for loop inside a string - python

I'm trying to write a script in python to make my job easier.
I need to use os.system to call some functions to an external software.
Is there a way to insert a for loop inside this string, without having to write obs_dir[n] every time??
import os
obs_dir = ['18185','18186','18187','19926','19987','19994','19995','20045','20046','20081']
xid = ['src21']
i=0
os.system("pset combine_spectra src_arfs=/"
+ obs_dir[0] + "/" + xid[i] + "_" + obs_dir[0] + "_spectrum.arf,"
+ "/" + obs_dir[1] + "/" + xid[i] + "_" + obs_dir[1] + "_spectrum.arf,"
+ "/" + obs_dir[2] + "/" + xid[i] + "_" + obs_dir[2] + "_spectrum.arf,"
+ "/" + obs_dir[3] + "/" + xid[i] + "_" + obs_dir[3] + "_spectrum.arf,"
+ "/" + obs_dir[4] + "/" + xid[i] + "_" + obs_dir[4] + "_spectrum.arf,"
+ "/" + obs_dir[5] + "/" + xid[i] + "_" + obs_dir[5] + "_spectrum.arf,"
+ "/" + obs_dir[6] + "/" + xid[i] + "_" + obs_dir[6] + "_spectrum.arf,"
+ "/" + obs_dir[7] + "/" + xid[i] + "_" + obs_dir[7] + "_spectrum.arf,"
+ "/" + obs_dir[8] + "/" + xid[i] + "_" + obs_dir[8] + "_spectrum.arf,"
+ "/" + obs_dir[9] + "/" + xid[i] + "_" + obs_dir[9] + "_spectrum.arf")

You can create the required command by first iterating over the list(obs_dir) and forming the string.
Ex:
import os
obs_dir = ['18185','18186','18187','19926','19987','19994','19995','20045','20046','20081']
xid = ['src21']
s = "pset combine_spectra src_arfs="
for i in obs_dir:
s += "/{0}/{1}_{0}_spectrum.arf, ".format(i, xid[0])
s = s.strip().rstrip(',')
print s
#os.system(s)

I think this might be what you want
import os
obs_dir = ['18185','18186','18187','19926','19987','19994','19995','20045','20046','20081']
xid = ['src21']
str_cmd = "pset combine_spectra src_arfs=" + obs_dir[0]
separator = ""
for dir in obs_dir
str_cmd + = separator + "/" + dir + "/" + xid[i] + "_" + dir + "_spectrum.arf"
separator = ","
os.system(str_cmd)

You have xid[i], but no i, so using xid[0],
"/{}/{}_{}_spectrum.arf".format(obs_dir[1],xid[0],obs_dir[1])
gives
'/18186/src21_18186_spectrum.arf'
So, format helps.
Also, join will help join these into a comma separated string:
",".join(['a', 'b'])
gives
'a,b'
Joining this together you get
s = ",".join(["/{}/{}_{}_spectrum.arf".format(o,xid[0],o) for o in obs_dir])
giving the parameter(s) you want
'/18185/src21_18185_spectrum.arf,/18186/src21_18186_spectrum.arf,/18187/src21_18g187_spectrum.arf,/19926/src21_19926_spectrum.arf,/19987/src21_19987_spectrum.arfg,/19994/src21_19994_spectrum.arf,/19995/src21_19995_spectrum.arf,/20045/src21_20g045_spectrum.arf,/20046/src21_20046_spectrum.arf,/20081/src21_20081_spectrum.arfg'
without a spare ',' on the end.
Then use it
os.system("pset combine_spectra src_arfs=" + s)

Not in the string, but we can build the string using features like list comprehension (in this case, a generator expression) and string joining:
obs_dir = ['18185','18186','18187','19926','19987','19994','19995','20045','20046','20081']
xid = ['src21']
i = 0
print("pset combine_spectra src_arfs=" +
",".join("/{0}/{1}_{0}_spectrum.arf".format(n,xid[i])
for n in obs_dir))

Related

argument must be a string or a number, not 'LpAffineExpression'

I am trying to use python IRR function with PULP maximisation but i am getting the following error
TypeError: float() argument must be a string or a number, not 'LpAffineExpression'
TypeError Traceback (most recent call last)
in
11 name[6]*rate[6]*ratesList2[2] + name[7]*rate[7]*ratesList2[2] + name[8]*rate[8]*ratesList2[2] + name[9]*rate[9]*ratesList2[2] + name[10]*rate[10]*ratesList2[2] + name[11]*rate[11]*ratesList2[2] +
12 name[12]*rate[12]*ratesList2[2] + name[13]*rate[13]*ratesList2[2] + name[14]*rate[14]*ratesList2[2] + name[15]*rate[15]*ratesList2[2] + name[16]*rate[16]*ratesList2[2] + name[17]*rate[17]*ratesList2[2] +
---> 13 name[18]*rate[18]*ratesList2[2])])
14
15
problem += np.irr([(-19660528.00),
(name[0]*rate[0] + name[1]*rate[1] + name[2]*rate[2] + name[3]*rate[3] + name[4]*rate[4] + name[5]*rate[5] +
name[6]*rate[6] + name[7]*rate[7] + name[8]*rate[8] + name[9]*rate[9] + name[10]*rate[10] + name[11]*rate[11] +
name[12]*rate[12] + name[13]*rate[13] + name[14]*rate[14] + name[15]*rate[15] + name[16]*rate[16] + name[17]*rate[17] +
name[18]*rate[18]),
(name[0]*rate[0]*ratesList1[1] + name[1]*rate[1]*ratesList2[1] + name[2]*rate[2]*ratesList2[1] + name[3]*rate[3]*ratesList2[1] + name[4]*rate[4]*ratesList2[1] + name[5]*rate[5]*ratesList2[1] +
name[6]*rate[6]*ratesList2[1] + name[7]*rate[7]*ratesList2[1] + name[8]*rate[8]*ratesList2[1] + name[9]*rate[9]*ratesList2[1] + name[10]*rate[10]*ratesList2[1] + name[11]*rate[11]*ratesList2[1] +
name[12]*rate[12]*ratesList2[1] + name[13]*rate[13]*ratesList2[1] + name[14]*rate[14]*ratesList2[1] + name[15]*rate[15]*ratesList2[1] + name[16]*rate[16]*ratesList2[1] + name[17]*rate[17]*ratesList2[1] +
name[18]*rate[18]*ratesList2[1]),
(name[0]*rate[0]*ratesList1[2] + name[1]*rate[1]*ratesList2[2] + name[2]*rate[2]*ratesList2[2] + name[3]*rate[3]*ratesList2[2] + name[4]*rate[4]*ratesList2[2] + name[5]*rate[5]*ratesList2[2] +
name[6]*rate[6]*ratesList2[2] + name[7]*rate[7]*ratesList2[2] + name[8]*rate[8]*ratesList2[2] + name[9]*rate[9]*ratesList2[2] + name[10]*rate[10]*ratesList2[2] + name[11]*rate[11]*ratesList2[2] +
name[12]*rate[12]*ratesList2[2] + name[13]*rate[13]*ratesList2[2] + name[14]*rate[14]*ratesList2[2] + name[15]*rate[15]*ratesList2[2] + name[16]*rate[16]*ratesList2[2] + name[17]*rate[17]*ratesList2[2] +
name[18]*rate[18]*ratesList2[2])])
problem += (name[0] + name[1] + name[2] + name[3] + name[4] + name[5] + name[6] + name[7] + name[8] + name[9] + name[10] +
name[11] + name[12] + name[13] + name[14] + name[15] + name[16] + name[17] + name[18]) <= sum(marketMix['GLA']), "1st constraint"
The numpy function irr() takes as argument a list of values. You are instead passing a list of linear expressions containing variables that are subject to optimization. irr() is not prepared to handle that. It assumes that all arguments can be coerced into a float. Instead of using function irr() you will have to state the respective expression explicitly.

Generate a Bode-form transfer function using ratsimp

I have to simplify a transfer function using sympy. I am used to maxima and I am looking for advice to get similar performances in a python environment.
Using the following Maxima code:
A:-Avol0/(1+s/(2*pi*fp));
Zph:Rsh/(1+Rsh*Cj*s);
Zf:Rf/(1+Rf*Cf*s);
alpha:Zf*Zph/(Zf+Zph);
beta:Zph/(Zf+Zph);
BetaA:ratsimp(beta*A,s);
H:ratsimp(alpha*A/(1-BetaA),s);
I get the following:
(H)-> -(2*Avol0*Rf*Rsh*fp*pi)/((Cj+Cf)*Rf*Rsh*s^2+((2*Cj+(2*Avol0+2)*Cf)*Rf*Rsh*fp*pi+Rsh+Rf)*s+((2*Avol0+2)*Rsh+2*Rf)*fp*pi)
The same opertions in sympy do not get to such a nice result:
import numpy as np
import sympy as sy
"""
Formulas
"""
s, Rf, Cf, Rsh, Cj, Cd, Ccm, GBP, Avol0, fp, w = \
sy.symbols("s Rf Cf Rsh Cj Cd Ccm GBP Avol0 fp w")
A = -Avol0/(1+s/(2*np.pi*fp))
Zph = Rsh/(1+Rsh*Cj*s)
Zf = Rf/(1+Rf*Cf*s)
alpha = Zf*Zph/(Zf+Zph)
beta = Zph/(Zf+Zph)
Gloop = sy.ratsimp(beta*A)
H = alpha*A/(1-Gloop)
sy.ratsimp(H)
returns an unreadable result:
-1.0*(1.0*Avol0*Cf**2*Cj*Rf**3*Rsh**3*fp**2*s**3 + 0.159154943091895*Avol0*Cf**2*Cj*Rf**3*Rsh**3*fp*s**4 + 1.0*Avol0*Cf**2*Rf**3*Rsh**2*fp**2*s**2 + 0.159154943091895*Avol0*Cf**2*Rf**3*Rsh**2*fp*s**3 + 1.0*Avol0*Cf*Cj**2*Rf**3*Rsh**3*fp**2*s**3 + 0.159154943091895*Avol0*Cf*Cj**2*Rf**3*Rsh**3*fp*s**4 + 2.0*Avol0*Cf*Cj*Rf**3*Rsh**2*fp**2*s**2 + 0.318309886183791*Avol0*Cf*Cj*Rf**3*Rsh**2*fp*s**3 + 2.0*Avol0*Cf*Cj*Rf**2*Rsh**3*fp**2*s**2 + 0.318309886183791*Avol0*Cf*Cj*Rf**2*Rsh**3*fp*s**3 + 1.0*Avol0*Cf*Rf**3*Rsh*fp**2*s + 0.159154943091895*Avol0*Cf*Rf**3*Rsh*fp*s**2 + 2.0*Avol0*Cf*Rf**2*Rsh**2*fp**2*s + 0.318309886183791*Avol0*Cf*Rf**2*Rsh**2*fp*s**2 + 1.0*Avol0*Cj**2*Rf**2*Rsh**3*fp**2*s**2 + 0.159154943091895*Avol0*Cj**2*Rf**2*Rsh**3*fp*s**3 + 2.0*Avol0*Cj*Rf**2*Rsh**2*fp**2*s + 0.318309886183791*Avol0*Cj*Rf**2*Rsh**2*fp*s**2 + 1.0*Avol0*Cj*Rf*Rsh**3*fp**2*s + 0.159154943091895*Avol0*Cj*Rf*Rsh**3*fp*s**2 + 1.0*Avol0*Rf**2*Rsh*fp**2 + 0.159154943091895*Avol0*Rf**2*Rsh*fp*s + 1.0*Avol0*Rf*Rsh**2*fp**2 + 0.159154943091895*Avol0*Rf*Rsh**2*fp*s)/(1.0*Avol0*Cf**3*Cj*Rf**3*Rsh**3*fp**2*s**4 + 0.159154943091895*Avol0*Cf**3*Cj*Rf**3*Rsh**3*fp*s**5 + 1.0*Avol0*Cf**3*Rf**3*Rsh**2*fp**2*s**3 + 0.159154943091895*Avol0*Cf**3*Rf**3*Rsh**2*fp*s**4 + 1.0*Avol0*Cf**2*Cj**2*Rf**3*Rsh**3*fp**2*s**4 + 0.159154943091895*Avol0*Cf**2*Cj**2*Rf**3*Rsh**3*fp*s**5 + 2.0*Avol0*Cf**2*Cj*Rf**3*Rsh**2*fp**2*s**3 + 0.318309886183791*Avol0*Cf**2*Cj*Rf**3*Rsh**2*fp*s**4 + 3.0*Avol0*Cf**2*Cj*Rf**2*Rsh**3*fp**2*s**3 + 0.477464829275686*Avol0*Cf**2*Cj*Rf**2*Rsh**3*fp*s**4 + 1.0*Avol0*Cf**2*Rf**3*Rsh*fp**2*s**2 + 0.159154943091895*Avol0*Cf**2*Rf**3*Rsh*fp*s**3 + 3.0*Avol0*Cf**2*Rf**2*Rsh**2*fp**2*s**2 + 0.477464829275686*Avol0*Cf**2*Rf**2*Rsh**2*fp*s**3 + 2.0*Avol0*Cf*Cj**2*Rf**2*Rsh**3*fp**2*s**3 + 0.318309886183791*Avol0*Cf*Cj**2*Rf**2*Rsh**3*fp*s**4 + 4.0*Avol0*Cf*Cj*Rf**2*Rsh**2*fp**2*s**2 + 0.636619772367581*Avol0*Cf*Cj*Rf**2*Rsh**2*fp*s**3 + 3.0*Avol0*Cf*Cj*Rf*Rsh**3*fp**2*s**2 + 0.477464829275686*Avol0*Cf*Cj*Rf*Rsh**3*fp*s**3 + 2.0*Avol0*Cf*Rf**2*Rsh*fp**2*s + 0.318309886183791*Avol0*Cf*Rf**2*Rsh*fp*s**2 + 3.0*Avol0*Cf*Rf*Rsh**2*fp**2*s + 0.477464829275686*Avol0*Cf*Rf*Rsh**2*fp*s**2 + 1.0*Avol0*Cj**2*Rf*Rsh**3*fp**2*s**2 + 0.159154943091895*Avol0*Cj**2*Rf*Rsh**3*fp*s**3 + 2.0*Avol0*Cj*Rf*Rsh**2*fp**2*s + 0.318309886183791*Avol0*Cj*Rf*Rsh**2*fp*s**2 + 1.0*Avol0*Cj*Rsh**3*fp**2*s + 0.159154943091895*Avol0*Cj*Rsh**3*fp*s**2 + 1.0*Avol0*Rf*Rsh*fp**2 + 0.159154943091895*Avol0*Rf*Rsh*fp*s + 1.0*Avol0*Rsh**2*fp**2 + 0.159154943091895*Avol0*Rsh**2*fp*s + 1.0*Cf**3*Cj*Rf**3*Rsh**3*fp**2*s**4 + 0.318309886183791*Cf**3*Cj*Rf**3*Rsh**3*fp*s**5 + 0.0253302959105844*Cf**3*Cj*Rf**3*Rsh**3*s**6 + 1.0*Cf**3*Rf**3*Rsh**2*fp**2*s**3 + 0.318309886183791*Cf**3*Rf**3*Rsh**2*fp*s**4 + 0.0253302959105844*Cf**3*Rf**3*Rsh**2*s**5 + 2.0*Cf**2*Cj**2*Rf**3*Rsh**3*fp**2*s**4 + 0.636619772367581*Cf**2*Cj**2*Rf**3*Rsh**3*fp*s**5 + 0.0506605918211689*Cf**2*Cj**2*Rf**3*Rsh**3*s**6 + 4.0*Cf**2*Cj*Rf**3*Rsh**2*fp**2*s**3 + 1.27323954473516*Cf**2*Cj*Rf**3*Rsh**2*fp*s**4 + 0.101321183642338*Cf**2*Cj*Rf**3*Rsh**2*s**5 + 3.0*Cf**2*Cj*Rf**2*Rsh**3*fp**2*s**3 + 0.954929658551372*Cf**2*Cj*Rf**2*Rsh**3*fp*s**4 + 0.0759908877317533*Cf**2*Cj*Rf**2*Rsh**3*s**5 + 2.0*Cf**2*Rf**3*Rsh*fp**2*s**2 + 0.636619772367581*Cf**2*Rf**3*Rsh*fp*s**3 + 0.0506605918211689*Cf**2*Rf**3*Rsh*s**4 + 3.0*Cf**2*Rf**2*Rsh**2*fp**2*s**2 + 0.954929658551372*Cf**2*Rf**2*Rsh**2*fp*s**3 + 0.0759908877317533*Cf**2*Rf**2*Rsh**2*s**4 + 1.0*Cf*Cj**3*Rf**3*Rsh**3*fp**2*s**4 + 0.318309886183791*Cf*Cj**3*Rf**3*Rsh**3*fp*s**5 + 0.0253302959105844*Cf*Cj**3*Rf**3*Rsh**3*s**6 + 3.0*Cf*Cj**2*Rf**3*Rsh**2*fp**2*s**3 + 0.954929658551372*Cf*Cj**2*Rf**3*Rsh**2*fp*s**4 + 0.0759908877317533*Cf*Cj**2*Rf**3*Rsh**2*s**5 + 4.0*Cf*Cj**2*Rf**2*Rsh**3*fp**2*s**3 + 1.27323954473516*Cf*Cj**2*Rf**2*Rsh**3*fp*s**4 + 0.101321183642338*Cf*Cj**2*Rf**2*Rsh**3*s**5 + 3.0*Cf*Cj*Rf**3*Rsh*fp**2*s**2 + 0.954929658551372*Cf*Cj*Rf**3*Rsh*fp*s**3 + 0.0759908877317533*Cf*Cj*Rf**3*Rsh*s**4 + 8.0*Cf*Cj*Rf**2*Rsh**2*fp**2*s**2 + 2.54647908947033*Cf*Cj*Rf**2*Rsh**2*fp*s**3 + 0.202642367284676*Cf*Cj*Rf**2*Rsh**2*s**4 + 3.0*Cf*Cj*Rf*Rsh**3*fp**2*s**2 + 0.954929658551372*Cf*Cj*Rf*Rsh**3*fp*s**3 + 0.0759908877317533*Cf*Cj*Rf*Rsh**3*s**4 + 1.0*Cf*Rf**3*fp**2*s + 0.318309886183791*Cf*Rf**3*fp*s**2 + 0.0253302959105844*Cf*Rf**3*s**3 + 4.0*Cf*Rf**2*Rsh*fp**2*s + 1.27323954473516*Cf*Rf**2*Rsh*fp*s**2 + 0.101321183642338*Cf*Rf**2*Rsh*s**3 + 3.0*Cf*Rf*Rsh**2*fp**2*s + 0.954929658551372*Cf*Rf*Rsh**2*fp*s**2 + 0.0759908877317533*Cf*Rf*Rsh**2*s**3 + 1.0*Cj**3*Rf**2*Rsh**3*fp**2*s**3 + 0.318309886183791*Cj**3*Rf**2*Rsh**3*fp*s**4 + 0.0253302959105844*Cj**3*Rf**2*Rsh**3*s**5 + 3.0*Cj**2*Rf**2*Rsh**2*fp**2*s**2 + 0.954929658551372*Cj**2*Rf**2*Rsh**2*fp*s**3 + 0.0759908877317533*Cj**2*Rf**2*Rsh**2*s**4 + 2.0*Cj**2*Rf*Rsh**3*fp**2*s**2 + 0.636619772367581*Cj**2*Rf*Rsh**3*fp*s**3 + 0.0506605918211689*Cj**2*Rf*Rsh**3*s**4 + 3.0*Cj*Rf**2*Rsh*fp**2*s + 0.954929658551372*Cj*Rf**2*Rsh*fp*s**2 + 0.0759908877317533*Cj*Rf**2*Rsh*s**3 + 4.0*Cj*Rf*Rsh**2*fp**2*s + 1.27323954473516*Cj*Rf*Rsh**2*fp*s**2 + 0.101321183642338*Cj*Rf*Rsh**2*s**3 + 1.0*Cj*Rsh**3*fp**2*s + 0.318309886183791*Cj*Rsh**3*fp*s**2 + 0.0253302959105844*Cj*Rsh**3*s**3 + 1.0*Rf**2*fp**2 + 0.318309886183791*Rf**2*fp*s + 0.0253302959105844*Rf**2*s**2 + 2.0*Rf*Rsh*fp**2 + 0.636619772367581*Rf*Rsh*fp*s + 0.0506605918211689*Rf*Rsh*s**2 + 1.0*Rsh**2*fp**2 + 0.318309886183791*Rsh**2*fp*s + 0.0253302959105844*Rsh**2*s**2)
There is a difference between the maxima code and the python one: const 'pi' is kept symbolic in the first case, and approximated to a floating-point value in the second. Replacing np.pi with pi solves the problem, anyway it is weird how sympy tries to simplify the expression when pi is numeric.

First file path value not added into array on linux ubuntu

Running a python script on linux
pngs = []
for idx, device in enumerate(udid):
pngs += glob.glob(os.getcwd() + "/logs/" + device + "_" + get_model_of_android_phone(device) + "/" + "*.png")
print(glob.glob(os.getcwd() + "/logs/" + device + "_" + get_model_of_android_phone(device) + "/" + "*.png"))
The for loop will run twice and 2 pngs will be added into the array.
However, only the 2nd one was added into the array.
Not too sure why the first one is missing from the array.
When i try to print the entire path, the entire path is showing.
Example of the file path
['/home/ubuntu/logs/123456789_SM-G920I/123456789google_search_android.png']
have you tried with append?
for idx, device in enumerate(udid):
pngs.append(glob.glob(os.getcwd() + "/logs/" + device + "_" + get_model_of_android_phone(device) + "/" + "*.png"))
print(glob.glob(os.getcwd() + "/logs/" + device + "_" + get_model_of_android_phone(device) + "/" + "*.png"))```

Adding the values of two strings using Python and XML path

It generates an output with wallTime and setupwalltime into a dat file, which has the following format:
24000 4 0
81000 17 0
192000 59 0
648000 250 0
1536000 807 0
3000000 2144 0
6591000 5699 0
I would like to know how to add the two values i.e.(wallTime and setupwalltime) together. Can someone give me a hint? I tried converting to float, but it doesn’t seem to work.
import libxml2
import os.path
from numpy import *
from cfs_utils import *
np=[1,2,3,4,5,6,7,8]
n=[20,30,40,60,80,100,130]
solver=["BiCGSTABL_iluk", "BiCGSTABL_saamg", "BiCGSTABL_ssor" , "CG_iluk", "CG_saamg", "CG_ssor" ]# ,"cholmod", "ilu" ]
file_list=["eval_BiCGSTABL_iluk_default", "eval_BiCGSTABL_saamg_default" , "eval_BiCGSTABL_ssor_default" , "eval_CG_iluk_default","eval_CG_saamg_default", "eval_CG_ssor_default" ] # "simp_cholmod_solver_3D_evaluate", "simp_ilu_solver_3D_evaluate" ]
for cnt_np in np:
i=0
for sol in solver:
#open write_file= "Graphs/" + "Np"+ cnt_np + "/CG_iluk.dat"
#"Graphs/Np1/CG_iluk.dat"
write_file = open("Graphs/"+ "Np"+ str(cnt_np) + "/" + sol + ".dat", "w")
print("Reading " + "Graphs/"+ "Np"+ str(cnt_np) + "/" + sol + ".dat"+ "\n")
#loop through different unknowns
for cnt_n in n:
#open file "cfs_calculations_" + cnt_n +"np"+ cnt_np+ "/" + file_list(i) + "_default.info.xml"
read_file = "cfs_calculations_" +str(cnt_n) +"np"+ str(cnt_np) + "/" + file_list[i] + ".info.xml"
print("File list" + file_list[i] + "vlaue of i " + str(i) + "\n")
print("Reading " + " cfs_calculations_" +str(cnt_n) +"np"+ str(cnt_np) + "/" + file_list[i] + ".info.xml" )
#read wall and cpu time and write
if os.path.exists(read_file):
doc = libxml2.parseFile(read_file)
xml = doc.xpathNewContext()
walltime = xpath(xml, "//cfsInfo/sequenceStep/OLAS/mechanic/solver/summary/solve/timer/#wall")
setupwalltime = xpath(xml, "//cfsInfo/sequenceStep/OLAS/mechanic/solver/summary/setup/timer/#wall")
# cputime = xpath(xml, "//cfsInfo/sequenceStep/OLAS/mechanic/solver/summary/solve/timer/#cpu")
# setupcputime = xpath(xml, "//cfsInfo/sequenceStep/OLAS/mechanic/solver/summary/solve/timer/#cpu")
unknowns = 3*cnt_n*cnt_n*cnt_n
write_file.write(str(unknowns) + "\t" + walltime + "\t" + setupwalltime + "\n")
print("Writing_point" + str(unknowns) + "%f" ,float(setupwalltime ) )
doc.freeDoc()
xml.xpathFreeContext()
write_file.close()
i=i+1
In java you can add strings and floats. What I understand is that you need to add the values and then display them. That would work (stringing the sum)
write_file.write(str(unknowns) + "\f" + str(float(walltime) + float(setupwalltime)) + "\n")
You are trying to add a str to a float. That doesn't work. If you want to use string concatenation, first coerce all of the values to str. Try this:
write_file.write(str(unknowns) + "\t" + str(float(walltime) + float(setupwalltime)) + "\n")
Or, perhaps more readably:
totalwalltime = float(walltime) + float(setupwalltime)
write_file.write("{}\t{}\n".format(unknowns, totalwalltime))

Naming LDA topics in Python

I am new to python and trying to implement topic modelling. I am successful in implementing LDA in pything using gensim , but I am not able to give any label/name to these topics.
How do we name these topics? please help out with the best way to implement in python.
My LDA output is somewhat like this(please let me know if you need the code) :-
0.024*research + 0.021*students + 0.019*conference + 0.019*chi + 0.017*field + 0.014*work + 0.013*student + 0.013*hci + 0.013*group + 0.013*researchers
0.047*research + 0.034*students + 0.020*ustars + 0.018*underrepresented + 0.017*participants + 0.012*researchers + 0.012*mathematics + 0.012*graduate + 0.012*mathematical + 0.012*conference
0.027*students + 0.026*research + 0.018*conference + 0.017*field + 0.015*new + 0.014*participants + 0.013*chi + 0.012*robotics + 0.010*researchers + 0.010*student
0.023*students + 0.019*robotics + 0.018*conference + 0.017*international + 0.016*interact + 0.016*new + 0.016*ph.d. + 0.016*meet + 0.016*ieee + 0.015*u.s.
0.033*research + 0.030*flow + 0.028*field + 0.023*visualization + 0.020*challenges + 0.017*students + 0.015*project + 0.013*shape + 0.013*visual + 0.012*data
0.044*research + 0.020*mathematics + 0.017*program + 0.014*june + 0.014*conference + 0.014*- + 0.013*mathematicians + 0.013*conferences + 0.011*field + 0.011*mrc
0.023*research + 0.021*students + 0.015*field + 0.014*hovering + 0.014*mechanisms + 0.014*dpiv + 0.013*aerodynamic + 0.012*unsteady + 0.012*conference + 0.012*hummingbirds
0.031*research + 0.018*mathematics + 0.016*program + 0.014*flow + 0.014*mathematicians + 0.012*conferences + 0.011*field + 0.011*june + 0.010*visualization + 0.010*communities
0.028*students + 0.028*research + 0.018*ustars + 0.018*mathematics + 0.015*underrepresented + 0.010*program + 0.010*encouraging + 0.010*'', + 0.010*participants + 0.010*conference
0.049*research + 0.021*conference + 0.021*program + 0.020*mathematics + 0.014*mathematicians + 0.013*field + 0.013*- + 0.011*conferences + 0.010*areas
Labeling topics is completely distinct from topic modeling. Here's an article that describes using a keyword extraction technique (KERA) to apply meaningful labels to topics: http://arxiv.org/abs/1308.2359

Categories