It seems like some of the methods that work for matplotlib 2D might not be working for matplotlib 3D. I'm not sure.
I'd like to remove the tick marks from all axes, and extend the edge color from the bottom and sides to the top as well. The farthest I have gotten is being able to draw the ticks as white, which looks bad as they are rendered on top of the edge lines.
Below is a big chunk of self-contained code that results in the following image. Any help is much appreciated!
import numpy as np
import matplotlib as mpl
from matplotlib import pyplot as plt
from matplotlib import animation
from mpl_toolkits.mplot3d import Axes3D
mpl.rcParams['ytick.color'] = 'white'
#mpl.rcParams['ytick.left'] = False
sample = np.random.random_integers(low=1,high=5, size=(10,3))
# Create a figure and a 3D Axes
fig = plt.figure(figsize=(5,5))
ax = Axes3D(fig)
#ax.w_xaxis.set_tick_params(color='white')
#ax.axes.tick_params
ax.axes.tick_params(bottom=False, color='blue')
##['size', 'width', 'color', 'tickdir', 'pad', 'labelsize',
##'labelcolor', 'zorder', 'gridOn', 'tick1On', 'tick2On',
##'label1On', 'label2On', 'length', 'direction', 'left', 'bottom',
##'right', 'top', 'labelleft', 'labelbottom',
##'labelright', 'labeltop', 'labelrotation']
colors = np.mean(sample[:, :], axis=1)
ax.scatter(sample[:,0], sample[:,1], sample[:,2],
marker='o', s=20, c=colors, alpha=1)
ax.tick_params(color='red')
frame1 = plt.gca()
frame1.axes.xaxis.set_ticklabels([])
frame1.axes.yaxis.set_ticklabels([])
frame1.axes.zaxis.set_ticklabels([])
#frame1.axes.yaxis.set_tick_params(color='white')
To answer the first bit of the question, about tick removal,
it's probably easiest to just disable the tick lines:
for line in ax.xaxis.get_ticklines():
line.set_visible(False)
for line in ax.yaxis.get_ticklines():
line.set_visible(False)
for line in ax.zaxis.get_ticklines():
line.set_visible(False)
E.g.:
import numpy as np
import matplotlib as mpl
from matplotlib import pyplot as plt
from matplotlib import animation
from mpl_toolkits.mplot3d import Axes3D
sample = np.random.random_integers(low=1,high=5, size=(10,3))
# Create a figure and a 3D Axes
fig = plt.figure(figsize=(5,5))
ax = Axes3D(fig)
colors = np.mean(sample[:, :], axis=1)
ax.scatter(sample[:,0], sample[:,1], sample[:,2],
marker='o', s=20, c=colors, alpha=1)
ax = plt.gca()
ax.xaxis.set_ticklabels([])
ax.yaxis.set_ticklabels([])
ax.zaxis.set_ticklabels([])
for line in ax.xaxis.get_ticklines():
line.set_visible(False)
for line in ax.yaxis.get_ticklines():
line.set_visible(False)
for line in ax.zaxis.get_ticklines():
line.set_visible(False)
For newer versions (e.g. matplotlib 3.5.1) a lot of formatting can be done via mpl_toolkits.mplot3d.axis3d._axinfo:
import numpy as np
from matplotlib import pyplot as plt
sample = np.random.randint(low=1,high=5, size=(10,3))
# Create a figure and a 3D Axes
fig = plt.figure(figsize=(5,5))
ax = fig.add_subplot(projection='3d')
colors = np.mean(sample[:, :], axis=1)
ax.scatter(sample[:,0], sample[:,1], sample[:,2],
marker='o', s=20, c=colors, alpha=1)
for axis in [ax.xaxis, ax.yaxis, ax.zaxis]:
axis.set_ticklabels([])
axis._axinfo['axisline']['linewidth'] = 1
axis._axinfo['axisline']['color'] = (0, 0, 0)
axis._axinfo['grid']['linewidth'] = 0.5
axis._axinfo['grid']['linestyle'] = "-"
axis._axinfo['grid']['color'] = (0, 0, 0)
axis._axinfo['tick']['inward_factor'] = 0.0
axis._axinfo['tick']['outward_factor'] = 0.0
axis.set_pane_color((0.95, 0.95, 0.95))
plt.show()
Related
When creating a matplotlib colorbar, it is possible to set drawedges to True which separates the colors of the colorbar with black lines. However, when the colorbar is extended using extend='both', the black lines at the extremities do not show up. Is that a bug? Is there a possibility to draw those edges otherwise?
Here is the code:
import matplotlib as mpl
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import from_levels_and_colors
my_cmap = mpl.cm.viridis
bounds = np.arange(10)
nb_colors = len(bounds) + 1
colors = my_cmap(np.linspace(100, 255, nb_colors).astype(int))
my_cmap, my_norm = from_levels_and_colors(bounds, colors, extend='both')
plt.figure(figsize=(5, 1))
ax = plt.subplot(111)
cbar = mpl.colorbar.ColorbarBase(ax, cmap=my_cmap, norm=my_norm, orientation='horizontal', drawedges=True)
plt.subplots_adjust(left=0.05, bottom=0.4, right=0.95, top=0.9)
plt.show()
and the figure it gives:
I looked into it from your question and found a way to change the color of the border and vertical lines of the color bar. I used that to change them to red. The result I got was that the extended outline was red, so my guess is that I just pulled the short sides of the normal color bar rectangle to the left and right.
I found this response helpful.
cbar.outline.set_edgecolor('red')
cbar.dividers.set_color('red')
So I think the only way to do this is to add vertical lines.
import matplotlib as mpl
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import from_levels_and_colors
my_cmap = mpl.cm.viridis
bounds = np.arange(10)
nb_colors = len(bounds) + 1
colors = my_cmap(np.linspace(100, 255, nb_colors).astype(int))
my_cmap, my_norm = from_levels_and_colors(bounds, colors, extend='both')
plt.figure(figsize=(6, 2))
ax = plt.subplot(111)
cbar = mpl.colorbar.ColorbarBase(ax, cmap=my_cmap, norm=my_norm, orientation='horizontal', drawedges=True)
# update
cbar.outline.set_edgecolor('red')
cbar.dividers.set_color('red')
plt.axvline(max(bounds), color='red', alpha=0.3, linewidth=3.5)
plt.axvline(min(bounds), color='red', alpha=0.3, linewidth=3.5)
plt.subplots_adjust(left=0.05, bottom=0.4, right=0.95, top=0.9)
plt.show()
I would like to use varying degrees of red color to represent the different importance of each time element and fill in that region.
The example code is shown below.
import matplotlib.pyplot as plt
X_example = np.random.rand(400)
importance_values = np.random.rand(400)
plt.figure(figsize=(13,7))
plt.plot(X_example)
for j in range(len(X_example)):
plt.axvspan(xmin=j, xmax=j+1,facecolor="r",alpha=importance_values[j])
It generates a graph like:
Now I would like to add a colormap in this figure to show that, e.g. the light red means low importance and the dark red means high importance, just like this:
How could I achieve that in my case?
One solution would be to create a LinearSegmentedColormap which takes a list of colors and turns it into a matplotlib colorbar object. Then you can set the "alpha channel":
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap, ListedColormap
from matplotlib.colorbar import ColorbarBase
X_example = np.random.rand(400)
importance_values = np.random.rand(400)
fig, (ax, cax) = plt.subplots(ncols=2, figsize=(8,5), gridspec_kw={'width_ratios': [1, 0.05]})
ax.plot(X_example, color='b')
for j in range(len(X_example)):
ax.axvspan(xmin=j, xmax=j+1,facecolor="r",alpha=importance_values[j])
N = 20 # the number of colors/alpha-values in the colorbar
cmap = LinearSegmentedColormap.from_list(None, ['r' for i in range(N)], N=N)
alpha_cmap = cmap(np.arange(N))
alpha_cmap[:,-1] = np.linspace(0, 1, N)
alpha_cmap = ListedColormap(alpha_cmap, N=N)
cbar = ColorbarBase(cax, cmap=alpha_cmap, ticks=[0., 1],)
cbar.ax.set_yticklabels(["low importance", "high importance"])
This gives the following plot, where the two colors of the colorbar have custom labels:
You could create a colormap mixing the red color with a range of alpha values:
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap, to_rgba
from matplotlib.cm import ScalarMappable
import numpy as np
X_example = np.random.rand(400)
importance_values = np.random.rand(400)
fig, ax = plt.subplots(figsize=(12, 5))
ax.plot(X_example)
for j in range(len(X_example)):
ax.axvspan(xmin=j, xmax=j + 1, facecolor="r", alpha=importance_values[j])
ax.margins(x=0)
cmap = LinearSegmentedColormap.from_list(None, [to_rgba('r', 0), 'r'])
cbar = plt.colorbar(ScalarMappable(cmap=cmap), ticks=[0, 1], pad=0.02)
cbar.ax.set_yticklabels(["low", "high"], fontsize=20)
cbar.ax.set_ylabel("importance", labelpad=-30, fontsize=20)
plt.tight_layout()
plt.show()
An example of a horizontal colorbar:
cbar = plt.colorbar(ScalarMappable(cmap=cmap), ticks=[0, 1], orientation='horizontal')
cbar.ax.set_xticklabels(["low", "high"], fontsize=20)
cbar.ax.set_xlabel("importance", labelpad=-15, fontsize=20)
I'm trying to put a little arrow in the corner of each of my subplots. Below is the sample code I'm using:
import matplotlib.pyplot as plt
import matplotlib.image as image
from numpy import linspace
xs = linspace(0, 1, 100)
im = image.imread('arrow.png')
def multi_plot():
fig, axes = plt.subplots(4, 1)
x = 0
for axis in axes:
axis.plot(xs, xs**2)
axis.imshow(im, extent=(0.4, 0.6, .5, .7), zorder=-1, aspect='auto')
plt.show()
multi_plot()
Unfortunately, this produces 4 subplots that are entirely dominated by the arrows and the plots themselves are not seen.
Example output - Incorrect:
What do I need to do so that each individual subplot has a small image and the plot itself can be seen?
I think it's worthwhile thinking about putting the image in a box and place it similar to the legend, using a loc argument. The advantage is that you don't need to care about extents and data coordinates at all. You also wouldn't need to take care of what happens when zooming or panning the plot. Further it allows to keep the image in it's original resolution (zoom=1 in below code).
import matplotlib.pyplot as plt
import matplotlib.image as image
from numpy import linspace
from matplotlib.offsetbox import OffsetImage,AnchoredOffsetbox
xs = linspace(0, 1, 100)
im = image.imread('arrow.png')
def place_image(im, loc=3, ax=None, zoom=1, **kw):
if ax==None: ax=plt.gca()
imagebox = OffsetImage(im, zoom=zoom*0.72)
ab = AnchoredOffsetbox(loc=loc, child=imagebox, frameon=False, **kw)
ax.add_artist(ab)
def multi_plot():
fig, axes = plt.subplots(4, 1)
for axis in axes:
axis.plot(xs, xs**2)
place_image(im, loc=2, ax=axis, pad=0, zoom=1)
plt.show()
multi_plot()
You'll notice that the limits on the x and y axis have been set to the extent of the imshow, rather than 0-1, which your plot needs to see the line.
You can control this by using axis.set_xlim(0, 1) and axis.set_ylim(0, 1).
import matplotlib.pyplot as plt
import matplotlib.image as image
from numpy import linspace
xs = linspace(0, 1, 100)
im = image.imread('arrow.png')
def multi_plot():
fig, axes = plt.subplots(4, 1)
x = 0
for axis in axes:
axis.plot(xs, xs**2)
axis.imshow(im, extent=(0.4, 0.6, .5, .7), zorder=-1, aspect='auto')
axis.set_xlim(0, 1)
axis.set_ylim(0, 1)
plt.show()
multi_plot()
Alternatively, if you want to maintain the extra 5% margin around your data that matplotlib uses by default, you can move the imshow command to before the plot command, then the latter will control the axis limits.
import matplotlib.pyplot as plt
import matplotlib.image as image
from numpy import linspace
xs = linspace(0, 1, 100)
im = image.imread('arrow.png')
def multi_plot():
fig, axes = plt.subplots(4, 1)
x = 0
for axis in axes:
axis.imshow(im, extent=(0.4, 0.6, .5, .7), zorder=-1, aspect='auto')
axis.plot(xs, xs**2)
plt.show()
multi_plot()
I plot using two y-axis, on the left and the right of a matplotlib figure and use zorder to control the position of the plots. I need to define the zorder across axes in the same figure.
Problem
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(-10,10,0.01)
fig, ax1 = plt.subplots( 1, 1, figsize=(9,3) )
ax1.plot( x, np.sin(x), color='red', linewidth=10, zorder=1 )
ax2 = ax1.twinx()
ax2.plot( x, x, color='blue', linewidth=10, zorder=-1)
In the previous diagram, I would expect the blue line to appear behind the red plot.
How do I control the zorder when using twin axes?
I am using:
python: 3.4.3 + numpy: 1.11.0 + matplotlib: 1.5.1
This should work
ax1.set_zorder(ax2.get_zorder()+1)
ax1.patch.set_visible(False)
the following codes works
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import ticker as tick
x = np.arange(-10,10,0.01)
plt.figure(figsize=(10, 5))
fig = plt.subplot(111)
"""be attention to here. it's fig.plot, not ax1.plot
if you write ax1.plot, then it does not work.
"""
fig.plot(x, x, color ='blue', linewidth =10)
ax2 = fig.twinx()
ax2.plot(x, np.sin(x), color='red', linewidth =10)
"""
It looks like the two axes have separate z-stacks.
The axes are z-ordered with the most recent axis on top
"""
fig.set_zorder(ax2.get_zorder()+1)
fig.patch.set_visible(False)
plt.show()
It looks like the two axes have separate z-stacks. The axes are z-ordered with the most recent axis on top, so you need to move the curve you want on top to the last axis you create:
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(-10,10,0.01)
fig, ax1 = plt.subplots( 1, 1, figsize=(9,3) )
ax1.plot( x, x, color='blue', linewidth=10 )
ax2 = ax1.twinx()
ax2.plot( x, np.sin(x), color='red', linewidth=10 )
Here is my (incomplete, I have note added the data itself) code, which produces a somewhat confusing plot, where one line is covered by the grid but the other not.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pylab
sns.set_context("poster",font_scale=fs)
sns.set_style("darkgrid") # No grid lines
# sns.set_style({'legend.frameon': 'True'})
sns.set_style({'xtick.major.size':'0.0'})
c1,c2 = sns.color_palette("hls",2)#sns.color_palette("colorblind", 2)
a = sns.color_palette("BuGn_r")
# runs_plot = pd.DataFrame(runs.values+8.5)
# Plot just first state trajectory
fig, ax1 = plt.subplots(1,sharey=True, sharex=True, figsize=(30,8))
ax1.plot((ground.values+6),label='Ground Truth',color=c1)
ax1.set_xlabel('Time [$s$]')
ax1.set_ylim(0,10)
ax1.set_ylabel('State [$\#$]')
for tl in ax1.get_yticklabels():
tl.set_color(c1)
ax2 = ax1.twinx()
ax2.plot(0.4*signal_syn.values+1,color=c2,label='Emission Signal')
ax2.set_ylabel('Observations')
ax2.set_ylim(0,10)
# ax2.set_axisbelow(True)
for tl in ax2.get_yticklabels():
tl.set_color(c2)
# ask matplotlib for the plotted objects and their labels
lines, labels = ax1.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax2.legend(lines + lines2, labels + labels2,ncol=5,loc='upper center', bbox_to_anchor=(0.5, -0.2))
plt.show()
which produces
now and you can probably see, that for the "Ground Truth" the line is covered by the 'darkgrid' option of the seaborn (which produces a white grid as seen above). Now for some reason the grid is not above the emission signal but only the ground truth.
Any ideas for why this might be?
So this is what I ended up doing, it is probably more of a hack than an actual solution, but it works. I just moved the plotting elements so that they're all plotted above the grid.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pylab
sns.set_context("poster",font_scale=fs)
sns.set_style("darkgrid") # No grid lines
# sns.set_style({'legend.frameon': 'True'})
sns.set_style({'xtick.major.size':'0.0'})
c1,c2 = sns.color_palette("hls",2)#sns.color_palette("colorblind", 2)
a = sns.color_palette("BuGn_r")
# runs_plot = pd.DataFrame(runs.values+8.5)
# Plot just first state trajectory
fig, ax1 = plt.subplots(1,sharey=True, sharex=True, figsize=(30,8))
ax1.set_xlabel('Time [$s$]')
ax1.set_ylim(0,10)
ax1.set_ylabel('State [$\#$]')
for tl in ax1.get_yticklabels():
tl.set_color(c1)
ax2 = ax1.twinx()
ax2.plot((ground.values+6),label='Ground Truth',color=c1)
ax2.plot(0.4*signal_syn.values+1,color=c2,label='Emission Signal')
ax2.set_ylabel('Observations')
ax2.set_ylim(0,10)
# ax2.set_axisbelow(True)
for tl in ax2.get_yticklabels():
tl.set_color(c2)
# ask matplotlib for the plotted objects and their labels
lines, labels = ax1.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax2.legend(lines + lines2, labels + labels2,ncol=5,loc='upper center', bbox_to_anchor=(0.5, -0.2))
plt.show()
Seems like the answer is in this question:
Matplotlib: draw grid lines behind other graph elements
And it is basically: Axis.set_axisbelow(True)