Visualizing spherical harmonics in Python - python

I am trying to draw a spherical harmonics for my college project. The following formula I want to depict,
Y = cos(theta)
for that, I wrote this code
import numpy as np
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
def sph2cart(r, phi, tta):
''' r is from 0 to infinity '''
''' phi is from 0 to 2*pi '''
''' tta is from 0 to pi '''
x = r* np.sin(tta)* np.cos(phi)
y = r* np.sin(tta)* np.sin(phi)
z = r* np.cos(tta)
return x, y, z
# phi running from 0 to pi and tta from 0 to pi
phi = np.linspace(0, 2* np.pi, 25)
tta = np.linspace(0, np.pi, 25)
# meshgrid to generate points
phi, tta = np.meshgrid(phi, tta)
# THIS IS THE FUNCTION
Y = np.cos(tta)
# finally all things in cartesian co-ordinate system
# Note that "Y" is acting as "r"
x, y, z = sph2cart( Y, phi, tta)
# plotting :-
fig = plt.figure()
ax = fig.add_subplot( 111 , projection='3d')
ax.plot_surface(x, y, z, linewidth = 0.5, edgecolors = 'k')
And, get the sphere as a result. Which is not correct, because actual result is dumbbell like shape. See the second row of this image,
https://upload.wikimedia.org/wikipedia/commons/thumb/6/62/Spherical_Harmonics.png/1024px-Spherical_Harmonics.png

The picture in the Wikipedia article Spherical harmonics is obtained by using the absolute value of a spherical harmonic as the r coordinate, and then coloring the surface according to the sign of the harmonic. Here is an approximation.
x, y, z = sph2cart(np.abs(Y), phi, tta)
fig = plt.figure()
ax = fig.add_subplot( 111 , projection='3d')
from matplotlib import cm
ax.set_aspect('equal')
ax.plot_surface(x, y, z, linewidth = 0.5, facecolors = cm.jet(Y), edgecolors = 'k')
When you use Y itself as r, the two hemispheres (positive Y and negative Y) end up mapped onto the same half of the above surface.

The Y you are passing to the function needs to be an absolute value to make it r, else z = cos(theta)^2 is always positive. If r is to be the radius then this what you should be doing.
x, y, z = sph2cart(np.abs(Y), phi, tta)

Related

Colormap a 3D curve in matplotlib

I have 4 arrays x, y, z and T of length n and I want to plot a 3D curve using matplotlib. The (x, y, z) are the points positions and T is the value of each point (which is plotted as color), like the temperature of each point. How can I do it?
Example code:
import numpy as np
from matplotlib import pyplot as plt
fig = plt.figure()
ax = fig.gca(projection='3d')
n = 100
cmap = plt.get_cmap("bwr")
theta = np.linspace(-4 * np.pi, 4 * np.pi, n)
z = np.linspace(-2, 2, n)
r = z**2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
T = (2*np.random.rand(n) - 1) # All the values are in [-1, 1]
What I found over the internet:
It's possible to use cmap with scatter like shown in the docs and in this stackoverflow question
ax = plt.gca()
ax.scatter(x, y, z, cmap=cmap, c=T)
The problem is that scatter is a set of points, not a curve.
In this stackoverflow question the solution was divide in n-1 intervals and each interval we use a different color like
t = (T - np.min(T))/(np.max(T)-np.min(T)) # Normalize
for i in range(n-1):
plt.plot(x[i:i+2], y[i:i+2], z[i:i+2], c=cmap(t[i])
The problem is that each segment has only one color, but it should be an gradient. The last value is not even used.
Useful links:
Matplotlib - Colormaps
Matplotlib - Tutorial 3D
This is a case where you probably need to use Line3DCollection. This is the recipe:
create segments from your array of coordinates.
create a Line3DCollection object.
add that collection to the axis.
set the axis limits.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.art3d import Line3DCollection
from matplotlib.cm import ScalarMappable
from matplotlib.colors import Normalize
def get_segments(x, y, z):
"""Convert lists of coordinates to a list of segments to be used
with Matplotlib's Line3DCollection.
"""
points = np.ma.array((x, y, z)).T.reshape(-1, 1, 3)
return np.ma.concatenate([points[:-1], points[1:]], axis=1)
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
n = 100
cmap = plt.get_cmap("bwr")
theta = np.linspace(-4 * np.pi, 4 * np.pi, n)
z = np.linspace(-2, 2, n)
r = z**2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
T = np.cos(theta)
segments = get_segments(x, y, z)
c = Line3DCollection(segments, cmap=cmap, array=T)
ax.add_collection(c)
fig.colorbar(c)
ax.set_xlim(x.min(), x.max())
ax.set_ylim(y.min(), y.max())
ax.set_zlim(z.min(), z.max())
plt.show()

Python - find closest point to 3D point on 3D spline

I have 2 arrays with 3D points (name, X, Y, Z). First array contains reference points, through which I'm drawing spline. Second array contains measured points, from which I need to calculate normals to spline and get the coordinates of the normal on spline (I need to calculate the XY and height standard deviations of the measured points). This is the test data (in fact, I have several thousand points):
1st array - reference points/ generate spline:
r1,1.5602,6.0310,4.8289
r2,1.6453,5.8504,4.8428
r3,1.7172,5.6732,4.8428
r4,1.8018,5.5296,4.8474
r5,1.8700,5.3597,4.8414
2nd array - measured points:
m1, 1.8592, 5.4707, 4.8212
m2, 1.7642, 5.6362, 4.8441
m3, 1.6842, 5.7920, 4.8424
m4, 1.6048, 5.9707, 4.8465
The code I wrote, to read the data, calculate spline (using scipy) and display it via matplotlib:
import numpy as np
import matplotlib.pyplot as plt
from scipy import interpolate
# import measured points
filename = "measpts.csv"
meas_pts = np.genfromtxt(filename, delimiter=',')
# import reference points
filename = "refpts.csv"
ref = np.genfromtxt(filename, delimiter=',')
# divide data to X, Y, Z
x = ref[:, 2]
y = ref[:, 1]
z = ref[:, 3]
# spline interpolation
tck, u = interpolate.splprep([x, y, z], s=0)
u_new = np.linspace(u.min(), u.max(), 1000000)
x_new, y_new, z_new = interpolate.splev(u_new, tck, der=0)
xs = tck[1][0]
ys = tck[1][1]
zs = tck[1][2]
# PLOT 3D
fig = plt.figure()
ax3d = fig.add_subplot(111, projection='3d', proj_type='ortho')
ax3d.plot(x, y, z, 'ro') # ref points
ax3d.plot(xs, ys, zs, 'yo') # spline knots
ax3d.plot(x_new, y_new, z_new, 'b--') # spline
ax3d.plot(meas_pts[:, 2], meas_pts[:, 1], meas_pts[:, 3], 'g*') # measured points
# ax3d.view_init(90, -90) # 2D TOP view
# ax3d.view_init(0, -90) # 2D from SOUTH to NORTH view
# ax3d.view_init(0, 0) # 2D from EAST to WEST view
plt.show()
To sum up: I need array contains pairs: [[measured point X, Y, Z], [closest (normal) point on the spline X,Y,Z]]
Given a point P and a line in a 3d space, the distance from the point P and the points of the line is the diagonal of the box, so you wish to minimize this diagonal, the minimum distance will be normal to the line
You can use this property. So, for example
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# generate sample line
x = np.linspace(-2, 2, 100)
y = np.cbrt( np.exp(2*x) -1 )
z = (y + 1) * (y - 2)
# a point
P = (-1, 3, 2)
# 3d plot
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d', proj_type='ortho')
ax.plot(x, y, z)
ax.plot(P[0], P[1], P[2], 'or')
plt.show()
def distance_3d(x, y, z, x0, y0, z0):
"""
3d distance from a point and a line
"""
dx = x - x0
dy = y - y0
dz = z - z0
d = np.sqrt(dx**2 + dy**2 + dz**2)
return d
def min_distance(x, y, z, P, precision=5):
"""
Compute minimum/a distance/s between
a point P[x0,y0,z0] and a curve (x,y,z)
rounded at `precision`.
ARGS:
x, y, z (array)
P (3dtuple)
precision (integer)
Returns min indexes and distances array.
"""
# compute distance
d = distance_3d(x, y, z, P[0], P[1], P[2])
d = np.round(d, precision)
# find the minima
glob_min_idxs = np.argwhere(d==np.min(d)).ravel()
return glob_min_idxs, d
that gives
min_idx, d = min_distance(x, y, z, P)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d', proj_type='ortho')
ax.plot(x, y, z)
ax.plot(P[0], P[1], P[2], 'or')
ax.plot(x[min_idx], y[min_idx], z[min_idx], 'ok')
for idx in min_idx:
ax.plot(
[P[0], x[idx]],
[P[1], y[idx]],
[P[2], z[idx]],
'k--'
)
plt.show()
print("distance:", d[min_idx])
distance: [2.4721]
You can implement a similar function for your needs.

Cut-off half a torus in a surface plot

I am trying to plot only half of a torus using matplotlib.
This is my approach so far:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
n = 100
# theta: poloidal angle; phi: toroidal angle
theta = np.linspace(0, 2.*np.pi, n)
phi = np.linspace(0, 2.*np.pi, n)
theta, phi = np.meshgrid(theta, phi)
# R0: major radius; a: minor radius
R0, a = 2., 1.
# torus parametrization
x = (R0 + a*np.cos(theta)) * np.cos(phi)
y = (R0 + a*np.cos(theta)) * np.sin(phi)
z = a * np.sin(theta)
# "cut-off" half of the torus
x[x>0] = np.nan
fig = plt.figure()
ax1 = fig.add_subplot(111, projection='3d')
ax1.set_zlim(-3,3)
ax1.plot_surface(x, y, z, rstride=5, cstride=5,)
# elev: elevation angle in z-plane
# azim: azimuth angle in x,y plane
ax1.view_init(elev=15, azim=0)
plt.show()
Doing so, gives me indeed half a torus, but one of the cut surfaces is not clear, as can be seen in the figure (it is the left cut surface which is problematic here).
Any ideas how to make a clean cut surface?
Cutting off surfaces with nans will usually do that. This is due to the fact that patches of the surface are drawn using linear interpolation over a subset of the input data, and having nans on the boundary will lead to nan results for values for some edge patches.
In your specific case you can just limit your toroidal angle to half a torus:
theta = np.linspace(0, 2*np.pi, n)
phi = np.linspace(0, np.pi, n)
You'll have to set manual x/y limits as well for a pretty aspect ratio:
ax1.axis([-3, 3]*2)
There's a very general but hands-on alternative by passing an explicit array of facecolors to plot_surface, and manipulating the transparency of the values inside. This will be much uglier than the default unless you work hard, since shading will be missing with flat colours. Here's a very basic (and ugly) example for what I mean:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
n = 100
# theta: poloidal angle; phi: toroidal angle
theta = np.linspace(0, 2*np.pi, n)
phi = np.linspace(0, 2*np.pi, n)
theta, phi = np.meshgrid(theta, phi)
# R0: major radius; a: minor radius
R0, a = 2., 1.
# torus parametrization
x = (R0 + a*np.cos(theta)) * np.cos(phi)
y = (R0 + a*np.cos(theta)) * np.sin(phi)
z = a * np.sin(theta)
# "cut-off" half of the torus using transparent colors
c = np.full(x.shape + (4,), [0, 0, 0.85, 1]) # shape (nx, ny, 4)
c[x>0, -1] = 0 # set these to transparent
fig = plt.figure()
ax1 = fig.add_subplot(111, projection='3d')
ax1.set_zlim(-3,3)
ax1.plot_surface(x, y, z, facecolors=c, rstride=5, cstride=5,)
# elev: elevation angle in z-plane
# azim: azimuth angle in x,y plane
ax1.view_init(elev=15, azim=0)
plt.show()

Python: Plotting Evenly Spaced Spheres in Matplotlib

I'm trying to create a plot a bit like this:
Where there are spheres above all the minima.
The surface can be approximated with a sin(x)*sin(y) plot:
import numpy as np
import matplotlib.pyplot as plt
def func(x, y):
return np.sin(2*np.pi*x)*np.sin(2*np.pi*y) / 3
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = y = np.arange(-1.0, 1.0, 0.05)
X, Y = np.meshgrid(x, y)
zs = np.array([func(x,y) for x,y in zip(np.ravel(X), np.ravel(Y))])
Z = zs.reshape(X.shape)
ax.plot_surface(X, Y, Z, color="grey")
ax.set_zlim3d(-1,1)
plt.show()
However I'm unsure how to add evenly spaced spheres into this. Would anyone be able to help?
Using matplotlib one will inevitably run into problems of objects being hidden behind others. This is also stated in the matplotlib 3d FAQ and the recommendation is to use mayavi.
In mayavi the solution would look like this:
from mayavi import mlab
import numpy as np
### SURFACE '''
x,y = np.meshgrid(np.linspace(-2.5,2), np.linspace(-2,2))
f = lambda x,y: .4*np.sin(2*np.pi*x)*np.sin(2*np.pi*y)
z=f(x,y)
mlab.surf(x.T,y.T,z.T, colormap="copper")
### SPHERES '''
px,py = np.meshgrid(np.arange(-2,2)+.25, np.arange(-2,2)+.75)
px,py = px.flatten(),py.flatten()
pz = np.ones_like(px)*0.05
r = np.ones_like(px)*.4
mlab.points3d(px,py,pz,r, color=(0.9,0.05,.3), scale_factor=1)
mlab.show()
You need to determine the minima of the function, which are (with your parametrization) at (x = integer + 0.25, y=integer + 0.75) or the other way round. Then you can simply parametrize the spheres using spherical coordinates (for example as done here: python matplotlib: drawing 3D sphere with circumferences) and plot the spheres.
Now comes some good news and some bad news:
1.) The good news is that the minima are correctly determined and that the spheres are created. In the below plot you can see that they are right above the blue parts of the surface plot (where the blue parts show indeed the minima).
2.) The bad news is that you will have a hard time looking for another angle where the spheres are actually correctly rendered. I do not know a solution to this rather annoying behaviour, therefore you will probably have to play around until you have found the right angle. Have fun!
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
def func(x, y):
return np.sin(2*np.pi*x)*np.sin(2*np.pi*y) / 3
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = y = np.arange(-2.0, 2.0, 0.05)
# Get the minima of the function.
minsx1 = np.arange(int(np.amin(x)) + 0.25, int(np.amax(x)) + 0.25 + 1, 1)
minsy1 = np.arange(int(np.amin(y)) + 0.75, int(np.amax(y)) + 0.75 + 1, 1)
minsx2 = np.arange(int(np.amin(x)) + 0.75, int(np.amax(x)) + 0.75 + 1, 1)
minsy2 = np.arange(int(np.amin(y)) + 0.25, int(np.amax(y)) + 0.25 + 1, 1)
X, Y = np.meshgrid(x, y)
zs = np.array([func(x,y) for x,y in zip(np.ravel(X), np.ravel(Y))])
Z = zs.reshape(X.shape)
# Color map for better detection of minima (blue)
ax.plot_surface(X, Y, Z, cmap="viridis")
ax.set_zlim3d(-1,1)
# Spherical coordinates
r = 0.15
phi = np.linspace(0, 2 * np.pi, 30)
theta = np.linspace(0, np.pi, 30)
# Write spherical coordinates in cartesian coordinates.
x = r * np.outer(np.cos(phi), np.sin(theta))
y = r * np.outer(np.sin(phi), np.sin(theta))
z = r * np.outer(np.ones(np.size(phi)), np.cos(theta))
# Plot the spheres.
for xp in minsx1:
for yp in minsy1:
sphere = ax.plot_surface(x+xp, y+yp, z+0.35, color='r')
for xp in minsx2:
for yp in minsy2:
sphere = ax.plot_surface(x+xp, y+yp, z+0.35, color='r')
ax.view_init(elev=90, azim=0)
plt.savefig('test.png')
plt.show()

Plotting Ellipsoid with Matplotlib

Does anyone have sample code for plotting ellipsoids? There is one for sphere on matplotlib site, but nothing for ellipsoids. I am trying to plot
x**2 + 2*y**2 + 2*z**2 = c
where c is a constant (like 10) that defines an ellipsoid. I tried the meshgrid(x,y) route, reworked the equation so z is on one side, but the sqrt is a problem. The matplotlib sphere example works with angles, u,v, but I am not sure how to work that for ellipsoid.
Here is how you can do it via spherical coordinates:
# from mpl_toolkits.mplot3d import Axes3D # Not needed with Matplotlib 3.6.3
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure(figsize=plt.figaspect(1)) # Square figure
ax = fig.add_subplot(111, projection='3d')
coefs = (1, 2, 2) # Coefficients in a0/c x**2 + a1/c y**2 + a2/c z**2 = 1
# Radii corresponding to the coefficients:
rx, ry, rz = 1/np.sqrt(coefs)
# Set of all spherical angles:
u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, np.pi, 100)
# Cartesian coordinates that correspond to the spherical angles:
# (this is the equation of an ellipsoid):
x = rx * np.outer(np.cos(u), np.sin(v))
y = ry * np.outer(np.sin(u), np.sin(v))
z = rz * np.outer(np.ones_like(u), np.cos(v))
# Plot:
ax.plot_surface(x, y, z, rstride=4, cstride=4, color='b')
# Adjustment of the axes, so that they all have the same span:
max_radius = max(rx, ry, rz)
for axis in 'xyz':
getattr(ax, 'set_{}lim'.format(axis))((-max_radius, max_radius))
plt.show()
The resulting plot is similar to
The program above actually produces a nicer looking "square" graphics.
This solution is strongly inspired from the example in Matplotlib's gallery.
Building on EOL's answer. Sometimes you have an ellipsoid in matrix format:
A and c Where A is the ellipsoid matrix and c is a vector representing the centre of the ellipsoid.
import numpy as np
import numpy.linalg as linalg
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# your ellispsoid and center in matrix form
A = np.array([[1,0,0],[0,2,0],[0,0,2]])
center = [0,0,0]
# find the rotation matrix and radii of the axes
U, s, rotation = linalg.svd(A)
radii = 1.0/np.sqrt(s)
# now carry on with EOL's answer
u = np.linspace(0.0, 2.0 * np.pi, 100)
v = np.linspace(0.0, np.pi, 100)
x = radii[0] * np.outer(np.cos(u), np.sin(v))
y = radii[1] * np.outer(np.sin(u), np.sin(v))
z = radii[2] * np.outer(np.ones_like(u), np.cos(v))
for i in range(len(x)):
for j in range(len(x)):
[x[i,j],y[i,j],z[i,j]] = np.dot([x[i,j],y[i,j],z[i,j]], rotation) + center
# plot
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_wireframe(x, y, z, rstride=4, cstride=4, color='b', alpha=0.2)
plt.show()
plt.close(fig)
del fig
So, not too much new here, but helpful if you've got an ellipsoid in matrix form which is rotated and perhaps not centered at 0,0,0 and want to plot it.
If you have an ellipsoid specified by an arbitrary covariance matrix cov and offset bias, you do not need to figure out the intuitive parameters of the ellipsoid to get the shape. Specifically, you don't need the individual axes or rotations. The whole point of the matrix is that it transforms a unit sphere (represented by the identity matrix) into your ellipse.
Starting with
u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, np.pi, 100)
Make a unit sphere
x = np.outer(np.cos(u), np.sin(v))
y = np.outer(np.sin(u), np.sin(v))
z = np.outer(np.ones_like(u), np.cos(v))
Now transform the sphere:
ellipsoid = (cov # np.stack((x, y, z), 0).reshape(3, -1) + bias).reshape(3, *x.shape)
You can plot the result pretty much as before:
ax.plot_surface(*ellipsoid, rstride=4, cstride=4, color='b', alpha=0.75)

Categories