", line 1, in <module>
michael.middlename = 'ben'
File "<string>", line 19, in __setattr__
KeyError: 'invalid name: middlename'
If you don't have a 3.7 for #dataclass and need mutability, the following code might work for you. It's quite self-documenting and IDE-friendly (auto-complete), prevents writing things twice, is easily extendable and it is very simple to test that all instance variables are completely initialized:
class Params():
def __init__(self):
self.var1 : int = None
self.var2 : str = None
def are_all_defined(self):
for key, value in self.__dict__.items():
assert (value is not None), "instance variable {} is still None".format(key)
return True
params = Params()
params.var1 = 2
params.var2 = 'hello'
assert(params.are_all_defined)
The best way I found to do this was to use a custom dictionary class as explained in this post: https://stackoverflow.com/a/14620633/8484485
If iPython autocompletion support is needed, simply define the dir() function like this:
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def __dir__(self):
return self.keys()
You then define your pseudo struct like so: (this one is nested)
my_struct=AttrDict ({
'com1':AttrDict ({
'inst':[0x05],
'numbytes':2,
'canpayload':False,
'payload':None
})
})
You can then access the values inside my_struct like this:
print(my_struct.com1.inst)
=>[5]
The cleanest way I can think of is to use a class decorator that lets you declare a static class and rewrite it to act as a struct with normal, named properties:
from as_struct import struct
#struct
class Product():
name = 'unknown product'
quantity = -1
sku = '-'
# create instance
p = Product('plush toy', sku='12-345-6789')
# check content:
p.name # plush toy
p.quantity # -1
p.sku # 12-345-6789
Using the following decorator code:
def struct(struct_class):
# create a new init
def struct_init(self, *args, **kwargs):
i = 0 # we really don't need enumerate() here...
for value in args:
name = member_names[i]
default_value = member_values[i]
setattr(self, name, value if value is not None else default_value)
i += 1 # ...we just need to inc an int
for key,value in kwargs.items():
i = member_names.index(key)
default_value = member_values[i]
setattr(self, key, value if value is not None else default_value)
# extract the struct members
member_names = []
member_values = []
for attr_name in dir(struct_class):
if not attr_name.startswith('_'):
value = getattr(struct_class, attr_name)
if not callable(value):
member_names.append(attr_name)
member_values.append(value)
# rebind and return
struct_class.init = struct_init
return struct_class
Which works by taking the class, extracting the field names and their default values, then rewriting the class's __init__ function to set self attributes based on knowing which argument index maps to which property name.
I think Python structure dictionary is suitable for this requirement.
d = dict{}
d[field1] = field1
d[field2] = field2
d[field2] = field3
Extending #gz.'s (generally superior to this one) answer, for a quick and dirty namedtuple structure we can do:
import collections
x = collections.namedtuple('foobar', 'foo bar')(foo=1,bar=2)
y = collections.namedtuple('foobar', 'foo bar')(foo=3,bar=4)
print(x,y)
>foobar(foo=1, bar=2) foobar(foo=3, bar=4)

Categories