Importing Fraction from fractions to give a fractional representation of a real number, but giving responses quite complicated which seems very simple by the paper-pen method.
Fractions(.2) giving answer 3602879701896397/18014398509481984,
which is 0.20000000000000001110223024625157, almost .2, but I want it to be simply 1/5.
I know there's limit() for this use, but what I simply required is smallest numerator and denominator which gives the exact real number bcoz I am dealing with a lot of numbers in a big range so i cant use same limit() argument for all.
You can use the Fraction class to represent 0.2, and you can access the numerator and denominator as follows:
>>> from fractions import Fraction
>>> f = Fraction(1, 5)
>>> f.numerator
1
>>> f.denominator
5
Hope it helps.
Your strange output results from float point problems. You can in certain cases overcome this by limiting the denominator with Fraction.limit_denominator(). This procedure can of course also cause rounding errors, if the real value of the denominator is larger than the threshold you use. The default value for this threshold is 1,000,000, but you can also use smaller values.
>>> import fractions
>>> print(fractions.Fraction(0.1))
3602879701896397/36028797018963968
>>> # lower the threshold to 1000
>>> print(fractions.Fraction(0.1).limit_denominator(1000))
1/10
>>> # alternatively, use a str representation as per documentation/examples
>>> print(fractions.Fraction('0.1'))
1/10
>>> # won't work for smaller fractions, use default of 1,000,000 instead
>>> print(fractions.Fraction(0.00001).limit_denominator(1000))
0
>>> print(fractions.Fraction(0.00001).limit_denominator())
1/100000
Of course, as explained in the first sentence, there are precision limitations due to the way float numbers are stored. If you have numbers in the magnitude of 10^9, you won't get an accurate representation of 10 digits in the fractional part as
a = 1234567890.0987654321
print(a)
demonstrates. But you might ask yourself, if you really need an accuracy of 10^-15, if your input doesn't reflect this accuracy. If you want to have a higher precision, you have to use the decimal module right from the start with increased precision level throughout all mathematical operations. Even better is to take care of numerators and denominators as integer values from the beginning - in Python integer values are theoretically not restricted in size
Related
The Python Fraction type, as I understand it, outputs the simplified version of whatever you put inside it (i.e. print(Fraction(4/8)) prints out 1/2). However, for certain inputs I'm getting really weird results:
Fraction(984/1920) should output 41/80, but instead gives
2308094809027379/4503599627370496.
Fraction(1000/992) should output 125/124, but instead gives 4539918979204129/4503599627370496.
Fraction(408/896) should output 51/112, but instead gives 8202985035567689/18014398509481984.
When I input the correctly simplified fraction into the Fraction type, I get the same buggy representation - same massive values, even. There are many more examples where these came from. Any ideas as to why this is the case, and what I can do to remedy it?
Use a comma to separate the numerator and denominator:
>>> Fraction(984/1920)
Fraction(2308094809027379, 4503599627370496)
>>> Fraction(984, 1920)
Fraction(41, 80)
Using / means that the binary-floating point division takes place first, before the inputs are passed to Fraction. So, the displayed fraction is for the binary floating point number after it has been rounded to a fraction with 53-bits of precision in the numerator and a power-of-two for the denominator:
>>> 984 / 1920
0.5125
>>> (0.5125).as_integer_ratio()
(2308094809027379, 4503599627370496)
By separating the arguments to Fraction, you are passing in exact integers for the numerator and denominator, which can then be reduced to lowest terms using the greatest-common-denominator algorithm.
I would like to generate uniformly distributed random numbers between 0 and 0.5, but truncated to 2 decimal places.
without the truncation, I know this is done by
import numpy as np
rs = np.random.RandomState(123456)
set = rs.uniform(size=(50,1))*0.5
could anyone help me with suggestions on how to generate random numbers up to 2 d.p. only? Thanks!
A float cannot be truncated (or rounded) to 2 decimal digits, because there are many values with 2 decimal digits that just cannot be represented exactly as an IEEE double.
If you really want what you say you want, you need to use a type with exact precision, like Decimal.
Of course there are downsides to doing that—the most obvious one for numpy users being that you will have to use dtype=object, with all of the compactness and performance implications.
But it's the only way to actually do what you asked for.
Most likely, what you actually want to do is either Joran Beasley's answer (leave them untruncated, and just round at print-out time) or something similar to Lauritz V. Thaulow's answer (get the closest approximation you can, then use explicit epsilon checks everywhere).
Alternatively, you can do implicitly fixed-point arithmetic, as David Heffernan suggests in a comment: Generate random integers between 0 and 50, keep them as integers within numpy, and just format them as fixed point decimals and/or convert to Decimal when necessary (e.g., for printing results). This gives you all of the advantages of Decimal without the costs… although it does open an obvious window to create new bugs by forgetting to shift 2 places somewhere.
decimals are not truncated to 2 decimal places ever ... however their string representation maybe
import numpy as np
rs = np.random.RandomState(123456)
set = rs.uniform(size=(50,1))*0.5
print ["%0.2d"%val for val in set]
How about this?
np.random.randint(0, 50, size=(50,1)).astype("float") / 100
That is, create random integers between 0 and 50, and divide by 100.
EDIT:
As made clear in the comments, this will not give you exact two-digit decimals to work with, due to the nature of float representations in memory. It may look like you have the exact float 0.1 in your array, but it definitely isn't exactly 0.1. But it is very very close, and you can get it closer by using a "double" datatype instead.
You can postpone this problem by just keeping the numbers as integers, and remember that they're to be divided by 100 when you use them.
hundreds = random.randint(0, 50, size=(50, 1))
Then at least the roundoff won't happen until at the last minute (or maybe not at all, if the numerator of the equation is a multiple of the denominator).
I managed to find another alternative:
import numpy as np
rs = np.random.RandomState(123456)
set = rs.uniform(size=(50,2))
for i in range(50):
for j in range(2):
set[i,j] = round(set[i,j],2)
Is there a way to round a python float to x decimals? For example:
>>> x = roundfloat(66.66666666666, 4)
66.6667
>>> x = roundfloat(1.29578293, 6)
1.295783
I've found ways to trim/truncate them (66.666666666 --> 66.6666), but not round (66.666666666 --> 66.6667).
I feel compelled to provide a counterpoint to Ashwini Chaudhary's answer. Despite appearances, the two-argument form of the round function does not round a Python float to a given number of decimal places, and it's often not the solution you want, even when you think it is. Let me explain...
The ability to round a (Python) float to some number of decimal places is something that's frequently requested, but turns out to be rarely what's actually needed. The beguilingly simple answer round(x, number_of_places) is something of an attractive nuisance: it looks as though it does what you want, but thanks to the fact that Python floats are stored internally in binary, it's doing something rather subtler. Consider the following example:
>>> round(52.15, 1)
52.1
With a naive understanding of what round does, this looks wrong: surely it should be rounding up to 52.2 rather than down to 52.1? To understand why such behaviours can't be relied upon, you need to appreciate that while this looks like a simple decimal-to-decimal operation, it's far from simple.
So here's what's really happening in the example above. (deep breath) We're displaying a decimal representation of the nearest binary floating-point number to the nearest n-digits-after-the-point decimal number to a binary floating-point approximation of a numeric literal written in decimal. So to get from the original numeric literal to the displayed output, the underlying machinery has made four separate conversions between binary and decimal formats, two in each direction. Breaking it down (and with the usual disclaimers about assuming IEEE 754 binary64 format, round-ties-to-even rounding, and IEEE 754 rules):
First the numeric literal 52.15 gets parsed and converted to a Python float. The actual number stored is 7339460017730355 * 2**-47, or 52.14999999999999857891452847979962825775146484375.
Internally as the first step of the round operation, Python computes the closest 1-digit-after-the-point decimal string to the stored number. Since that stored number is a touch under the original value of 52.15, we end up rounding down and getting a string 52.1. This explains why we're getting 52.1 as the final output instead of 52.2.
Then in the second step of the round operation, Python turns that string back into a float, getting the closest binary floating-point number to 52.1, which is now 7332423143312589 * 2**-47, or 52.10000000000000142108547152020037174224853515625.
Finally, as part of Python's read-eval-print loop (REPL), the floating-point value is displayed (in decimal). That involves converting the binary value back to a decimal string, getting 52.1 as the final output.
In Python 2.7 and later, we have the pleasant situation that the two conversions in step 3 and 4 cancel each other out. That's due to Python's choice of repr implementation, which produces the shortest decimal value guaranteed to round correctly to the actual float. One consequence of that choice is that if you start with any (not too large, not too small) decimal literal with 15 or fewer significant digits then the corresponding float will be displayed showing those exact same digits:
>>> x = 15.34509809234
>>> x
15.34509809234
Unfortunately, this furthers the illusion that Python is storing values in decimal. Not so in Python 2.6, though! Here's the original example executed in Python 2.6:
>>> round(52.15, 1)
52.200000000000003
Not only do we round in the opposite direction, getting 52.2 instead of 52.1, but the displayed value doesn't even print as 52.2! This behaviour has caused numerous reports to the Python bug tracker along the lines of "round is broken!". But it's not round that's broken, it's user expectations. (Okay, okay, round is a little bit broken in Python 2.6, in that it doesn't use correct rounding.)
Short version: if you're using two-argument round, and you're expecting predictable behaviour from a binary approximation to a decimal round of a binary approximation to a decimal halfway case, you're asking for trouble.
So enough with the "two-argument round is bad" argument. What should you be using instead? There are a few possibilities, depending on what you're trying to do.
If you're rounding for display purposes, then you don't want a float result at all; you want a string. In that case the answer is to use string formatting:
>>> format(66.66666666666, '.4f')
'66.6667'
>>> format(1.29578293, '.6f')
'1.295783'
Even then, one has to be aware of the internal binary representation in order not to be surprised by the behaviour of apparent decimal halfway cases.
>>> format(52.15, '.1f')
'52.1'
If you're operating in a context where it matters which direction decimal halfway cases are rounded (for example, in some financial contexts), you might want to represent your numbers using the Decimal type. Doing a decimal round on the Decimal type makes a lot more sense than on a binary type (equally, rounding to a fixed number of binary places makes perfect sense on a binary type). Moreover, the decimal module gives you better control of the rounding mode. In Python 3, round does the job directly. In Python 2, you need the quantize method.
>>> Decimal('66.66666666666').quantize(Decimal('1e-4'))
Decimal('66.6667')
>>> Decimal('1.29578293').quantize(Decimal('1e-6'))
Decimal('1.295783')
In rare cases, the two-argument version of round really is what you want: perhaps you're binning floats into bins of size 0.01, and you don't particularly care which way border cases go. However, these cases are rare, and it's difficult to justify the existence of the two-argument version of the round builtin based on those cases alone.
Use the built-in function round():
In [23]: round(66.66666666666,4)
Out[23]: 66.6667
In [24]: round(1.29578293,6)
Out[24]: 1.295783
help on round():
round(number[, ndigits]) -> floating point number
Round a number to a given precision in decimal digits (default 0
digits). This always returns a floating point number. Precision may
be negative.
Default rounding in python and numpy:
In: [round(i) for i in np.arange(10) + .5]
Out: [0, 2, 2, 4, 4, 6, 6, 8, 8, 10]
I used this to get integer rounding to be applied to a pandas series:
import decimal
and use this line to set the rounding to "half up" a.k.a rounding as taught in school:
decimal.getcontext().rounding = decimal.ROUND_HALF_UP
Finally I made this function to apply it to a pandas series object
def roundint(value):
return value.apply(lambda x: int(decimal.Decimal(x).to_integral_value()))
So now you can do roundint(df.columnname)
And for numbers:
In: [int(decimal.Decimal(i).to_integral_value()) for i in np.arange(10) + .5]
Out: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Credit: kares
The Mark Dickinson answer, although complete, didn't work with the float(52.15) case. After some tests, there is the solution that I'm using:
import decimal
def value_to_decimal(value, decimal_places):
decimal.getcontext().rounding = decimal.ROUND_HALF_UP # define rounding method
return decimal.Decimal(str(float(value))).quantize(decimal.Decimal('1e-{}'.format(decimal_places)))
(The conversion of the 'value' to float and then string is very important, that way, 'value' can be of the type float, decimal, integer or string!)
Hope this helps anyone.
I coded a function (used in Django project for DecimalField) but it can be used in Python project :
This code :
Manage integers digits to avoid too high number
Manage decimals digits to avoid too low number
Manage signed and unsigned numbers
Code with tests :
def convert_decimal_to_right(value, max_digits, decimal_places, signed=True):
integer_digits = max_digits - decimal_places
max_value = float((10**integer_digits)-float(float(1)/float((10**decimal_places))))
if signed:
min_value = max_value*-1
else:
min_value = 0
if value > max_value:
value = max_value
if value < min_value:
value = min_value
return round(value, decimal_places)
value = 12.12345
nb = convert_decimal_to_right(value, 4, 2)
# nb : 12.12
value = 12.126
nb = convert_decimal_to_right(value, 4, 2)
# nb : 12.13
value = 1234.123
nb = convert_decimal_to_right(value, 4, 2)
# nb : 99.99
value = -1234.123
nb = convert_decimal_to_right(value, 4, 2)
# nb : -99.99
value = -1234.123
nb = convert_decimal_to_right(value, 4, 2, signed = False)
# nb : 0
value = 12.123
nb = convert_decimal_to_right(value, 8, 4)
# nb : 12.123
def trim_to_a_point(num, dec_point):
factor = 10**dec_point # number of points to trim
num = num*factor # multiple
num = int(num) # use the trimming of int
num = num/factor #divide by the same factor of 10s you multiplied
return num
#test
a = 14.1234567
trim_to_a_point(a, 5)
output
========
14.12345
multiple by 10^ decimal point you want
truncate with int() method
divide by the same number you multiplied before
done!
Just posted this for educational reasons i think it is correct though :)
The reason I'm asking this is because there is a validation in OpenERP that it's driving me crazy:
>>> round(1.2 / 0.01) * 0.01
1.2
>>> round(12.2 / 0.01) * 0.01
12.200000000000001
>>> round(122.2 / 0.01) * 0.01
122.2
>>> round(1222.2 / 0.01) * 0.01
1222.2
As you can see, the second round is returning an odd value.
Can someone explain to me why is this happening?
This has in fact nothing to with round, you can witness the exact same problem if you just do 1220 * 0.01:
>>> 1220*0.01
12.200000000000001
What you see here is a standard floating point issue.
You might want to read what Wikipedia has to say about floating point accuracy problems:
The fact that floating-point numbers cannot precisely represent all real numbers, and that floating-point operations cannot precisely represent true arithmetic operations, leads to many surprising situations. This is related to the finite precision with which computers generally represent numbers.
Also see:
Numerical analysis
Numerical stability
A simple example for numerical instability with floating-point:
the numbers are finite. lets say we save 4 digits after the dot in a given computer or language.
0.0001 multiplied with 0.0001 would result something lower than 0.0001, and therefore it is impossible to save this result!
In this case if you calculate (0.0001 x 0.0001) / 0.0001 = 0.0001, this simple computer will fail in being accurate because it tries to multiply first and only afterwards to divide. In javascript, dividing with fractions leads to similar inaccuracies.
The float type that you are using stores binary floating point numbers. Not every decimal number is exactly representable as a float. In particular there is no exact representation of 1.2 or 0.01, so the actual number stored in the computer will differ very slightly from the value written in the source code. This representation error can cause calculations to give slightly different results from the exact mathematical result.
It is important to be aware of the possibility of small errors whenever you use floating point arithmetic, and write your code to work well even when the values calculated are not exactly correct. For example, you should consider rounding values to a certain number of decimal places when displaying them to the user.
You could also consider using the decimal type which stores decimal floating point numbers. If you use decimal then 1.2 can be stored exactly. However, working with decimal will reduce the performance of your code. You should only use it if exact representation of decimal numbers is important. You should also be aware that decimal does not mean that you'll never have any problems. For example 0.33333... has no exact representation as a decimal.
There is a loss of accuracy from the division due to the way floating point numbers are stored, so you see that this identity doesn't hold
>>> 12.2 / 0.01 * 0.01 == 12.2
False
bArmageddon, has provided a bunch of links which you should read, but I believe the takeaway message is don't expect floats to give exact results unless you fully understand the limits of the representation.
Especially don't use floats to represent amounts of money! which is a pretty common mistake
Python also has the decimal module, which may be useful to you
Others have answered your question and mentioned that many numbers don't have an exact binary fractional representation. If you are accustomed to working only with decimal numbers, it can seem deeply weird that a nice, "round" number like 0.01 could be a non-terminating number in some other base. In the spirit of "seeing is believing," here's a little Python program that will print out a binary representation of any number to any desired number of digits.
from decimal import Decimal
n = Decimal("0.01") # the number to print the binary equivalent of
m = 1000 # maximum number of digits to print
p = -1
r = []
w = int(n)
n = abs(n) - abs(w)
while n and -p < m:
s = Decimal(2) ** p
if n >= s:
r.append("1")
n -= s
else:
r.append("0")
p -= 1
print "%s.%s%s" % ("-" if w < 0 else "", bin(abs(w))[2:],
"".join(r), "..." if n else "")
The built-in Python str() function outputs some weird results when passing in floats with many decimals. This is what happens:
>>> str(19.9999999999999999)
>>> '20.0'
I'm expecting to get:
>>> '19.9999999999999999'
Does anyone know why? and maybe workaround it?
Thanks!
It's not str() that rounds, it's the fact that you're using floats in the first place. Float types are fast, but have limited precision; in other words, they are imprecise by design. This applies to all programming languages. For more details on float quirks, please read "What Every Programmer Should Know About Floating-Point Arithmetic"
If you want to store and operate on precise numbers, use the decimal module:
>>> from decimal import Decimal
>>> str(Decimal('19.9999999999999999'))
'19.9999999999999999'
A float has 32 bits (in C at least). One of those bits is allocated for the sign, a few allocated for the mantissa, and a few allocated for the exponent. You can't fit every single decimal to an infinite number of digits into 32 bits. Therefore floating point numbers are heavily based on rounding.
If you try str(19.998), it will probably give you something at least close to 19.998 because 32 bits have enough precision to estimate that, but something like 19.999999999999999 is too precise to estimate in 32 bits, so it rounds to the nearest possible value, which happens to be 20.
Please note that this is a problem of understanding floating point (fixed-length) numbers. Most languages do exactly (or very similar to) what Python does.
Python float is IEEE 754 64-bit binary floating point. It is limited to 53 bits of precision i.e. slightly less than 16 decimal digits of precision. 19.9999999999999999 contains 18 decimal digits; it cannot be represented exactly as a float. float("19.9999999999999999") produces the nearest floating point value, which happens to be the same as float("20.0").
>>> float("19.9999999999999999") == float("20.0")
True
If by "many decimals" you mean "many digits after the decimal point", please be aware that the same "weird" results happen when there are many decimal digits before the decimal point:
>>> float("199999999999999999")
2e+17
If you want the full float precision, don't use str(), use repr():
>>> x = 1. / 3.
>>> str(x)
'0.333333333333'
>>> str(x).count('3')
12
>>> repr(x)
'0.3333333333333333'
>>> repr(x).count('3')
16
>>>
Update It's interesting how often decimal is prescribed as a cure-all for float-induced astonishment. This is often accompanied by simple examples like 0.1 + 0.1 + 0.1 != 0.3. Nobody stops to point out that decimal has its share of deficiencies e.g.
>>> (1.0 / 3.0) * 3.0
1.0
>>> (Decimal('1.0') / Decimal('3.0')) * Decimal('3.0')
Decimal('0.9999999999999999999999999999')
>>>
True, float is limited to 53 binary digits of precision. By default, decimal is limited to 28 decimal digits of precision.
>>> Decimal(2) / Decimal(3)
Decimal('0.6666666666666666666666666667')
>>>
You can change the limit, but it's still limited precision. You still need to know the characteristics of the number format to use it effectively without "astonishing" results, and the extra precision is bought by slower operation (unless you use the 3rd-party cdecimal module).
For any given binary floating point number, there is an infinite set of decimal fractions that, on input, round to that number. Python's str goes to some trouble to produce the shortest decimal fraction from this set; see GLS's paper http://kurtstephens.com/files/p372-steele.pdf for the general algorithm (IIRC they use a refinement that avoids arbitrary-precision math in most cases). You happened to input a decimal fraction that rounds to a float (IEEE double) whose shortest possible decimal fraction is not the same as the one you entered.