I have a pandas Dataframe containing EOD financial data (OHLC) for analysis.
I'm using https://github.com/cirla/tulipy library to generate technical indicator values, that have a certain timeperiod as option. For Example. ADX with timeperiod=5 shows ADX for last 5 days.
Because of this timeperiod, the generated array with indicator values is always shorter in length than the Dataframe. Because the prices of first 5 days are used to generate ADX for day 6..
pdi14, mdi14 = ti.di(
high=highData, low=lowData, close=closeData, period=14)
df['mdi_14'] = mdi14
df['pdi_14'] = pdi14
>> ValueError: Length of values does not match length of index
Unfortunately, unlike TA-LIB for example, this tulip library does not provide NaN-values for these first couple of empty days...
Is there an easy way to prepend these NaN to the ndarray?
Or insert into df at a certain index & have it create NaN for the rows before it automatically?
Thanks in advance, I've been researching for days!
Maybe make the shift yourself in the code ?
period = 14
pdi14, mdi14 = ti.di(
high=highData, low=lowData, close=closeData, period=period
)
df['mdi_14'] = np.NAN
df['mdi_14'][period - 1:] = mdi14
I hope they will fill the first values with NAN in the lib in the future. It's dangerous to leave time series data like this without any label.
Full MCVE
df = pd.DataFrame(1, range(10), list('ABC'))
a = np.full((len(df) - 6, df.shape[1]), 2)
b = np.full((6, df.shape[1]), np.nan)
c = np.row_stack([b, a])
d = pd.DataFrame(c, df.index, df.columns)
d
A B C
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
5 NaN NaN NaN
6 2.0 2.0 2.0
7 2.0 2.0 2.0
8 2.0 2.0 2.0
9 2.0 2.0 2.0
The C version of the tulip library includes a start function for each indicator (reference: https://tulipindicators.org/usage) that can be used to determine the output length of an indicator given a set of input options. Unfortunately, it does not appear that the python bindings library, tulipy, includes this functionality. Instead you have to resort to dynamically reassigning your index values to align the output with the original DataFrame.
Here is an example that uses the price series from the tulipy docs:
#Create the dataframe with close prices
prices = pd.DataFrame(data={81.59, 81.06, 82.87, 83, 83.61, 83.15, 82.84, 83.99, 84.55,
84.36, 85.53, 86.54, 86.89, 87.77, 87.29}, columns=['close'])
#Compute the technical indicator using tulipy and save the result in a DataFrame
bbands = pd.DataFrame(data=np.transpose(ti.bbands(real = prices['close'].to_numpy(), period = 5, stddev = 2)))
#Dynamically realign the index; note from the tulip library documentation that the price/volume data is expected be ordered "oldest to newest (index 0 is oldest)"
bbands.index += prices.index.max() - bbands.index.max()
#Put the indicator values with the original DataFrame
prices[['BBANDS_5_2_low', 'BBANDS_5_2_mid', 'BBANDS_5_2_up']] = bbands
prices.head(15)
close BBANDS_5_2_low BBANDS_5_2_mid BBANDS_5_2_up
0 81.06 NaN NaN NaN
1 81.59 NaN NaN NaN
2 82.87 NaN NaN NaN
3 83.00 NaN NaN NaN
4 83.61 80.530042 82.426 84.321958
5 83.15 81.494061 82.844 84.193939
6 82.84 82.533343 83.094 83.654657
7 83.99 82.471983 83.318 84.164017
8 84.55 82.417750 83.628 84.838250
9 84.36 82.435203 83.778 85.120797
10 85.53 82.511331 84.254 85.996669
11 86.54 83.142618 84.994 86.845382
12 86.89 83.536488 85.574 87.611512
13 87.77 83.870324 86.218 88.565676
14 87.29 85.288871 86.804 88.319129
Related
I have this data, and I need to merge the two selected columns with the other row because its duplicated rows cames from my code.
So, how could I do this?
Here is a way to do what your question asks:
df[['State_new', 'Solution_new']] = df[['Power State', 'Recommended Solution']].shift()
mask = ~df['State_new'].isna()
df.loc[mask, 'State'] = df.loc[mask, 'State_new']
df.loc[mask, 'Recommended Solutuin'] = df.loc[mask, 'Solution_new']
df = df.drop(columns=['State_new', 'Solution_new', 'Power State', 'Recommended Solution'])[~df['State'].isna()].reset_index(drop=True)
Explanation:
create versions of the important data from your code shifted down by one row
create a boolean mask indicating which of these shifted rows are not empty
use this mask to overwrite the content of the State and Recommended Solutuin columns (NOTE: using original column labels verbatim from OP's question) with the updated data from your code contained in the shifted columns
drop the columns used to perform the update as they are no longer needed
use reset_index to create a new integer range index without gaps.
In case it's helpful, here is sample code to pull the dataframe in from Excel:
import pandas as pd
df = pd.read_excel('TestBook.xlsx', sheet_name='TestSheet', usecols='AD:AM')
Here's the input dataframe:
MAC RLC RLC 2 PDCCH Down PDCCH Uplink Unnamed: 34 Recommended Solutuin State Power State Recommended Solution
0 122.9822 7119.503 125.7017 1186.507 784.9464 NaN Downtitlt antenna serving cell is overshooting NaN NaN
1 4.1000 7119.503 24.0000 11.000 51.0000 NaN Downtitlt antenna serving cell is overshooting NaN NaN
2 121.8900 2127.740 101.3300 1621.000 822.0000 NaN uptilt antenna bad coverage NaN NaN
3 86.5800 2085.250 94.6400 1650.000 880.0000 NaN uptilt antenna bad coverage NaN NaN
4 64.7500 1873.540 63.8600 1259.000 841.0000 NaN uptilt antenna bad coverage NaN NaN
5 84.8700 1735.070 60.3800 1423.000 474.0000 NaN uptilt antenna bad coverage NaN NaN
6 49.3400 1276.190 59.9600 1372.000 450.0000 NaN uptilt antenna bad coverage NaN NaN
7 135.0200 2359.840 164.1300 1224.000 704.0000 NaN NaN NaN Bad Power Check hardware etc.
8 135.0200 2359.840 164.1300 1224.000 704.0000 NaN uptilt antenna bad coverage NaN NaN
9 163.7200 1893.940 90.0300 1244.000 753.0000 NaN NaN NaN Bad Power Check hardware etc.
10 163.7200 1893.940 90.0300 1244.000 753.0000 NaN uptilt antenna bad coverage NaN NaN
11 129.6400 1163.140 154.3200 663.000 798.0000 NaN NaN NaN Bad Power Check hardware etc.
12 129.6400 1163.140 154.3200 663.000 798.0000 NaN uptilt antenna bad coverage NaN NaN
Here is the sample output:
MAC RLC RLC 2 PDCCH Down PDCCH Uplink Unnamed: 34 Recommended Solutuin State
0 122.9822 7119.503 125.7017 1186.507 784.9464 NaN Downtitlt antenna serving cell is overshooting
1 4.1000 7119.503 24.0000 11.000 51.0000 NaN Downtitlt antenna serving cell is overshooting
2 121.8900 2127.740 101.3300 1621.000 822.0000 NaN uptilt antenna bad coverage
3 86.5800 2085.250 94.6400 1650.000 880.0000 NaN uptilt antenna bad coverage
4 64.7500 1873.540 63.8600 1259.000 841.0000 NaN uptilt antenna bad coverage
5 84.8700 1735.070 60.3800 1423.000 474.0000 NaN uptilt antenna bad coverage
6 49.3400 1276.190 59.9600 1372.000 450.0000 NaN uptilt antenna bad coverage
7 135.0200 2359.840 164.1300 1224.000 704.0000 NaN Check hardware etc. Bad Power
8 163.7200 1893.940 90.0300 1244.000 753.0000 NaN Check hardware etc. Bad Power
9 129.6400 1163.140 154.3200 663.000 798.0000 NaN Check hardware etc. Bad Power
You can use groupby to combine the rows by columns:
df = pd.DataFrame(data)
new_df = df.groupby(['MAC', 'RLC1', 'RLC2', 'POCCH', 'POCCH Up']).sum()
new_df.reset_index()
You can do something like:
fill_cols = ['Power State', 'Recommended Solution 2']
dup_cols = ['MAC_UL','RLC_Through_1','RLC_Through_2','PDCCH Down', 'PDCCH Up']
m = df.duplicated(subset=dup_cols, keep=False)
df_fill = df.loc[m,fill_cols]
df_fill[df_fill['Power State']==''] = np.NaN
df_fill[df_fill['Recommended Solution 2']==''] = np.NaN
df.loc[m,fill_cols]=df_fill.ffill()
Get duplicated rows using duplicated
Fill empty values with NaN
Then use ffill
I have an excel sheet like this.
If I search using the below method I got only 1 row.
df4 = df.loc[(df['NAME '] == 'HIR')]
df4
But I want to get all rows connecting with this name (same for birthdate and place).
expected output:
How can I achieve this? how can I bind these things
You need to forward fill the data with ffill():
df = df.replace('', np.nan) # in case you don't have null values, but you have empty strings
df['NAME '] = df['NAME '].ffill()
df4 = df.loc[(df['NAME '] == 'HIR')]
df4
That will then bring up all of the rows when you use loc. You can do this on other columns as well.
First you need to remove those blank rows in your excel. then fill values by the previous value
import pandas as pd
df = pd.read_excel('so.xlsx')
df = df[~df['HOBBY'].isna()]
df[['SNO','NAME']] = df[['SNO','NAME']].ffill()
df
SNO NAME HOBBY COURSE BIRTHDATE PLACE
0 1.0 HIR DANCING BTECH 1990.0 USA
1 1.0 HIR MUSIC MTECH NaN NaN
2 1.0 HIR TRAVELLING AI NaN NaN
4 2.0 BH GAMES BTECH 1992.0 INDIA
5 2.0 BH BOOKS AI NaN NaN
6 2.0 BH SWIMMING NaN NaN NaN
7 2.0 BH MUSIC NaN NaN NaN
8 2.0 BH DANCING NaN NaN NaN
I have a large data frame of schedules, and I need to count the numbers of experiments run. The challenge is that usage for is repeated in rows (which is ok), but is duplicated in some, but not all columns. I want to remove the second entry (if duplicated), but I can't delete the entire second column because it will contain some new values too. How can I compare individual entries for two columns in a side by side fashion and delete the second if there is a duplicate?
The duration for this is a maximum of two days, so three days in a row is a new event with the same name starting on the third day.
The actual text for the experiment names is complicated and the data frame is 120 columns wide, so typing this in as a list or dictionary isn't possible. I'm hoping for a python or numpy function, but could use a loop.
Here are pictures for an example of the starting data frame and the desired output.starting data frame example
de-duplicated data frame example
This a hack and similar to #Params answer, but would be faster because you aren't calling .iloc a lot. The basic idea is to transpose the data frame and repeat an operation for as many times as you need to compare all of the columns. Then transpose it back to get the result in the OP.
import pandas as pd
import numpy as np
df = pd.DataFrame({
'Monday':['exp_A','exp_A','exp_A','exp_A','exp_B',np.nan,np.nan,np.nan,'exp_D','exp_D'],
'Tuesday':['exp_A','exp_A','exp_A','exp_A','exp_B','exp_B','exp_C','exp_C','exp_D','exp_D'],
'Wednesday':['exp_A','exp_D',np.nan,np.nan,np.nan,'exp_B','exp_C','exp_C','exp_C',np.nan],
'Thursday':['exp_A','exp_D',np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,'exp_C',np.nan]
})
df = df.T
for i in range(int(np.ceil(df.shape[0]/2))):
df[(df == df.shift(1))& (df != df.shift(2))] = np.nan
df = df.T
Monday Tuesday Wednesday Thursday
0 exp_A NaN exp_A NaN
1 exp_A NaN exp_D NaN
2 exp_A NaN NaN NaN
3 exp_A NaN NaN NaN
4 exp_B NaN NaN NaN
5 NaN exp_B NaN NaN
6 NaN exp_C NaN NaN
7 NaN exp_C NaN NaN
8 exp_D NaN exp_C NaN
9 exp_D NaN NaN NaN
Currently i'm working on a Livetiming-Software for a motorsport-application. Therefore i have to crawl a Livetiming-Webpage and copy the Data to a big Dataframe. This Dataframe is the source of several diagramms i want to make. To keep my Dataframe up to date, i have to crawl the webpage very often.
I can download the Data and save them as a Panda.Dataframe. But my Problem is step from the downloaded DataFrame to the Big Dataframe, that includes all the Data.
import pandas as pd
import numpy as np
df1= pd.DataFrame({'Pos':[1,2,3,4,5,6],'CLS':['V5','V5','V5','V4','V4','V4'],
'Nr.':['13','700','30','55','24','985'],
'Zeit':['1:30,000','1:45,000','1:50,000','1:25,333','1:13,366','1:17,000'],
'Laps':['1','1','1','1','1','1']})
df2= pd.DataFrame({'Pos':[1,2,3,4,5,6],'CLS':['V5','V5','V5','V4','V4','V4'],
'Nr.':['13','700','30','55','24','985'],
'Zeit':[np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,],
'Laps':['2','2','2','2','2','2']})
df3= pd.DataFrame({'Pos':[1,2,3,4,5,6],'CLS':['V5','V5','V5','V4','V4','V4'],
'Nr.':['13','700','30','55','24','985'],
'Zeit':['1:31,000','1:41,000','1:51,000','1:21,333','1:11,366','1:11,000'],
'Laps':['2','2','2','2','2','2']})
df1.set_index(['CLS','Nr.','Laps'],inplace=True)
df2.set_index(['CLS','Nr.','Laps'],inplace=True)
df3.set_index(['CLS','Nr.','Laps'],inplace=True)
df1 shows a Dataframe from previous laps.
df2 shows a Dataframe in the second lap. The Lap is not completed, so i have a nan.
df3 shows a Dataframe after the second lap is completed.
My target is to have just one row for each Lap per Car per Class.
Either i have the problem, that i have duplicates with incomplete Laps or all date get overwritten.
I hope that someone can help me with this problem.
Thank you so far.
MrCrunsh
If I understand your problem correctly, your issue is that you have overlapping data for the second lap: information while the lap is still in progress and information after it's over. If you want to put all the information for a given lap in one row, I'd suggest use multi-index columns or changing the column names to reflect the difference between measurements during and after laps.
df = pd.concat([df1, df3])
df = pd.concat([df, df2], axis=1, keys=['after', 'during'])
The result will look like this:
after during
Pos Zeit Pos Zeit
CLS Nr. Laps
V4 24 1 5 1:13,366 NaN NaN
2 5 1:11,366 5.0 NaN
55 1 4 1:25,333 NaN NaN
2 4 1:21,333 4.0 NaN
985 1 6 1:17,000 NaN NaN
2 6 1:11,000 6.0 NaN
V5 13 1 1 1:30,000 NaN NaN
2 1 1:31,000 1.0 NaN
30 1 3 1:50,000 NaN NaN
2 3 1:51,000 3.0 NaN
700 1 2 1:45,000 NaN NaN
2 2 1:41,000 2.0 NaN
I have gathered data from the penultimate worksheet in this Excel file along with all the data in the last Worksheet from "Maturity Years" of 5.5 onward. I have code that does this. However, I am now looking to restructure the dataframe such that it has the following columns and am struggling to do this:
My code is below.
import urllib2
import pandas as pd
import os
import xlrd
url = 'http://www.bankofengland.co.uk/statistics/Documents/yieldcurve/uknom05_mdaily.xls'
socket = urllib2.urlopen(url)
xd = pd.ExcelFile(socket)
#Had to do this based on actual sheet_names rather than index as there are some extra sheet names in xd.sheet_names
df1 = xd.parse('4. spot curve', header=None)
df1 = df1.loc[:, df1.loc[3, :] >= 5.5] #Assumes the maturity is always on the 4th line of the sheet
df2 = xd.parse('3. spot, short end', header=None)
bigdata = df1.append(df2,ignore_index = True)
Edit: The Dataframe currently looks as follows. The current Dataframe is pretty disorganized unfortunately:
0 1 2 3 4 5 6 \
0 NaN NaN NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN
2 Maturity NaN NaN NaN NaN NaN NaN
3 years: NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN NaN
5 2005-01-03 00:00:00 NaN NaN NaN NaN NaN NaN
6 2005-01-04 00:00:00 NaN NaN NaN NaN NaN NaN
... ... ... .. .. ... ... ...
5410 2015-04-20 00:00:00 NaN NaN NaN NaN 0.367987 0.357069
5411 2015-04-21 00:00:00 NaN NaN NaN NaN 0.362478 0.352581
It has 5440 rows and 61 columns
However, I want the dataframe to be of the format:
I think Columns 1,2,3,4,5 and 6 contain Yield Curve Data. However, I am unsure where the data associated with "Maturity Years" is in the current DataFrame.
Date(which is the 2nd Column in the current Dataframe) Update time(which would just be a column with datetime.datetime.now()) Currency(which would just be a column with 'GBP') Maturity Date Yield Data from SpreadSheet
I use the pandas.io.excel.read_excel function to read xls from url. Here is one way to clean this UK yield curve dataset.
Note: executing the cubic spline interpolation via the apply function takes quite a mount of time (about 2 minutes in my PC). It interpolates from about 100 points to 300 points, row by row (2638 in total).
from pandas.io.excel import read_excel
import pandas as pd
import numpy as np
url = 'http://www.bankofengland.co.uk/statistics/Documents/yieldcurve/uknom05_mdaily.xls'
# check the sheet number, spot: 9/9, short end 7/9
spot_curve = read_excel(url, sheetname=8)
short_end_spot_curve = read_excel('uknom05_mdaily.xls', sheetname=6)
# preprocessing spot_curve
# ==============================================
# do a few inspection on the table
spot_curve.shape
spot_curve.iloc[:, 0]
spot_curve.iloc[:, -1]
spot_curve.iloc[0, :]
spot_curve.iloc[-1, :]
# do some cleaning, keep NaN for now, as forward fill NaN is not recommended for yield curve
spot_curve.columns = spot_curve.loc['years:']
spot_curve.columns.name = 'years'
valid_index = spot_curve.index[4:]
spot_curve = spot_curve.loc[valid_index]
# remove all maturities within 5 years as those are duplicated in short-end file
col_mask = spot_curve.columns.values > 5
spot_curve = spot_curve.iloc[:, col_mask]
# now spot_curve is ready, check it
spot_curve.head()
spot_curve.tail()
spot_curve.shape
spot_curve.shape
Out[184]: (2715, 40)
# preprocessing short end spot_curve
# ==============================================
short_end_spot_curve.columns = short_end_spot_curve.loc['years:']
short_end_spot_curve.columns.name = 'years'
valid_index = short_end_spot_curve.index[4:]
short_end_spot_curve = short_end_spot_curve.loc[valid_index]
short_end_spot_curve.head()
short_end_spot_curve.tail()
short_end_spot_curve.shape
short_end_spot_curve.shape
Out[185]: (2715, 60)
# merge these two, time index are identical
# ==============================================
combined_data = pd.concat([short_end_spot_curve, spot_curve], axis=1, join='outer')
# sort the maturity from short end to long end
combined_data.sort_index(axis=1, inplace=True)
combined_data.head()
combined_data.tail()
combined_data.shape
# deal with NaN: the most sound approach is fit the non-arbitrage NSS curve
# however, this is not currently supported in python.
# do a cubic spline instead
# ==============================================
# if more than half of the maturity points are NaN, then interpolation is likely to be unstable, so I'll remove all rows with NaNs count greater than 50
def filter_func(group):
return group.isnull().sum(axis=1) <= 50
combined_data = combined_data.groupby(level=0).filter(filter_func)
# no. of rows down from 2715 to 2628
combined_data.shape
combined_data.shape
Out[186]: (2628, 100)
from scipy.interpolate import interp1d
# mapping points, monthly frequency, 1 mon to 25 years
maturity = pd.Series((np.arange(12 * 25) + 1) / 12)
# do the interpolation day by day
key = lambda x: x.date
by_day = combined_data.groupby(level=0)
# write out apply function
def interpolate_maturities(group):
# transpose row vector to column vector and drops all nans
a = group.T.dropna().reset_index()
f = interp1d(a.iloc[:, 0], a.iloc[:, 1], kind='cubic', bounds_error=False, assume_sorted=True)
return pd.Series(maturity.apply(f).values, index=maturity.values)
# this may take a while .... apply provides flexibility but spead is not good
cleaned_spot_curve = by_day.apply(interpolate_maturities)
# a quick look on the data
cleaned_spot_curve.iloc[[1,1000, 2000], :].T.plot(title='Cross-Maturity Yield Curve')
cleaned_spot_curve.iloc[:, [23, 59, 119]].plot(title='Time-Series')