Pause worker thread and wait for event from main thread - python

We have an application that executes different queries. It starts up to four threads, and runs the extractions on them.
That part looks like this:
if len(self.threads) == 4:
self.__maxThreadsMsg(base)
return False
else:
self.threads.append(Extractor(self.ui, base))
self.threads[-1].start()
self.__extractionMsg(base)
return True
Our Extractor class inherits QThread:
class Extractor(QThread):
def init(self, ui, base):
QThread.__init__(self)
self.ui = ui
self.base = base
def run(self):
self.run_base(base)
and self.ui is set to Ui_MainWindow():
class Cont(QMainWindow):
def __init__(self, parent=None):
QWidget.__init__(self,parent)
self.ui = Ui_MainWindow()
self.ui.setupUi(self)
There is a specific base that sends data to the user (back to the main window) before proceeding (in this case, a pop-up with two buttons):
#This code is in the main file inside a method, not in the Extractor class
msg_box = QMessagebox()
msg_box.setText('Quantity in base: '.format(n))
msg_box.setInformativeText('Would you like to continue?')
msg_box.setStandardButtons(QMessageBox.Ok | QMessageBox.Cancel)
signal = msg_box.exec_()
How can I pause the thread at a certain point, display the window (which I believe would be returning to the main thread) and return to the worker thread, passing the button clicked event?
I read a bit about signals but it seems confusing as it is my first time dealing with threads.
Edit: After reading this question: Similar question, I altered the code to this:
On a method inside of the Cont class
thread = QThread(self)
worker = Worker()
worker.moveToThread(thread)
worker.bv.connect(self.bv_test)
thread.started.connect(worker.process()) # This, unlike in the linked question..
#doesn't work if I remove the parentheses of the process function.
#If I remove it, nothing happens and I get QThread: "Destroyed while thread is still running"
thread.start()
#pyqtSlot(int)
def bv_test(self, n):
k = QMessageBox()
k.setText('Quantity: {}'.format(n))
k.setStandardButtons(QMessageBox.Yes | QMessageBox.No)
ret = k.exec_()
return ret
and this is the Worker class:
class Worker(QObject):
#Signals
bv = pyqtSignal(int)
def process(self):
self.bv.emit(99)
Now I just need to figure out how to send the ret value back to the worker thread so it starts the second process. I also keep getting this error:
TypeError: connect() slot argument should be a callable or a signal, not 'NoneType'

Below is a simple demo based on the code in your question which does what you want. There is not much to say about it, really, other than that you need to communicate between the worker and the main thread via signals (in both directions). The finished signal is used to quit the thread, which will stop the warning message QThread: "Destroyed while thread is still running" being shown.
The reason why you are seeing the error:
TypeError: connect() slot argument should be a callable or a signal, not `NoneType'
is because you are trying to connect a signal with the return value of a function (which is None), rather than the function object itself. You must always pass a python callable object to the connect method - anything else will raise a TypeError.
Please run the script below and confirm that it works as expected. Hopefully it should be easy to see how to adapt it to work with your real code.
from PyQt4.QtCore import *
from PyQt4.QtGui import *
class Cont(QWidget):
confirmed = pyqtSignal()
def __init__(self):
super(Cont, self).__init__()
self.thread = QThread()
self.worker = Worker()
self.worker.moveToThread(self.thread)
self.worker.bv.connect(self.bv_test)
self.worker.finished.connect(self.thread.quit)
self.confirmed.connect(self.worker.process_two)
self.thread.started.connect(self.worker.process_one)
self.thread.start()
def bv_test(self, n):
k = QMessageBox(self)
k.setAttribute(Qt.WA_DeleteOnClose)
k.setText('Quantity: {}'.format(n))
k.setStandardButtons(QMessageBox.Yes | QMessageBox.No)
if k.exec_() == QMessageBox.Yes:
self.confirmed.emit()
else:
self.thread.quit()
class Worker(QObject):
bv = pyqtSignal(int)
finished = pyqtSignal()
def process_two(self):
print('process: two: started')
QThread.sleep(1)
print('process: two: finished')
self.finished.emit()
def process_one(self):
print('process: one: started')
QThread.sleep(1)
self.bv.emit(99)
print('process: one: finished')
app = QApplication([''])
win = Cont()
win.setGeometry(100, 100, 100, 100)
win.show()
app.exec_()

If you want the thread to wait for the action, connect to a signal from the thread using
PyQt4.QtCore.Qt.BlockingQueuedConnection
as flag.
Now I do not understand why you need threading if you let them wait, which brings in a lot of complexity. For me the better solution would be to cut the task you want to perform in the threads in smaller pieces. Each time a piece is ready, you can ask if the user wants the next too.

Related

my code window doesnt responding when its calculating stuffs [duplicate]

I have a program which interfaces with a radio I am using via a gui I wrote in PyQt. Obviously one of the main functions of the radio is to transmit data, but to do this continuously, I have to loop the writes, which causes the gui to hang. Since I have never dealt with threading, I tried to get rid of these hangs using QCoreApplication.processEvents(). The radio needs to sleep between transmissions, though, so the gui still hangs based on how long these sleeps last.
Is there a simple way to fix this using QThread? I have looked for tutorials on how to implement multithreading with PyQt, but most of them deal with setting up servers and are much more advanced than I need them to be. I honestly don't even really need my thread to update anything while it is running, I just need to start it, have it transmit in the background, and stop it.
I created a little example that shows 3 different and simple ways of dealing with threads. I hope it will help you find the right approach to your problem.
import sys
import time
from PyQt5.QtCore import (QCoreApplication, QObject, QRunnable, QThread,
QThreadPool, pyqtSignal)
# Subclassing QThread
# http://qt-project.org/doc/latest/qthread.html
class AThread(QThread):
def run(self):
count = 0
while count < 5:
time.sleep(1)
print("A Increasing")
count += 1
# Subclassing QObject and using moveToThread
# http://blog.qt.digia.com/blog/2007/07/05/qthreads-no-longer-abstract
class SomeObject(QObject):
finished = pyqtSignal()
def long_running(self):
count = 0
while count < 5:
time.sleep(1)
print("B Increasing")
count += 1
self.finished.emit()
# Using a QRunnable
# http://qt-project.org/doc/latest/qthreadpool.html
# Note that a QRunnable isn't a subclass of QObject and therefore does
# not provide signals and slots.
class Runnable(QRunnable):
def run(self):
count = 0
app = QCoreApplication.instance()
while count < 5:
print("C Increasing")
time.sleep(1)
count += 1
app.quit()
def using_q_thread():
app = QCoreApplication([])
thread = AThread()
thread.finished.connect(app.exit)
thread.start()
sys.exit(app.exec_())
def using_move_to_thread():
app = QCoreApplication([])
objThread = QThread()
obj = SomeObject()
obj.moveToThread(objThread)
obj.finished.connect(objThread.quit)
objThread.started.connect(obj.long_running)
objThread.finished.connect(app.exit)
objThread.start()
sys.exit(app.exec_())
def using_q_runnable():
app = QCoreApplication([])
runnable = Runnable()
QThreadPool.globalInstance().start(runnable)
sys.exit(app.exec_())
if __name__ == "__main__":
#using_q_thread()
#using_move_to_thread()
using_q_runnable()
Take this answer updated for PyQt5, python 3.4
Use this as a pattern to start a worker that does not take data and return data as they are available to the form.
1 - Worker class is made smaller and put in its own file worker.py for easy memorization and independent software reuse.
2 - The main.py file is the file that defines the GUI Form class
3 - The thread object is not subclassed.
4 - Both thread object and the worker object belong to the Form object
5 - Steps of the procedure are within the comments.
# worker.py
from PyQt5.QtCore import QThread, QObject, pyqtSignal, pyqtSlot
import time
class Worker(QObject):
finished = pyqtSignal()
intReady = pyqtSignal(int)
#pyqtSlot()
def procCounter(self): # A slot takes no params
for i in range(1, 100):
time.sleep(1)
self.intReady.emit(i)
self.finished.emit()
And the main file is:
# main.py
from PyQt5.QtCore import QThread
from PyQt5.QtWidgets import QApplication, QLabel, QWidget, QGridLayout
import sys
import worker
class Form(QWidget):
def __init__(self):
super().__init__()
self.label = QLabel("0")
# 1 - create Worker and Thread inside the Form
self.obj = worker.Worker() # no parent!
self.thread = QThread() # no parent!
# 2 - Connect Worker`s Signals to Form method slots to post data.
self.obj.intReady.connect(self.onIntReady)
# 3 - Move the Worker object to the Thread object
self.obj.moveToThread(self.thread)
# 4 - Connect Worker Signals to the Thread slots
self.obj.finished.connect(self.thread.quit)
# 5 - Connect Thread started signal to Worker operational slot method
self.thread.started.connect(self.obj.procCounter)
# * - Thread finished signal will close the app if you want!
#self.thread.finished.connect(app.exit)
# 6 - Start the thread
self.thread.start()
# 7 - Start the form
self.initUI()
def initUI(self):
grid = QGridLayout()
self.setLayout(grid)
grid.addWidget(self.label,0,0)
self.move(300, 150)
self.setWindowTitle('thread test')
self.show()
def onIntReady(self, i):
self.label.setText("{}".format(i))
#print(i)
app = QApplication(sys.argv)
form = Form()
sys.exit(app.exec_())
According to the Qt developers, subclassing QThread is incorrect (see http://blog.qt.io/blog/2010/06/17/youre-doing-it-wrong/). But that article is really hard to understand (plus the title is a bit condescending). I found a better blog post that gives a more detailed explanation about why you should use one style of threading over another: http://mayaposch.wordpress.com/2011/11/01/how-to-really-truly-use-qthreads-the-full-explanation/
Also, I would highly recommend this video from KDAB on signals and slots between threads.
In my opinion, you should probably never subclass thread with the intent to overload the run method. While that does work, you're basically circumventing how Qt wants you to work. Plus you'll miss out on things like events and proper thread safe signals and slots. Plus as you'll likely see in the above blog post, the "correct" way of threading forces you to write more testable code.
Here's a couple of examples of how to take advantage of QThreads in PyQt (I posted a separate answer below that properly uses QRunnable and incorporates signals/slots, that answer is better if you have a lot of async tasks that you need to load balance).
import sys
from PyQt4 import QtCore
from PyQt4 import QtGui
from PyQt4.QtCore import Qt
# very testable class (hint: you can use mock.Mock for the signals)
class Worker(QtCore.QObject):
finished = QtCore.pyqtSignal()
dataReady = QtCore.pyqtSignal(list, dict)
#QtCore.pyqtSlot()
def processA(self):
print "Worker.processA()"
self.finished.emit()
#QtCore.pyqtSlot(str, list, list)
def processB(self, foo, bar=None, baz=None):
print "Worker.processB()"
for thing in bar:
# lots of processing...
self.dataReady.emit(['dummy', 'data'], {'dummy': ['data']})
self.finished.emit()
class Thread(QtCore.QThread):
"""Need for PyQt4 <= 4.6 only"""
def __init__(self, parent=None):
QtCore.QThread.__init__(self, parent)
# this class is solely needed for these two methods, there
# appears to be a bug in PyQt 4.6 that requires you to
# explicitly call run and start from the subclass in order
# to get the thread to actually start an event loop
def start(self):
QtCore.QThread.start(self)
def run(self):
QtCore.QThread.run(self)
app = QtGui.QApplication(sys.argv)
thread = Thread() # no parent!
obj = Worker() # no parent!
obj.moveToThread(thread)
# if you want the thread to stop after the worker is done
# you can always call thread.start() again later
obj.finished.connect(thread.quit)
# one way to do it is to start processing as soon as the thread starts
# this is okay in some cases... but makes it harder to send data to
# the worker object from the main gui thread. As you can see I'm calling
# processA() which takes no arguments
thread.started.connect(obj.processA)
thread.start()
# another way to do it, which is a bit fancier, allows you to talk back and
# forth with the object in a thread safe way by communicating through signals
# and slots (now that the thread is running I can start calling methods on
# the worker object)
QtCore.QMetaObject.invokeMethod(obj, 'processB', Qt.QueuedConnection,
QtCore.Q_ARG(str, "Hello World!"),
QtCore.Q_ARG(list, ["args", 0, 1]),
QtCore.Q_ARG(list, []))
# that looks a bit scary, but its a totally ok thing to do in Qt,
# we're simply using the system that Signals and Slots are built on top of,
# the QMetaObject, to make it act like we safely emitted a signal for
# the worker thread to pick up when its event loop resumes (so if its doing
# a bunch of work you can call this method 10 times and it will just queue
# up the calls. Note: PyQt > 4.6 will not allow you to pass in a None
# instead of an empty list, it has stricter type checking
app.exec_()
# Without this you may get weird QThread messages in the shell on exit
app.deleteLater()
Very nice example from Matt, I fixed the typo and also pyqt4.8 is common now so I removed the dummy class as well and added an example for the dataReady signal
# -*- coding: utf-8 -*-
import sys
from PyQt4 import QtCore, QtGui
from PyQt4.QtCore import Qt
# very testable class (hint: you can use mock.Mock for the signals)
class Worker(QtCore.QObject):
finished = QtCore.pyqtSignal()
dataReady = QtCore.pyqtSignal(list, dict)
#QtCore.pyqtSlot()
def processA(self):
print "Worker.processA()"
self.finished.emit()
#QtCore.pyqtSlot(str, list, list)
def processB(self, foo, bar=None, baz=None):
print "Worker.processB()"
for thing in bar:
# lots of processing...
self.dataReady.emit(['dummy', 'data'], {'dummy': ['data']})
self.finished.emit()
def onDataReady(aList, aDict):
print 'onDataReady'
print repr(aList)
print repr(aDict)
app = QtGui.QApplication(sys.argv)
thread = QtCore.QThread() # no parent!
obj = Worker() # no parent!
obj.dataReady.connect(onDataReady)
obj.moveToThread(thread)
# if you want the thread to stop after the worker is done
# you can always call thread.start() again later
obj.finished.connect(thread.quit)
# one way to do it is to start processing as soon as the thread starts
# this is okay in some cases... but makes it harder to send data to
# the worker object from the main gui thread. As you can see I'm calling
# processA() which takes no arguments
thread.started.connect(obj.processA)
thread.finished.connect(app.exit)
thread.start()
# another way to do it, which is a bit fancier, allows you to talk back and
# forth with the object in a thread safe way by communicating through signals
# and slots (now that the thread is running I can start calling methods on
# the worker object)
QtCore.QMetaObject.invokeMethod(obj, 'processB', Qt.QueuedConnection,
QtCore.Q_ARG(str, "Hello World!"),
QtCore.Q_ARG(list, ["args", 0, 1]),
QtCore.Q_ARG(list, []))
# that looks a bit scary, but its a totally ok thing to do in Qt,
# we're simply using the system that Signals and Slots are built on top of,
# the QMetaObject, to make it act like we safely emitted a signal for
# the worker thread to pick up when its event loop resumes (so if its doing
# a bunch of work you can call this method 10 times and it will just queue
# up the calls. Note: PyQt > 4.6 will not allow you to pass in a None
# instead of an empty list, it has stricter type checking
app.exec_()
In PyQt there are a lot of options for getting asynchronous behavior. For things that need event processing (ie. QtNetwork, etc) you should use the QThread example I provided in my other answer on this thread. But for the vast majority of your threading needs, I think this solution is far superior than the other methods.
The advantage of this is that the QThreadPool schedules your QRunnable instances as tasks. This is similar to the task pattern used in Intel's TBB. It's not quite as elegant as I like but it does pull off excellent asynchronous behavior.
This allows you to utilize most of the threading power of Qt in Python via QRunnable and still take advantage of signals and slots. I use this same code in several applications, some that make hundreds of asynchronous REST calls, some that open files or list directories, and the best part is using this method, Qt task balances the system resources for me.
import time
from PyQt4 import QtCore
from PyQt4 import QtGui
from PyQt4.QtCore import Qt
def async(method, args, uid, readycb, errorcb=None):
"""
Asynchronously runs a task
:param func method: the method to run in a thread
:param object uid: a unique identifier for this task (used for verification)
:param slot updatecb: the callback when data is receieved cb(uid, data)
:param slot errorcb: the callback when there is an error cb(uid, errmsg)
The uid option is useful when the calling code makes multiple async calls
and the callbacks need some context about what was sent to the async method.
For example, if you use this method to thread a long running database call
and the user decides they want to cancel it and start a different one, the
first one may complete before you have a chance to cancel the task. In that
case, the "readycb" will be called with the cancelled task's data. The uid
can be used to differentiate those two calls (ie. using the sql query).
:returns: Request instance
"""
request = Request(method, args, uid, readycb, errorcb)
QtCore.QThreadPool.globalInstance().start(request)
return request
class Request(QtCore.QRunnable):
"""
A Qt object that represents an asynchronous task
:param func method: the method to call
:param list args: list of arguments to pass to method
:param object uid: a unique identifier (used for verification)
:param slot readycb: the callback used when data is receieved
:param slot errorcb: the callback used when there is an error
The uid param is sent to your error and update callbacks as the
first argument. It's there to verify the data you're returning
After created it should be used by invoking:
.. code-block:: python
task = Request(...)
QtCore.QThreadPool.globalInstance().start(task)
"""
INSTANCES = []
FINISHED = []
def __init__(self, method, args, uid, readycb, errorcb=None):
super(Request, self).__init__()
self.setAutoDelete(True)
self.cancelled = False
self.method = method
self.args = args
self.uid = uid
self.dataReady = readycb
self.dataError = errorcb
Request.INSTANCES.append(self)
# release all of the finished tasks
Request.FINISHED = []
def run(self):
"""
Method automatically called by Qt when the runnable is ready to run.
This will run in a separate thread.
"""
# this allows us to "cancel" queued tasks if needed, should be done
# on shutdown to prevent the app from hanging
if self.cancelled:
self.cleanup()
return
# runs in a separate thread, for proper async signal/slot behavior
# the object that emits the signals must be created in this thread.
# Its not possible to run grabber.moveToThread(QThread.currentThread())
# so to get this QObject to properly exhibit asynchronous
# signal and slot behavior it needs to live in the thread that
# we're running in, creating the object from within this thread
# is an easy way to do that.
grabber = Requester()
grabber.Loaded.connect(self.dataReady, Qt.QueuedConnection)
if self.dataError is not None:
grabber.Error.connect(self.dataError, Qt.QueuedConnection)
try:
result = self.method(*self.args)
if self.cancelled:
# cleanup happens in 'finally' statement
return
grabber.Loaded.emit(self.uid, result)
except Exception as error:
if self.cancelled:
# cleanup happens in 'finally' statement
return
grabber.Error.emit(self.uid, unicode(error))
finally:
# this will run even if one of the above return statements
# is executed inside of the try/except statement see:
# https://docs.python.org/2.7/tutorial/errors.html#defining-clean-up-actions
self.cleanup(grabber)
def cleanup(self, grabber=None):
# remove references to any object or method for proper ref counting
self.method = None
self.args = None
self.uid = None
self.dataReady = None
self.dataError = None
if grabber is not None:
grabber.deleteLater()
# make sure this python obj gets cleaned up
self.remove()
def remove(self):
try:
Request.INSTANCES.remove(self)
# when the next request is created, it will clean this one up
# this will help us avoid this object being cleaned up
# when it's still being used
Request.FINISHED.append(self)
except ValueError:
# there might be a race condition on shutdown, when shutdown()
# is called while the thread is still running and the instance
# has already been removed from the list
return
#staticmethod
def shutdown():
for inst in Request.INSTANCES:
inst.cancelled = True
Request.INSTANCES = []
Request.FINISHED = []
class Requester(QtCore.QObject):
"""
A simple object designed to be used in a separate thread to allow
for asynchronous data fetching
"""
#
# Signals
#
Error = QtCore.pyqtSignal(object, unicode)
"""
Emitted if the fetch fails for any reason
:param unicode uid: an id to identify this request
:param unicode error: the error message
"""
Loaded = QtCore.pyqtSignal(object, object)
"""
Emitted whenever data comes back successfully
:param unicode uid: an id to identify this request
:param list data: the json list returned from the GET
"""
NetworkConnectionError = QtCore.pyqtSignal(unicode)
"""
Emitted when the task fails due to a network connection error
:param unicode message: network connection error message
"""
def __init__(self, parent=None):
super(Requester, self).__init__(parent)
class ExampleObject(QtCore.QObject):
def __init__(self, parent=None):
super(ExampleObject, self).__init__(parent)
self.uid = 0
self.request = None
def ready_callback(self, uid, result):
if uid != self.uid:
return
print "Data ready from %s: %s" % (uid, result)
def error_callback(self, uid, error):
if uid != self.uid:
return
print "Data error from %s: %s" % (uid, error)
def fetch(self):
if self.request is not None:
# cancel any pending requests
self.request.cancelled = True
self.request = None
self.uid += 1
self.request = async(slow_method, ["arg1", "arg2"], self.uid,
self.ready_callback,
self.error_callback)
def slow_method(arg1, arg2):
print "Starting slow method"
time.sleep(1)
return arg1 + arg2
if __name__ == "__main__":
import sys
app = QtGui.QApplication(sys.argv)
obj = ExampleObject()
dialog = QtGui.QDialog()
layout = QtGui.QVBoxLayout(dialog)
button = QtGui.QPushButton("Generate", dialog)
progress = QtGui.QProgressBar(dialog)
progress.setRange(0, 0)
layout.addWidget(button)
layout.addWidget(progress)
button.clicked.connect(obj.fetch)
dialog.show()
app.exec_()
app.deleteLater() # avoids some QThread messages in the shell on exit
# cancel all running tasks avoid QThread/QTimer error messages
# on exit
Request.shutdown()
When exiting the application you'll want to make sure you cancel all of the tasks or the application will hang until every scheduled task has completed
Based on the Worker objects methods mentioned in other answers, I decided to see if I could expand on the solution to invoke more threads - in this case the optimal number the machine can run and spin up multiple workers with indeterminate completion times.
To do this I still need to subclass QThread - but only to assign a thread number and to 'reimplement' the signals 'finished' and 'started' to include their thread number.
I've focused quite a bit on the signals between the main gui, the threads, and the workers.
Similarly, others answers have been a pains to point out not parenting the QThread but I don't think this is a real concern. However, my code also is careful to destroy the QThread objects.
However, I wasn't able to parent the worker objects so it seems desirable to send them the deleteLater() signal, either when the thread function is finished or the GUI is destroyed. I've had my own code hang for not doing this.
Another enhancement I felt was necessary was was reimplement the closeEvent of the GUI (QWidget) such that the threads would be instructed to quit and then the GUI would wait until all the threads were finished. When I played with some of the other answers to this question, I got QThread destroyed errors.
Perhaps it will be useful to others. I certainly found it a useful exercise. Perhaps others will know a better way for a thread to announce it identity.
#!/usr/bin/env python3
#coding:utf-8
# Author: --<>
# Purpose: To demonstrate creation of multiple threads and identify the receipt of thread results
# Created: 19/12/15
import sys
from PyQt4.QtCore import QThread, pyqtSlot, pyqtSignal
from PyQt4.QtGui import QApplication, QLabel, QWidget, QGridLayout
import sys
import worker
class Thread(QThread):
#make new signals to be able to return an id for the thread
startedx = pyqtSignal(int)
finishedx = pyqtSignal(int)
def __init__(self,i,parent=None):
super().__init__(parent)
self.idd = i
self.started.connect(self.starttt)
self.finished.connect(self.finisheddd)
#pyqtSlot()
def starttt(self):
print('started signal from thread emitted')
self.startedx.emit(self.idd)
#pyqtSlot()
def finisheddd(self):
print('finished signal from thread emitted')
self.finishedx.emit(self.idd)
class Form(QWidget):
def __init__(self):
super().__init__()
self.initUI()
self.worker={}
self.threadx={}
self.i=0
i=0
#Establish the maximum number of threads the machine can optimally handle
#Generally relates to the number of processors
self.threadtest = QThread(self)
self.idealthreadcount = self.threadtest.idealThreadCount()
print("This machine can handle {} threads optimally".format(self.idealthreadcount))
while i <self.idealthreadcount:
self.setupThread(i)
i+=1
i=0
while i<self.idealthreadcount:
self.startThread(i)
i+=1
print("Main Gui running in thread {}.".format(self.thread()))
def setupThread(self,i):
self.worker[i]= worker.Worker(i) # no parent!
#print("Worker object runningt in thread {} prior to movetothread".format(self.worker[i].thread()) )
self.threadx[i] = Thread(i,parent=self) # if parent isn't specified then need to be careful to destroy thread
self.threadx[i].setObjectName("python thread{}"+str(i))
#print("Thread object runningt in thread {} prior to movetothread".format(self.threadx[i].thread()) )
self.threadx[i].startedx.connect(self.threadStarted)
self.threadx[i].finishedx.connect(self.threadFinished)
self.worker[i].finished.connect(self.workerFinished)
self.worker[i].intReady.connect(self.workerResultReady)
#The next line is optional, you may want to start the threads again without having to create all the code again.
self.worker[i].finished.connect(self.threadx[i].quit)
self.threadx[i].started.connect(self.worker[i].procCounter)
self.destroyed.connect(self.threadx[i].deleteLater)
self.destroyed.connect(self.worker[i].deleteLater)
#This is the key code that actually get the worker code onto another processor or thread.
self.worker[i].moveToThread(self.threadx[i])
def startThread(self,i):
self.threadx[i].start()
#pyqtSlot(int)
def threadStarted(self,i):
print('Thread {} started'.format(i))
print("Thread priority is {}".format(self.threadx[i].priority()))
#pyqtSlot(int)
def threadFinished(self,i):
print('Thread {} finished'.format(i))
#pyqtSlot(int)
def threadTerminated(self,i):
print("Thread {} terminated".format(i))
#pyqtSlot(int,int)
def workerResultReady(self,j,i):
print('Worker {} result returned'.format(i))
if i ==0:
self.label1.setText("{}".format(j))
if i ==1:
self.label2.setText("{}".format(j))
if i ==2:
self.label3.setText("{}".format(j))
if i ==3:
self.label4.setText("{}".format(j))
#print('Thread {} has started'.format(self.threadx[i].currentThreadId()))
#pyqtSlot(int)
def workerFinished(self,i):
print('Worker {} finished'.format(i))
def initUI(self):
self.label1 = QLabel("0")
self.label2= QLabel("0")
self.label3= QLabel("0")
self.label4 = QLabel("0")
grid = QGridLayout(self)
self.setLayout(grid)
grid.addWidget(self.label1,0,0)
grid.addWidget(self.label2,0,1)
grid.addWidget(self.label3,0,2)
grid.addWidget(self.label4,0,3) #Layout parents the self.labels
self.move(300, 150)
self.setGeometry(0,0,300,300)
#self.size(300,300)
self.setWindowTitle('thread test')
self.show()
def closeEvent(self, event):
print('Closing')
#this tells the threads to stop running
i=0
while i <self.idealthreadcount:
self.threadx[i].quit()
i+=1
#this ensures window cannot be closed until the threads have finished.
i=0
while i <self.idealthreadcount:
self.threadx[i].wait()
i+=1
event.accept()
if __name__=='__main__':
app = QApplication(sys.argv)
form = Form()
sys.exit(app.exec_())
And the worker code below
#!/usr/bin/env python3
#coding:utf-8
# Author: --<>
# Purpose: Stack Overflow
# Created: 19/12/15
import sys
import unittest
from PyQt4.QtCore import QThread, QObject, pyqtSignal, pyqtSlot
import time
import random
class Worker(QObject):
finished = pyqtSignal(int)
intReady = pyqtSignal(int,int)
def __init__(self, i=0):
'''__init__ is called while the worker is still in the Gui thread. Do not put slow or CPU intensive code in the __init__ method'''
super().__init__()
self.idd = i
#pyqtSlot()
def procCounter(self): # This slot takes no params
for j in range(1, 10):
random_time = random.weibullvariate(1,2)
time.sleep(random_time)
self.intReady.emit(j,self.idd)
print('Worker {0} in thread {1}'.format(self.idd, self.thread().idd))
self.finished.emit(self.idd)
if __name__=='__main__':
unittest.main()
PySide2 Solution:
Unlike in PyQt5, in PySide2 the QThread.started signal is received/handled on the original thread, not the worker thread! Luckily it still receives all other signals on the worker thread.
In order to match PyQt5's behavior, you have to create the started signal yourself.
Here is an easy solution:
# Use this class instead of QThread
class QThread2(QThread):
# Use this signal instead of "started"
started2 = Signal()
def __init__(self):
QThread.__init__(self)
self.started.connect(self.onStarted)
def onStarted(self):
self.started2.emit()

Sending signals to Thread function in PyQt5 leads to TypeError of decorated slot

I am currently working on a Gui, which counts until a given input number is reached. It should be possible to stop the while-loop during counting and restart it again using buttons without ending the main Gui thread. This already works, but only if the target counting number is fixed in the thread work function, e.g. n = 10 -> counts to 10 and can't be changed to 20 or any other number without closing the Gui and change the number in the main code. I want to use a line edit for number input and send the desired target number to the thread, so that it counts up to that given number at the time I start the counting. However, when starting the Gui (after implementing the signals usually needed to send and get the input value) typing the number in the line edit and pressing the start button, I get a TypeError, stating that the 'decorated slot has no signature compatible with started()' ('started' should connect thread and worker function). Does anyone by chance know where I am doing a mistake or have to change something and/or if there is a workaround for this error?
I am quite desperate (I've been trying to fix this for quite a while and couldn't find any hints in the net...) and any help is greatly appreciated! Best regards and thanks!
This is the complete code with comments:
import sys
import time
from PyQt5.QtWidgets import QPushButton, QMainWindow, QApplication, QLineEdit
from PyQt5.QtCore import QObject, QThread, pyqtSignal, pyqtSlot
class Worker(QObject):
finished = pyqtSignal() # signal out to main thread to alert it that work is completed
def __init__(self):
super(Worker, self).__init__()
self.working = True # flag to control our loop
#pyqtSlot(int) # should take the sended integer n from signal...
def work(self, n):
s = 0
while self.working:
if s != n: # count until input integer is reached (doesn't work so far)
print(s)
s += 1
time.sleep(0.5)
self.finished.emit() # alert gui that the loop stopped
class Window(QMainWindow):
sendnumber = pyqtSignal(int) # send signal (this is how it is usually done...?)
def __init__(self):
super(Window, self).__init__()
self.setGeometry(50, 50, 200, 250)
self.setWindowTitle("Program")
self.inputnumber=QLineEdit(self, placeholderText="number")
self.inputnumber.resize(self.inputnumber.minimumSizeHint())
self.inputnumber.move(50, 50)
self.startbtn = QPushButton("Start", self)
self.startbtn.resize(self.startbtn.minimumSizeHint())
self.startbtn.move(50, 100)
self.stopbtn = QPushButton("Stop", self)
self.stopbtn.resize(self.stopbtn.minimumSizeHint())
self.stopbtn.move(50, 150)
self.thread = None
self.worker = None
self.startbtn.clicked.connect(self.start_loop)
def start_loop(self):
self.thread = QThread() # a new thread to run the background tasks in
self.worker = Worker() # a new worker to perform those tasks
self.worker.moveToThread(self.thread) # move the worker into the thread, do this first before connecting the signals
self.thread.started.connect(self.worker.work) # begin worker object loop when the thread starts running
self.sendnumber.connect(self.worker.work) # connect input number to worker in thread
# this doesn't work so far and gives a TypeError!
self.stopbtn.clicked.connect(self.stop_loop) # stop the loop on the stop button click
self.worker.finished.connect(self.loop_finished) # do something in the gui when the worker loop ends
self.worker.finished.connect(self.thread.quit) # tell the thread it's time to stop running
self.worker.finished.connect(self.worker.deleteLater) # have worker mark itself for deletion
self.thread.finished.connect(self.thread.deleteLater) # have thread mark itself for deletion
# make sure those last two are connected to themselves or you will get random crashes
self.thread.start()
def stop_loop(self):
self.worker.working = False
# when ready to stop the loop, set the working flag to false
#pyqtSlot() # as far as I know you need this Slot to send the input to Slot in thread?
def getnumber(self):
try:
n = int(self.inputnumber.text()) # input for the work function in thread
print('Trying number...')
except:
print('Use an integer!')
return
self.sendnumber.emit(n) # emit integer signal
print('Emitting signal to worker...')
def loop_finished(self):
# received a callback from the thread that it's completed
print('Loop finished.')
if __name__ == '__main__':
def run():
app = QApplication(sys.argv)
gui = Window()
gui.show()
app.exec_()
run()
And here is the console output showing the error:
Traceback (most recent call last):
File "C:/Users/***/WhileLoopInterruptTest2.py", line 63, in start_loop
self.thread.started.connect(self.worker.work)
TypeError: decorated slot has no signature compatible with started()
This is all the error says and the Gui has to be closed.
I am using Python 3.6.1, Spyder 3.3.1, PyQt5.9.
Replace this line:
self.thread.started.connect(self.worker.work)
with this:
self.thread.started.connect(lambda: self.worker.work(10))
You can replace 10 with the value from the text box. Just remember to convert it to an int first.
Checkout this article for a more detailed explanation.

canonical example of worker process with PySide or PyQt

I was looking for some good example of managing worker process from Qt GUI created in Python. I need this to be as complete as possible, including reporting progress from the process, including aborting the process, including handling of possible errors coming from the process.
I only found some semi-finished examples which only did part of work but when I tried to make them complete I failed. My current design comes in three layers:
1) there is the main thread in which resides the GUI and ProcessScheduler which controls that only one instance of worker process is running and can abort it
2) there is another thread in which I have ProcessObserver which actually runs the process and understands the stuff coming from queue (which is used for inter-process communication), this must be in non-GUI thread to keep GUI responsive
3) there is the actual worker process which executes a given piece of code (my future intention is to replace multiprocessing with multiprocess or pathos or something else what can pickle function objects, but this is not my current issue) and report progress or result to the queue
Currently I have this snippet (the print functions in the code are just for debugging and will be deleted eventually):
import multiprocessing
from PySide import QtCore, QtGui
QtWidgets = QtGui
N = 10000000
# I would like this to be a function object
# but multiprocessing cannot pickle it :(
# so I will use multiprocess in the future
CODE = """
# calculates sum of numbers from 0 to n-1
# reports percent progress of finished work
sum = 0
progress = -1
for i in range(n):
sum += i
p = i * 100 // n
if p > progress:
queue.put(["progress", p])
progress = p
queue.put(["result", sum])
"""
class EvalProcess(multiprocessing.Process):
def __init__(self, code, symbols):
super(EvalProcess, self).__init__()
self.code= code
self.symbols = symbols # symbols must contain 'queue'
def run(self):
print("EvalProcess started")
exec(self.code, self.symbols)
print("EvalProcess finished")
class ProcessObserver(QtCore.QObject):
"""Resides in worker thread. Its role is to understand
to what is received from the process via the queue."""
progressChanged = QtCore.Signal(float)
finished = QtCore.Signal(object)
def __init__(self, process, queue):
super(ProcessObserver, self).__init__()
self.process = process
self.queue = queue
def run(self):
print("ProcessObserver started")
self.process.start()
try:
while True:
# this loop keeps running and listening to the queue
# even if the process is aborted
result = self.queue.get()
print("received from queue:", result)
if result[0] == "progress":
self.progressChanged.emit(result[1])
elif result[0] == "result":
self.finished.emit(result[1])
break
except Exception as e:
print(e) # QUESTION: WHAT HAPPENS WHEN THE PROCESS FAILS?
self.process.join() # QUESTION: DO I NEED THIS LINE?
print("ProcessObserver finished")
class ProcessScheduler(QtCore.QObject):
"""Resides in the main thread."""
sendText = QtCore.Signal(str)
def __init__(self):
super(ProcessScheduler, self).__init__()
self.observer = None
self.thread = None
self.process = None
self.queue = None
def start(self):
if self.process: # Q: IS THIS OK?
# should kill current process and start a new one
self.abort()
self.queue = multiprocessing.Queue()
self.process = EvalProcess(CODE, {"n": N, "queue": self.queue})
self.thread = QtCore.QThread()
self.observer = ProcessObserver(self.process, self.queue)
self.observer.moveToThread(self.thread)
self.observer.progressChanged.connect(self.onProgressChanged)
self.observer.finished.connect(self.onResultReceived)
self.thread.started.connect(self.observer.run)
self.thread.finished.connect(self.onThreadFinished)
self.thread.start()
self.sendText.emit("Calculation started")
def abort(self):
self.process.terminate()
self.sendText.emit("Aborted.")
self.onThreadFinished()
def onProgressChanged(self, percent):
self.sendText.emit("Progress={}%".format(percent))
def onResultReceived(self, result):
print("onResultReceived called")
self.sendText.emit("Result={}".format(result))
self.thread.quit()
def onThreadFinished(self):
print("onThreadFinished called")
self.thread.deleteLater() # QUESTION: DO I NEED THIS LINE?
self.thread = None
self.observer = None
self.process = None
self.queue = None
if __name__ == '__main__':
app = QtWidgets.QApplication([])
scheduler = ProcessScheduler()
window = QtWidgets.QWidget()
layout = QtWidgets.QVBoxLayout(window)
startButton = QtWidgets.QPushButton("sum(range({}))".format(N))
startButton.pressed.connect(scheduler.start)
layout.addWidget(startButton)
abortButton = QtWidgets.QPushButton("Abort")
abortButton.pressed.connect(scheduler.abort)
layout.addWidget(abortButton)
console = QtWidgets.QPlainTextEdit()
scheduler.sendText.connect(console.appendPlainText)
layout.addWidget(console)
window.show()
app.exec_()
It works kind of OK but it still lacks proper error handling and aborting of process. Especially I am now struggling with the aborting. The main problem is that the worker thread keeps running (in the loop listening to the queue) even if the process has been aborted/terminated in the middle of calculation (or at least it prints this error in the console QThread: Destroyed while thread is still running). Is there a way to solve this? Or any alternative approach? Or, if possible, any real-life and compete example of such task fulfilling all the requirements mentioned above? Any comment would be much appreciated.

Pyqt5 qthread + signal not working + gui freeze

I am trying to make a mailbox checker with imap lib, it work pretty fine with python, queue and multithread without gui.
But when I try to put a gui, every fonction i made, make the gui freeze until finish .
I tried many thing from various doc(add qthread, signal, cursorr etcc) and tutorials none worked for me .
Can someone help me to understand how to set or append a text to a QtextEdit while running a function coz it work only after finish .
Here is my code :
class Checker(QtCore.QThread):
signal = QtCore.pyqtSignal(object)
def __init__(self, lignesmailtocheck):
QtCore.QThread.__init__(self)
self.lignesmailtocheck = lignesmailtocheck
def run(self):
lignemailtocheck = self.lignesmailtocheck.strip()
maillo, passo = lignemailtocheck.split(":",1)
debmail, finmail = maillo.split("#",1)
setimap =["oultook.com:imap-mail.outlook.com", "gmail.com:imap.gmail.com"]
for lignesimaptocheck in sorted(setimap):
ligneimaptocheck = lignesimaptocheck.strip()
fai, imap = ligneimaptocheck.split(":",1)
if finmail == fai:
passo0 = passo.rstrip()
try :
mail = imaplib.IMAP4_SSL(imap)
mail.login(maillo, passo)
mailboxok = open("MailBoxOk.txt", "a+", encoding='utf-8', errors='ignore')
mailboxok.write(maillo+":"+passo+"\n")
mailboxok.close()
totaly = maillo+":"+passo0+":"+imap
print(maillo+":"+passo+"\n")
self.send_text.emit(totaly)
time.sleep(1)
except imaplib.IMAP4.error:
print ("LOGIN FAILED!!! ")
class Ui_Form(object):
def setupUi(self, Form):
Form.setObjectName("Form")
Form.resize(400, 300)
self.pushButton = QtWidgets.QPushButton(Form)
self.pushButton.setGeometry(QtCore.QRect(150, 210, 75, 23))
self.pushButton.setObjectName("pushButton")
self.pushButton.clicked.connect(self.gogogo)
self.openliste = QtWidgets.QToolButton(Form)
self.openliste.setGeometry(QtCore.QRect(40, 110, 71, 21))
self.openliste.setObjectName("openliste")
self.textEdit = QtWidgets.QTextEdit(Form)
self.textEdit.setGeometry(QtCore.QRect(170, 50, 201, 121))
self.textEdit.setObjectName("textEdit")
self.progressBar = QtWidgets.QProgressBar(Form)
self.progressBar.setGeometry(QtCore.QRect(10, 260, 381, 23))
self.progressBar.setValue(0)
self.progressBar.setObjectName("progressBar")
self.retranslateUi(Form)
QtCore.QMetaObject.connectSlotsByName(Form)
def retranslateUi(self, Form):
_translate = QtCore.QCoreApplication.translate
Form.setWindowTitle(_translate("Form", "Form"))
self.pushButton.setText(_translate("Form", "PushButton"))
self.openliste.setText(_translate("Form", "..."))
def gogogo(self):
mailtocheck = open('File/toCheck.txt', 'r', encoding='utf-8', errors='ignore').readlines()
setmailtocheck = set(mailtocheck)
for lignesmailtocheck in sorted(setmailtocheck):
checker = Checker(lignesmailtocheck)
thread = QThread()
checker.moveToThread(thread)
# connections after move so cross-thread:
thread.started.connect(checker.run)
checker.signal.connect(self.checkedok)
thread.start()
def checkedok(self, data):
print(data)
self.textEdit.append(data)
if __name__ == "__main__":
app = QtWidgets.QApplication(sys.argv)
Form = QtWidgets.QWidget()
ui = Ui_Form()
ui.setupUi(Form)
Form.show()
sys.exit(app.exec_())
Since there are often questions about using QThread in PyQt, similar to yours, here is an example that shows how to correctly use threads in PyQt. I'm hoping it can be useful as a goto-answer for similar questions so I spent a bit more time than usual preparing this.
The example creates a number of worker objects that execute in non-main threads and communicate with the main (ie GUI) thread via Qt's asynchronous signals.
import time
import sys
from PyQt5.QtCore import QObject, QThread, pyqtSignal, pyqtSlot
from PyQt5.QtWidgets import QApplication, QPushButton, QTextEdit, QVBoxLayout, QWidget
def trap_exc_during_debug(*args):
# when app raises uncaught exception, print info
print(args)
# install exception hook: without this, uncaught exception would cause application to exit
sys.excepthook = trap_exc_during_debug
class Worker(QObject):
"""
Must derive from QObject in order to emit signals, connect slots to other signals, and operate in a QThread.
"""
sig_step = pyqtSignal(int, str) # worker id, step description: emitted every step through work() loop
sig_done = pyqtSignal(int) # worker id: emitted at end of work()
sig_msg = pyqtSignal(str) # message to be shown to user
def __init__(self, id: int):
super().__init__()
self.__id = id
self.__abort = False
#pyqtSlot()
def work(self):
"""
Pretend this worker method does work that takes a long time. During this time, the thread's
event loop is blocked, except if the application's processEvents() is called: this gives every
thread (incl. main) a chance to process events, which in this sample means processing signals
received from GUI (such as abort).
"""
thread_name = QThread.currentThread().objectName()
thread_id = int(QThread.currentThreadId()) # cast to int() is necessary
self.sig_msg.emit('Running worker #{} from thread "{}" (#{})'.format(self.__id, thread_name, thread_id))
for step in range(100):
time.sleep(0.1)
self.sig_step.emit(self.__id, 'step ' + str(step))
# check if we need to abort the loop; need to process events to receive signals;
app.processEvents() # this could cause change to self.__abort
if self.__abort:
# note that "step" value will not necessarily be same for every thread
self.sig_msg.emit('Worker #{} aborting work at step {}'.format(self.__id, step))
break
self.sig_done.emit(self.__id)
def abort(self):
self.sig_msg.emit('Worker #{} notified to abort'.format(self.__id))
self.__abort = True
class MyWidget(QWidget):
NUM_THREADS = 5
# sig_start = pyqtSignal() # needed only due to PyCharm debugger bug (!)
sig_abort_workers = pyqtSignal()
def __init__(self):
super().__init__()
self.setWindowTitle("Thread Example")
form_layout = QVBoxLayout()
self.setLayout(form_layout)
self.resize(400, 800)
self.button_start_threads = QPushButton()
self.button_start_threads.clicked.connect(self.start_threads)
self.button_start_threads.setText("Start {} threads".format(self.NUM_THREADS))
form_layout.addWidget(self.button_start_threads)
self.button_stop_threads = QPushButton()
self.button_stop_threads.clicked.connect(self.abort_workers)
self.button_stop_threads.setText("Stop threads")
self.button_stop_threads.setDisabled(True)
form_layout.addWidget(self.button_stop_threads)
self.log = QTextEdit()
form_layout.addWidget(self.log)
self.progress = QTextEdit()
form_layout.addWidget(self.progress)
QThread.currentThread().setObjectName('main') # threads can be named, useful for log output
self.__workers_done = None
self.__threads = None
def start_threads(self):
self.log.append('starting {} threads'.format(self.NUM_THREADS))
self.button_start_threads.setDisabled(True)
self.button_stop_threads.setEnabled(True)
self.__workers_done = 0
self.__threads = []
for idx in range(self.NUM_THREADS):
worker = Worker(idx)
thread = QThread()
thread.setObjectName('thread_' + str(idx))
self.__threads.append((thread, worker)) # need to store worker too otherwise will be gc'd
worker.moveToThread(thread)
# get progress messages from worker:
worker.sig_step.connect(self.on_worker_step)
worker.sig_done.connect(self.on_worker_done)
worker.sig_msg.connect(self.log.append)
# control worker:
self.sig_abort_workers.connect(worker.abort)
# get read to start worker:
# self.sig_start.connect(worker.work) # needed due to PyCharm debugger bug (!); comment out next line
thread.started.connect(worker.work)
thread.start() # this will emit 'started' and start thread's event loop
# self.sig_start.emit() # needed due to PyCharm debugger bug (!)
#pyqtSlot(int, str)
def on_worker_step(self, worker_id: int, data: str):
self.log.append('Worker #{}: {}'.format(worker_id, data))
self.progress.append('{}: {}'.format(worker_id, data))
#pyqtSlot(int)
def on_worker_done(self, worker_id):
self.log.append('worker #{} done'.format(worker_id))
self.progress.append('-- Worker {} DONE'.format(worker_id))
self.__workers_done += 1
if self.__workers_done == self.NUM_THREADS:
self.log.append('No more workers active')
self.button_start_threads.setEnabled(True)
self.button_stop_threads.setDisabled(True)
# self.__threads = None
#pyqtSlot()
def abort_workers(self):
self.sig_abort_workers.emit()
self.log.append('Asking each worker to abort')
for thread, worker in self.__threads: # note nice unpacking by Python, avoids indexing
thread.quit() # this will quit **as soon as thread event loop unblocks**
thread.wait() # <- so you need to wait for it to *actually* quit
# even though threads have exited, there may still be messages on the main thread's
# queue (messages that threads emitted before the abort):
self.log.append('All threads exited')
if __name__ == "__main__":
app = QApplication([])
form = MyWidget()
form.show()
sys.exit(app.exec_())
The main concepts necessary to understand multi-thread programming in PyQt are the following:
Qt threads have their own event loop (specific to each thread). The main thread, aka the GUI thread, is also a QThread, and its event loop is managed by that thread.
Signals between threads are transmitted (asynchronously) via the receiving thread's event loop. Hence responsiveness of GUI or any thread = ability to process events. E.g., if a thread is busy in a function loop, it can't process events, so it won't respond to signals from the GUI until the function returns.
If a worker object (method) in a thread may have to change its course of action based on signals from the GUI (say, to interrupt a loop or a wait), it must call processEvents() on the QApplication instance. This will allow the QThread to process events, and hence to call slots in response to async signals from the GUI. Note that QApplication.instance().processEvents() seems to call processEvents() on every thread, if this is not desired then QThread.currentThread().processEvents() is a valid alternative.
A call to QThread.quit() does not immediately quit its event loop: it must wait for currently executing slot (if any) to return. Hence once a thread is told to quit, you must wait() on it. So aborting a worker thread usually involves signaling it (via a custom signal) to stop whatever it is doing: this requires a custom signal on a GUI object, a connection of that signal to a worker slot, and worker work method must call thread's processEvents() to allow the emitted signal to reach the slot while doing work.
I can't test because setimap is not available on my system. I renamed CheckerThread to Checker since it is no longer a thread (it just "lives" in a thread):
class Checker(QtCore.QObject):
Then just replace the contents of the loop in gogogo(self) with this:
for lignesmailtocheck in sorted(setmailtocheck):
checker = Checker(lignesmailtocheck)
thread = QThread()
checker.moveToThread(thread)
# connections after move so cross-thread:
thread.started.connect(checker.run)
checker.signal.connect(self.checkedok)
thread.start()
self.threads.append(thread)
It is almost always a good idea to decorate slots with pyqtSlot so both run and checkedok should be thus decorated.
The SO answer about Qt threads is quite handy to remind yourself of details (note however that it uses old-style connections -- you have to translate C++ connect( sender, SIGNAL(sig), receiver, SLOT(slot)); to PyQt5 sender.sig.connect(receiver.slot)).
Sorry for late answer but it is a technique that can solve similar problems.
The problem is clear. The GUI freezes because its thread has to do another job.
An abstracted(from the PyQt point) solution is given below:
Create a class inheriting from threading.Thread which will be the worker.
Pass to the constructor a queue(queue.Queue) as a means of communication.
You can start the worker thread from the GUI thread and pass messages by using the queue.
To make the GUI thread read the messages, create a QTimer with interval of your choice and register a callback function. In the callback function read the queue.
Example Code:
class Worker(threading.Thread):
def __init__(self, queue):
super().init()
self.queue = queue
def run(self):
# Your code that uses self.queue.put(object)
class Gui:
def __init__(self):
self.timer = Qtimer()
self.timer.setInterval(milliseconds)
self.timer.timeout.connect(self.read_data)
def start_worker(self):
self.queue = queue.Queue()
thr = Worker(self.queue)
thr.start()
def read_data(self):
data = self.queue.get()
self.timer.timeout.connect registers the callback function.

PySide passing signals from QThread to a slot in another QThread

I solved my issue by moving the mySubQThread run() into the myQThread run()
That said, I still would like to know why what I was attempting before didn't work.
I'm pretty new to threading. I am running into this issue and I think I may be approaching things wrong, anyway here goes. I am open to a different approach I know this may be a bit convoluted to follow.
I have a GUI that makes a new derived QThread lets call it myQThread within that thread, I am running through a process that creates another thread call it mySubQThread the issue I am having is as follows, I have signals defined in my GUI for example: signalA = QtCore.Signal(int) and a slot in myQThread The slot in the mySubQThread never seems to get the signal.
Here is a working example. (modified somewhat)
from PySide import QtCore, QtGui
import time
class myQThread(QtCore.QThread):
myThreadSignal = QtCore.Signal(int)
def __init__(self, parent):
super(myQThread, self).__init__(parent=parent)
def run(self):
self.subThread = mySubQThread(parent=self)
self.myThreadSignal.connect(self.subThread.sub_thread_slot)
self.myThreadSignal.connect(self.test_slot)
print "starting subthread..."
self.subThread.start()
while self.subThread.isRunning():
print "myQThread is alive!"
time.sleep(1)
print "myQThread exiting run..."
#QtCore.Slot(int)
def my_thread_slot(self, a):
print "1b) Made it here!"
self.myThreadSignal.emit(a)
#QtCore.Slot(int)
def test_slot(self, a):
print "2a) Made it here!"
class mySubQThread(QtCore.QThread):
mySubSignalA = QtCore.Signal(int)
def __init__(self, parent):
super(mySubQThread, self).__init__(parent=parent)
self._abort = False
def run(self):
#Do some processing
#Wait for signal
self._abort = False
while not self._abort:
print "mySubQThread is alive!"
time.sleep(1)
print "mySubQThread exiting run..."
#QtCore.Slot(int)
def sub_thread_slot(self, a):
print "2b)Never make it here!"
self._abort = True
class myWidget(QtGui.QWidget):
myWidgetSignal = QtCore.Signal(int)
def __init__(self, parent=None):
super(myWidget, self).__init__(parent=parent)
#simple Widget to test this out....
myLayout = QtGui.QVBoxLayout()
self.runButton = QtGui.QPushButton("run")
self.runButton.clicked.connect(self.run_button_pressed)
self.otherButton = QtGui.QPushButton("other")
self.otherButton.clicked.connect(self.other_button_pressed)
myLayout.addWidget(self.runButton)
myLayout.addWidget(self.otherButton)
self.setLayout(myLayout)
#QtCore.Slot()
def run_button_pressed(self):
self.processThread = myQThread(self)
self.myWidgetSignal.connect(self.processThread.my_thread_slot)
self.myWidgetSignal.connect(self.test_slot)
self.processThread.start()
#QtCore.Slot()
def other_button_pressed(self):
self.myWidgetSignal.emit(1)
#QtCore.Slot(int)
def test_slot(self, a):
print "1a) Made it here!"
if __name__ == "__main__":
import sys
myApp = QtGui.QApplication(sys.argv)
myWin = myWidget()
myWin.show()
sys.exit(myApp.exec_())
Here is some sample output:
Note that if you change the line:
self.subThread = mySubQThread(parent=self)
to
self.subThread = mySubQThread(parent=None)
it stops complaining as it does in the sample output. neither shows that it makes it to 2B
QObject: Cannot create children for a parent that is in a different thread.
(Parent is myQThread(0x3c3faf0), parent's thread is QThread(0x2792548), current thread is myQThread(0x3c3faf0)
starting subthread...
myQThread is alive!mySubQThread is alive!
mySubQThread is alive!
myQThread is alive!
1b) Made it here!
2a) Made it here!
1a) Made it here!
The problem is because you have overridden QThread.run(). The run method by default contains an implementation that handles signal processing.
If you want to use signals/slots correctly you should subclass QObject, put your code in a method in there, and use moveToThread() to move the QObject to a base instance of QThread that you instantiate. You can then run your code by connecting your method to the QThread.started signal and then calling thread.start()
You can then repeat the creation of the child thread in a similar way, by putting that code in the method of the QObject previously created and launched in the thread. Signals and slots you connect there will be made between the thread and it's child thread correctly.
This is a good example of proper communication between the main thread and a QThread, but you could easily extend it to between QThreads. Just modify the MyWorker.firstWork() method to launch a new QThread like is already done in the setupThread method.

Categories