performance logging with psutil - python

context
One Python program that uses 2 subprocesses to call other C++ programs. I would like to log how much resources used by the main and the two children individually. The option I've found so far is psutil, whereas getrusage() can't separate the usages of the two children and it logs the largest child only, not the sum.
So, the main process is polling subprocesses every 1 sec and collect the data for subprocess A and subprocess B.
quesiton
To have a better understanding of max memory usage, I should really do mem_usage = max(mem_usage, new_data), right? I imagine psutil is giving the number at that time instance.
for cpu times and io, probably just need to log the very last set of data? they should be accumulative counters, right?

Related

Python: How many cores are used by my python program with five processes?

I have a python program consisting of 5 processes outside of the main process. Now I'm looking to get an AWS server or something similar on which I can run the script. But how can I find out how many vCPU cores are used by the script/how many are needed? I have looked at:
import multiprocessing
multiprocessing.cpu_count()
But it seems that it just returns the CPU count that's on the system. I just need to know how many vCPU cores the script uses.
Thanks for your time.
EDIT:
Just for some more information. The Processes are running indefinitely.
On Linux you can use the "top" command at the command line to monitor the real-time activity of all threads of a process id:
top -H -p <process id>
Answer to this post probably lies in the following question:
Multiprocessing : More processes than cpu.count
In short, you have probably hundreds of processes running, but that doesn't mean you will use hundreds of cores. It all depends on utilization, and the workload of the processes.
You can also get some additional info from the psutil module
import psutil
print(psutil.cpu_percent())
print(psutil.cpu_stats())
print(psutil.cpu_freq())
or using OS to receive current cpu usage in python:
import os
import psutil
l1, l2, l3 = psutil.getloadavg()
CPU_use = (l3/os.cpu_count()) * 100
print(CPU_use)
Credit: DelftStack
Edit
There might be some information for you in the following medium article. Maybe there are some tools for CPU usage too.
https://medium.com/survata-engineering-blog/monitoring-memory-usage-of-a-running-python-program-49f027e3d1ba
Edit 2
A good guideline for how many processes to start depends on the amount of threads available. It's basically just Thread_Count + 1, this ensures your processor doesn't just 'sit around and wait', this however is best used when you are IO bound, think of waiting for files from disk. Once it waits, that process is locked, thus you have 8 others to take over. The one extra is redundancy, in case all 8 are locked, the one that's left can take over right away. You can however in- or decrease this if you see fit.
Your question uses some general terms and leaves much unspecified so answers must be general.
It is assumed you are managing the processes using either Process directly or ProcessPoolExecutor.
In some cases, vCPU is a logical processor but per the following link there are services offering configurations of fractional vCPUs such as those in shared environments...
What is vCPU in AWS
You mention/ask...
... Now I'm looking to get an AWS server or something similar on which I can run the script. ...
... But how can I find out how many vCPU cores are used by the script/how many are needed? ...
You state AWS or something like it. The answer would depend on what your subprocess do, and how much of a vCPU or factional vCPU each subprocess needs. Generally, a vCPU is analogous to a logical processor upon which a thread can execute. A fractional portion of a vCPU will be some limited usage (than some otherwise "full" or complete "usage") of a vCPU.
The meaning of one or more vCPUs (or fractional vCPUs thereto) to your subprocesses really depends on those subprocesses, what they do. If one subprocess is sitting waiting on I/O most of the time, you hardly need a dedicated vCPU for it.
I recommend starting with some minimal least expensive configuration and see how it works with your app's expected workload. If you are not happy, increase the configuration as needed.
If it helps...
I usually use subprocesses if I need simultaneous execution that avoids Python's GIL limitations by breaking things into subprocesses. I generally use a single active thread per subprocess, where any other threads in the same subprocess are usually at a wait, waiting for I/O or do not otherwise compete with the primary active thread of the subprocess. Of course, a subprocess could be dedicated to I/O if you want to separate such from other threads you place in other subprocesses.
Since we do not know your app's purpose, architecture and many other factors, it's hard to say more than the generalities above.
Your computer has hundreds if not thousands of processes running at any given point. How does it handle all of those if it only has 5 cores? The thing is, each core takes a process for a certain amount of time or until it has nothing left to do inside that process.
For example, if I create a script that calculates the square root of all numbers from 1 to say a billion, you will see that a single core will hit max usage, then a split second later another core hits max while the first drops to normal and so on until the calculation is done.
Or if the process waits for an I/O process, then the core has nothing to do, so it drops the process, and goes to another process, when the I/O operation is done, the core can pick the process back, and get back to work.
You can run your multiprocessing python code on a single core, or on 100 cores, you can't really do much about it. However, on windows, you can set affinity of a process, which gives the process access to certain cores only. So, when the processes start, you can go to each one and set the affinity to say core 1 or each one to a separate core. Not sure how you do that on Linux though.
In conclusion, if you want a short and direct answer, I think we can say as many cores as it has access to. If you give them one core or 200 cores, they will still work. However, performance may degrade if the processes are CPU intensive, so I recommend starting with one core on AWS, check performance, and upgrade if needed.
I'll try to do my own summary about "I just need to know how many vCPU cores the script uses".
There is no way to answer that properly other than running your app and monitoring its resource usage. Assuming your Python processes do not spawn subprocesses (which could even be multithreaded applications), all we can say is that your app won't utilize more than 6 cores (as per total number of processes). There's a ton of ways for program to under-utilize CPU cores, like waiting for I/O (disk or network) or interprocess synchronization (shared resources). So to get any kind of understanding of CPU utilization, you really need to measure the actual performance (e.g., with htop utility on Linux or macOS) and investigating the causes of underperforming (if any).
Hope it helps.

How to parallelize function call in Python

I have this code:
fog_coeff = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]
start = time.time()
for f in fog_coeff:
foggy_images= am.add_fog(images[0:278],fog_coeff=f)
for img in foggy_images:
im = Image.fromarray(img)
im.save('./result/'+str(counter)+'-'+str(fog_coeff)+'.jpg')
counter += 1
print("time taken"+ str(time.time()-start))
I want to parallize this. How can I do this? My main idea was to take each value from fog_coeff list and give it to each core. Each core will then process 278 images. Is this the right direction? If so, how can I proceed?
You have two options for this, Threads or Processes. The first are allowed to share memory but they are limited in what they can do concurrently, so you can use variables to share the results for example, but you will have to use locks to avoid fdata races.
On the other side processes do not allow to share memory, gaining full concurrency at the OS level. You will have to use some sort of external communication like sockets to send the output back to the main process, or write their results to files.
The answer would depend on which of these two mechanisms you choose.
Edit: elaborating multi processing.
This is done with the multiprocessing library. You will basically define the function that you want your other process to run and then run it in a different process. Processes are handled by the OS, not by Python, so your OS scheduler will be in charge of where each process can be executed. There are advanced tools like process pools that would allow you to have always 4 processes running (in case you are on a quadra-core) but you won't be able to tell your OS how should he handle those processes. He may want to execute its own background processes.

Python multiprocessing: dealing with 2000 processes

Following is my multi processing code. regressTuple has around 2000 items. So, the following code creates around 2000 parallel processes. My Dell xps 15 laptop crashes when this is run.
Can't python multi processing library handle the queue according to hardware availability and run the program without crashing in minimal time? Am I not doing this correctly?
Is there a API call in python to get the possible hardware process count?
How can I refactor the code to use an input variable to get the parallel thread count(hard coded) and loop through threading several times till completion - In this way, after few experiments, I will be able to get the optimal thread count.
What is the best way to run this code in minimal time without crashing. (I cannot use multi-threading in my implementation)
Hereby my code:
regressTuple = [(x,) for x in regressList]
processes = []
for i in range(len(regressList)):
processes.append(Process(target=runRegressWriteStatus,args=regressTuple[i]))
for process in processes:
process.start()
for process in processes:
process.join()
There are multiple things that we need to keep in mind
Spinning the number of processes are not limited by number of cores on your system but the ulimit for your user id on your system that controls total number of processes that be launched by your user id.
The number of cores determine how many of those launched processes can actually be running in parallel at one time.
Crashing of your system can be due to the fact your target function that these processes are running is doing something heavy and resource intensive, which system is not able to handle when multiple processes run simultaneously or nprocs limit on the system has exhausted and now kernel is not able to spin new system processes.
That being said it is not a good idea to spawn as many as 2000 processes, no matter even if you have a 16 core Intel Skylake machine, because creating a new process on the system is not a light weight task because there are number of things like generating the pid, allocating memory, address space generation, scheduling the process, context switching and managing the entire life cycle of it that happen in the background. So it is a heavy operation for the kernel to generate a new process,
Unfortunately I guess what you are trying to do is a CPU bound task and hence limited by the hardware you have on the machine. Spinning more number of processes than the number of cores on your system is not going to help at all, but creating a process pool might. So basically you want to create a pool with as many number of processes as you have cores on the system and then pass the input to the pool. Something like this
def target_func(data):
# process the input data
with multiprocessing.pool(processes=multiprocessing.cpu_count()) as po:
res = po.map(f, regressionTuple)
Can't python multi processing library handle the queue according to hardware availability and run the program without crashing in
minimal time? Am I not doing this correctly?
I don't think it's python's responsibility to manage the queue length. When people reach out for multiprocessing they tend to want efficiency, adding system performance tests to the run queue would be an overhead.
Is there a API call in python to get the possible hardware process count?
If there were, would it know ahead of time how much memory your task will need?
How can I refactor the code to use an input variable to get the parallel thread count(hard coded) and loop through threading several
times till completion - In this way, after few experiments, I will be
able to get the optimal thread count.
As balderman pointed out, a pool is a good way forward with this.
What is the best way to run this code in minimal time without crashing. (I cannot use multi-threading in my implementation)
Use a pool, or take the available system memory, divide by ~3MB and see how many tasks you can run at once.
This is probably more of a sysadmin task to balance the bottlenecks against the queue length, but generally, if your tasks are IO bound, then there isn't much point in having a long task queue if all the tasks are waiting at a the same T-junction to turn into the road. The tasks will then fight with each other for the next block of IO.

Multiprocessing: use only the physical cores?

I have a function foo which consumes a lot of memory and which I would like to run several instances of in parallel.
Suppose I have a CPU with 4 physical cores, each with two logical cores.
My system has enough memory to accommodate 4 instances of foo in parallel but not 8. Moreover, since 4 of these 8 cores are logical ones anyway, I also do not expect using all 8 cores will provide much gains above and beyond using the 4 physical ones only.
So I want to run foo on the 4 physical cores only. In other words, I would like to ensure that doing multiprocessing.Pool(4) (4 being the maximum number of concurrent run of the function I can accommodate on this machine due to memory limitations) dispatches the job to the four physical cores (and not, for example, to a combo of two physical cores and their two logical offsprings).
How to do that in python?
Edit:
I earlier used a code example from multiprocessing but I am library agnostic ,so to avoid confusion, I removed that.
I know the topic is quite old now, but as it still appears as the first answer when typing 'multiprocessing logical core' in google... I feel like I have to give an additional answer because I can see that it would be possible for people in 2018 (or even later..) to get easily confused here (some answers are indeed a little bit confusing)
I can see no better place than here to warn readers about some of the answers above, so sorry for bringing the topic back to life.
--> TO COUNT THE CPUs (LOGICAL/PHYSICAL) USE THE PSUTIL MODULE
For a 4 physical core / 8 thread i7 for ex it will return
import psutil
psutil.cpu_count(logical = False)
4
psutil.cpu_count(logical = True)
8
As simple as that.
There you won't have to worry about the OS, the platform, the hardware itself or whatever. I am convinced it is much better than multiprocessing.cpu_count() which can sometimes give weird results, from my own experience at least.
--> TO USE N PHYSICAL CORES (up to your choice) USE THE MULTIPROCESSING MODULE DESCRIBED BY YUGI
Just count how many physical processes you have, launch a multiprocessing.Pool of 4 workers.
Or you can also try to use the joblib.Parallel() function
joblib in 2018 is not part of the standard distribution of python, but is just a wrapper of the multiprocessing module as described by Yugi.
--> MOST OF THE TIME, DON'T USE MORE CORES THAN AVAILABLE (unless you have benchmarked a very specific code and proved it was worth it)
Misinformation abounds that "the OS will handle things if you specify more cores than are available". It is absolutely 100% false. If you use more cores than available, you will face huge performance drops. The exception would be if the worker processes are IO bound. Because the OS scheduler will try its best to work on every task with the same attention, switching regularly from one to another, and depending on the OS, it can spend up to 100% of its working time to just switching between processes, which would be disastrous.
Don't just trust me: try it, benchmark it, you will see how clear it is.
IS IT POSSIBLE TO DECIDE WHETHER THE CODE WILL BE EXECUTED ON LOGICAL OR PHYSICAL CORE?
If you are asking this question, this means you don't understand the way physical and logical cores are designed, so maybe you should check a little bit more about a processor's architecture.
If you want to run on core 3 rather than core 1 for example, Well I guess there are indeed some solutions, but available only if you know how to code an OS's kernel and scheduler, which I think is not the case if you're asking this question.
If you launch 4 CPU-intensive processes on a 4 physical / 8 logical processor, the scheduler will attribute each of your processes to 1 distinct physical core (and 4 logical core will remain not/poorly used). But on a 4 logical / 8 thread proc, if the processing units are (0,1) (1,2) (2,3) (4,5) (5,6) (6,7), then it makes no difference if the process is executed on 0 or 1 : it is the same processing unit.
From my knowledge at least (but an expert could confirm, maybe it differs from very specific hardware specifications also) I think there is no or very little difference between executing a code on 0 or 1. In the processing unit (0,1), I am not sure that 0 is the logical whereas 1 is the physical, or vice-versa. From my understanding (which can be wrong), both are processors from the same processing unit, and they just share their cache memory / access to the hardware (RAM included), and 0 is not more a physical unit than 1.
More than that you should let the OS decide. Because the OS scheduler can take advantage of a hardware logical-core turbo boost that exist on some platforms (ex i7, i5, i3...), something else that you have no power over, and that could be truly helpful to you.
If you launch 5 CPU-intensive tasks on a 4 physical / 8 logical core, the behaviour will be chaotic, almost unpredictable, mostly dependent on your hardware and OS. The scheduler will try its best. Almost every time, you will face really bad performance.
Let's presume for a moment that we are still talking about a 4(8) classical architecture: Because the scheduler tries its best (and therefore often switches the attributions), depending on the process you are executing, it could be even worse to launch on 5 logical cores than on 8 logical cores (where at least he knows everything will be used at 100% anyway, so lost for lost he won't try much to avoid it, won't switch too often, and therefore won't lose too much time by switching).
It is 99% sure however (but benchmark it on your hardware to be sure) that almost any multiprocessing program will run slower if you use more physical core than available.
A lot of things can intervene... The program, the hardware, the state of the OS, the scheduler it uses, the fruit you ate this morning, your sister's name... In case you doubt about something, just benchmark it, there is no other easy way to see whether you are losing performances or not. Sometimes informatics can be really weird.
--> MOST OF THE TIME, ADDITIONAL LOGICAL CORES ARE INDEED USELESS IN PYTHON (but not always)
There are 2 main ways of doing really parallel tasks in python.
multiprocessing (cannot take advantage of logical cores)
multithreading (can take advantage of logical cores)
For example to run 4 tasks in parallel
--> multiprocessing will create 4 different python interpreter. For each of them you have to start a python interpreter, define the rights of reading/writing, define the environment, allocate a lot of memory, etc. Let's say it as it is: You will start a whole new program instance from 0. It can take a huge amount of time, so you have to be sure that this new program will work long enough so that it is worth it.
If your program has enough work (let's say, a few seconds of work at least), then because the OS allocates CPU-consuming processes on different physical cores, it works, and you can gain a lot of performances, which is great. And because the OS almost always allows processes to communicate between them (although it is slow) they can even exchange (a little bit of) data.
--> multithreading is different. Within your python interpreter, it will just create a small amount of memory that many CPU will be available to share, and work on it at the same time. It is WAY much quicker to spawn (where spawning a new process on an old computer can take many seconds sometimes, spawning a thread is done within a ridiculously small fraction of time). You don't create new processes, but "threads" which are much lighter.
Threads can share memory between threads very quickly, because they literally work together on the same memory (while it has to be copied/exchanged when working with different processes).
BUT: WHY CANNOT WE USE MULTITHREADING IN MOST SITUATIONS ? IT LOOKS VERY CONVENIENT ?
There is a very BIG limitation in python: Only one python line can be executed at a time in a python interpreter, which is called the GIL (Global Interpreter Lock). So most of the time, you will even LOSE performances by using multithreading, because different threads will have to wait to access to the same resource. For pure computational processing (with no IO), multithreading is USELESS and even WORSE if your code is pure python. However, if your threads involve any waiting for IO, multithreading can be very beneficial.
--> WHY SHOULDN'T I USE LOGICAL CORES WHEN USING MULTIPROCESSING ?
Logical cores don't have their own memory access. They can only work on the memory access and on the cache of its hosting physical processor. For example it is very likely (and often used indeed) that the logical and the physical core of a same processing unit both use the same C/C++ function on different emplacements of the cache memory at the same time. Making the treatment hugely faster indeed.
But... these are C/C++ functions ! Python is a big C/C++ wrapper, that needs much more memory and CPU than its equivalent C++ code. It is very likely in 2018 that, whatever you want to do, 2 big python processes will need much, much more memory and cache reading/writing than what a single physical+logical unit can afford, and much more that what the equivalent C/C++ truly-multithreaded code would consume. This once again, would almost always cause performances to drop. Remember that every variable that is not available in the processor's cache, will take x1000 time to read in the memory. If your cache is already completely full for 1 single python process, guess what will happened if you force 2 processes to use it: They will use it one at the time, and switch permanently, causing data to be stupidly flushed and re-read every time it switches. When the data is being read or written from memory, you might think that your CPU "is" working but it's not. It's waiting for the data ! By doing nothing.
--> HOW CAN YOU TAKE ADVANTAGE OF LOGICAL CORES THEN ?
Like I said there is no true multithreading (so no true usage of logical cores) in default python, because of the global interpreter lock. You can force the GIL to be removed during some parts of the program, but I think it would be a wise advise that you don't touch to it if you don't know exactly what you are doing.
Removing the GIL definitely has been a subject of a lot of research (see the experimental PyPy or Cython projects that both try to do so).
For now, no real solution exists for it, as it is a much more complex problem than it seems.
There is, I admit, another solution that can work:
Code your function in C
Wrap it in python with ctype
Use the python multithreading module to call your wrapped C function
This will work 100%, and you will be able to use all the logical cores, in python, with multithreading, and for real. The GIL won't bother you, because you won't be executing true python functions, but C functions instead.
For example, some libraries like Numpy can work on all available threads, because they are coded in C. But if you come to this point, I always thought it could be wise to think about doing your program in C/C++ directly because it is a consideration very far from the original pythonic spirit.
**--> DON'T ALWAYS USE ALL AVAILABLE PHYSICAL CORES **
I often see people be like "Ok I have 8 physical core, so I will take 8 core for my job". It often works, but sometimes turns out to be a poor idea, especially if your job needs a lot of I/O.
Try with N-1 cores (once again, especially for highly I/O-demanding tasks), and you will see that 100% of time, on per-task/average, single tasks will always run faster on N-1 core. Indeed, your computer makes a lot of different things: USB, mouse, keyboard, network, Hard drive, etc... Even on a working station, periodical tasks are performed anytime in the background that you have no idea about. If you don't let 1 physical core to manage those tasks, your calculation will be regularly interrupted (flushed out from the memory / replaced back in memory) which can also lead to performance issues.
You might think "Well, background tasks will use only 5% of CPU-time so there is 95% left". But it's not the case.
The processor handles one task at a time. And every time it switches, a considerably high amount of time is wasted to place everything back at its place in the memory cache/registries. Then, if for some weird reason the OS scheduler does this switching too often (something you have no control on), all of this computing time is lost forever and there's nothing you can do about it.
If (and it sometimes happen) for some unknown reason this scheduler problem impacts the performances of not 1 but 30 tasks, it can result in really intriguing situations where working on 29/30 physical core can be significantly faster than on 30/30
MORE CPU IS NOT ALWAYS THE BEST
It is very frequent, when you use a multiprocessing.Pool, to use a multiprocessing.Queue or manager queue, shared between processes, to allow some basic communication between them. Sometimes (I must have said 100 times but I repeat it), in an hardware-dependent manner, it can occur (but you should benchmark it for your specific application, your code implementation and your hardware) that using more CPU might create a bottleneck when you make processes communicate / synchronize. In those specific cases, it could be interesting to run on a lower CPU number, or even try to deport the synchronization task on a faster processor (here I'm talking about scientific intensive calculation ran on a cluster of course). As multiprocessing is often meant to be used on clusters, you have to notice that clusters often are underclocked in frequency for energy-saving purposes. Because of that, single-core performances can be really bad (balanced by a way-much higher number of CPUs), making the problem even worse when you scale your code from your local computer (few cores, high single-core performance) to a cluster (lot of cores, lower single-core performance), because your code bottleneck according to the single_core_perf/nb_cpu ratio, making it sometimes really annoying
Everyone has the temptation to use as many CPU as possible. But benchmark for those cases is mandatory.
The typical case (in data science for ex) is to have N processes running in parallel and you want to summarize the results in one file. Because you cannot wait the job to be done, you do it through a specific writer process. The writer will write in the outputfile everything that is pushed in his multiprocessing.Queue (single-core and hard-drive limited process). The N processes fill the multiprocessing.Queue.
It is easy then to imagine that if you have 31 CPU writing informations to one really slow CPU, then your performances will drop (and possibly something will crash if you overcome the system's capability to handle temporary data)
--> Take home message
Use psutil to count logical/physical processors, rather than multiprocessing.cpu_count() or whatsoever
Multiprocessing can only work on physical core (or at least benchmark it to prove it is not true in your case)
Multithreading will work on logical core BUT you will have to code and wrap your functions in C, or remove the global lock interpreter (and every time you do so, one kitten atrociously dies somewhere in the world)
If you are trying to run multithreading on pure python code, you will have huge performance drops, so you should 99% of the time use multiprocessing instead
Unless your processes/threads are having long pauses that you can exploit, never use more core than available, and benchmark properly if you want to try
If your task is I/O intensive, you should let 1 physical core to handle the I/O, and if you have enough physical core, it will be worth it. For multiprocessing implementations it needs to use N-1 physical core. For a classical 2-way multithreading, it means to use N-2 logical core.
If you have need for more performances, try PyPy (not production ready) or Cython, or even to code it in C
Last but not least, and the most important of all: If you are really seeking for performance, you should absolutely, always, always benchmark, and not guess anything. Benchmark often reveal strange platform/hardware/driver very specific behaviour that you would have no idea about.
Note: This approach doesn't work on windows and it is tested only on linux.
Using multiprocessing.Process:
Assigning a physical core to each process is quite easy when using Process(). You can create a for loop that iterates trough each core and assigns the new process to the new core using taskset -p [mask] [pid] :
import multiprocessing
import os
def foo():
return
if __name__ == "__main__" :
for process_idx in range(multiprocessing.cpu_count()):
p = multiprocessing.Process(target=foo)
os.system("taskset -p -c %d %d" % (process_idx % multiprocessing.cpu_count(), os.getpid()))
p.start()
I have 32 cores on my workstation so I'll put partial results here:
pid 520811's current affinity list: 0-31
pid 520811's new affinity list: 0
pid 520811's current affinity list: 0
pid 520811's new affinity list: 1
pid 520811's current affinity list: 1
pid 520811's new affinity list: 2
pid 520811's current affinity list: 2
pid 520811's new affinity list: 3
pid 520811's current affinity list: 3
pid 520811's new affinity list: 4
pid 520811's current affinity list: 4
pid 520811's new affinity list: 5
...
As you see, the previous and new affinity of each process here. The first one is for all cores (0-31) and is then assigned to core 0, second process is by default assigned to core0 and then its affinity is changed to the next core (1), and so forth.
Using multiprocessing.Pool:
Warning: This approach needs tweaking the pool.py module since there is no way that I know of that you can extract the pid from the Pool(). Also this changes have been tested on python 2.7 and multiprocessing.__version__ = '0.70a1'.
In Pool.py, find the line where the _task_handler_start() method is being called. In the next line, you can assign the process in the pool to each "physical" core using (I put the import os here so that the reader doesn't forget to import it):
import os
for worker in range(len(self._pool)):
p = self._pool[worker]
os.system("taskset -p -c %d %d" % (worker % cpu_count(), p.pid))
and you're done. Test:
import multiprocessing
def foo(i):
return
if __name__ == "__main__" :
pool = multiprocessing.Pool(multiprocessing.cpu_count())
pool.map(foo,'iterable here')
result:
pid 524730's current affinity list: 0-31
pid 524730's new affinity list: 0
pid 524731's current affinity list: 0-31
pid 524731's new affinity list: 1
pid 524732's current affinity list: 0-31
pid 524732's new affinity list: 2
pid 524733's current affinity list: 0-31
pid 524733's new affinity list: 3
pid 524734's current affinity list: 0-31
pid 524734's new affinity list: 4
pid 524735's current affinity list: 0-31
pid 524735's new affinity list: 5
...
Note that this modification to pool.py assign the jobs to the cores round-robinly. So if you assign more jobs than the cpu-cores, you will end up having multiple of them on the same core.
EDIT:
What OP is looking for is to have a pool() that is capable of staring the pool on specific cores. For this more tweaks on multiprocessing are needed (undo the above-mentioned changes first).
Warning:
Don't try to copy-paste the function definitions and function calls. Only copy paste the part that is supposed to be added after self._worker_handler.start() (you'll see it below). Note that my multiprocessing.__version__ tells me the version is '0.70a1', but it doesn't matter as long as you just add what you need to add:
multiprocessing's pool.py:
add a cores_idx = None argument to __init__() definition. In my version it looks like this after adding it:
def __init__(self, processes=None, initializer=None, initargs=(),
maxtasksperchild=None,cores_idx=None)
also you should add the following code after self._worker_handler.start():
if not cores_idx is None:
import os
for worker in range(len(self._pool)):
p = self._pool[worker]
os.system("taskset -p -c %d %d" % (cores_idx[worker % (len(cores_idx))], p.pid))
multiprocessing's __init__.py:
Add a cores_idx=None argument to definition of the Pool() in as well as the other Pool() function call in the the return part. In my version it looks like:
def Pool(processes=None, initializer=None, initargs=(), maxtasksperchild=None,cores_idx=None):
'''
Returns a process pool object
'''
from multiprocessing.pool import Pool
return Pool(processes, initializer, initargs, maxtasksperchild,cores_idx)
And you're done. The following example runs a pool of 5 workers on cores 0 and 2 only:
import multiprocessing
def foo(i):
return
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=5,cores_idx=[0,2])
pool.map(foo,'iterable here')
result:
pid 705235's current affinity list: 0-31
pid 705235's new affinity list: 0
pid 705236's current affinity list: 0-31
pid 705236's new affinity list: 2
pid 705237's current affinity list: 0-31
pid 705237's new affinity list: 0
pid 705238's current affinity list: 0-31
pid 705238's new affinity list: 2
pid 705239's current affinity list: 0-31
pid 705239's new affinity list: 0
Of course you can still have the usual functionality of the multiprocessing.Poll() as well by removing the cores_idx argument.
I found a solution that doesn't involve changing the source code of a python module. It uses the approach suggested here. One can check that only
the physical cores are active after running that script by doing:
lscpu
in the bash returns:
CPU(s): 8
On-line CPU(s) list: 0,2,4,6
Off-line CPU(s) list: 1,3,5,7
Thread(s) per core: 1
[One can run the script linked above from within python]. In any case, after running the script above, typing these commands in python:
import multiprocessing
multiprocessing.cpu_count()
returns 4.

Multiprocessing in python with more then 2 levels

I want to do a program and want make a the spawn like this process -> n process -> n process
can the second level spawn process with multiprocessing ? using multiprocessinf module of python 2.6
thnx
#vilalian's answer is correct, but terse. Of course, it's hard to supply more information when your original question was vague.
To expand a little, you'd have your original program spawn its n processes, but they'd be slightly different than the original in that you'd want them (each, if I understand your question) to spawn n more processes. You could accomplish this by either by having them run code similar to your original process, but that spawned new sets of programs that performed the task at hand, without further processing, or you could use the same code/entry point, just providing different arguments - something like
def main(level):
if level == 0:
do_work
else:
for i in range(n):
spawn_process_that_runs_main(level-1)
and start it off with level == 2
You can structure your app as a series of process pools communicating via Queues at any nested depth. Though it can get hairy pretty quick (probably due to the required context switching).
It's not erlang though that's for sure.
The docs on multiprocessing are extremely useful.
Here(little too much to drop in a comment) is some code I use to increase throughput in a program that updates my feeds. I have one process polling for feeds that need to fetched, that stuffs it's results in a queue that a Process Pool of 4 workers picks up those results and fetches the feeds, it's results(if any) are then put in a queue for a Process Pool to parse and put into a queue to shove back in the database. Done sequentially, this process would be really slow due to some sites taking their own sweet time to respond so most of the time the process was waiting on data from the internet and would only use one core. Under this process based model, I'm actually waiting on the database the most it seems and my NIC is saturated most of the time as well as all 4 cores are actually doing something. Your mileage may vary.
Yes - but, you might run into an issue which would require the fix I committed to python trunk yesterday. See bug http://bugs.python.org/issue5313
Sure you can. Expecially if you are using fork to spawn child processes, they works as perfectly normal processes (like the father). Thread management is quite different, but you can also use "second level" sub-treading.
Pay attention to not over-complicate your program, as example program with two level threads are normally unused.

Categories