I have data which is taken along the diameter of a circle in 1 mm increments i.e. starting at 90 degrees and ending at 270 degrees. I want to extrapolate the data at each 1 mm increment to fill in the rest of the circle (at that radial point). For example:
10 mm circle:
>Distance along diameter (mm) Value (a.u.)
>1 208
>5 210 (centre `(0,0)`)
>7 209
>10 208
Now I want something similar to: this image. With a legend/key on the right hand side and with the data extrapolated, so that the transitions are 'smooth' between the radial data points. Obviously, only one radius of values should really be needed, but I want the other half of the values in the diameter to reinforce the values observed in the first radius.
So, I want the values of the bottom radius to 'blend' in with the values of the top radius along the diameter from 180 degrees to 0 degrees. Is this clear?
My initial (terrible):
import numpy as np
import matplotlib.pyplot as plt
data = np.genfromtxt('data.txt',delimiter=',')
r = data[:,][:,0]
values = data[:,][:,1]
theta = np.zeros(len(data))
r, theta = np.meshgrid(r, theta)
plt.figure()
fig, ax = plt.subplots(subplot_kw=dict(projection='polar'))
ax.contourf(theta, r, values)
plt.show()
I understand that the input to ax.contourf must be a 2D array. I have no real theta values for my data, however. I just want a series of concentric circles, so I have modified my data as:
80,0,208.1790755
80,90,208.1790755
80,180,208.1790755
80,270,208.1790755
79,0,208.1322654
79,90,208.1322654
79,180,208.1322654
79,270,208.1322654
76,0,208.1804241
76,90,208.1804241
76,180,208.1804241
76,270,208.1804241
etc
I can't see why the following won't work, though:
data = np.genfromtxt('data.txt',delimiter=',')
r = data[:,][:,0]
values = np.array(data[:,][:,2])
theta = np.radians(data[:,][:,1])
r, theta = np.meshgrid(r, theta)
fig, ax = plt.subplots(subplot_kw=dict(projection='polar'))
ax.contourf(theta, r, values)
plt.show()
The reason is that ax.contourf(x, y, z) only takes a 2D array as z. The r array is already of the correct form, so values_2d = values*r/r will put your values into a 2D array which can be passed to ax.contourf() as ax.contourf(theta, r, values_2d, 40). 40 defines the resolution of the data, i.e. 40 discrete steps between the minimum and maximum values of your z data.
Related
I am using matplotlib.pyplot to interpolate my data and create contours.
Following this answer/example (about how to calculate area within a contour), I am able to get the vertices of a contour line.
Is there a way to use that information, i.e., the vertices of a line, to count how many points fall between two given contours? These points will be different from the data used for deriving the contours.
Usually, you do not want to reverse engineer your plot to obtain some data. Instead you can interpolate the array that is later used for plotting the contours and find out which of the points lie in regions of certain values.
The following would find all points between the levels of -0.8 and -0.4, print them and show them in red on the plot.
import numpy as np; np.random.seed(1)
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
from scipy.interpolate import Rbf
X, Y = np.meshgrid(np.arange(-3.0, 3.0, 0.1), np.arange(-2.4, 1.0, 0.1))
Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
Z = 10.0 * (Z2 - Z1)
points = np.random.randn(15,2)/1.2
levels = [-1.2, -0.8,-0.4,-0.2]
# interpolate points
f = Rbf(X.flatten(), Y.flatten(), Z.flatten())
zi = f(points[:,0], points[:,1])
# add interpolated points to array with columns x,y,z
points3d = np.zeros((points.shape[0],3))
points3d[:,:2] = points
points3d[:,2] = zi
# masking condition for points between levels
filt = (zi>levels[1]) & (zi <levels[2])
# print points between the second and third level
print(points3d[filt,:])
### plotting
fig, ax = plt.subplots()
CS = ax.contour(X, Y, Z, levels=levels)
ax.clabel(CS, inline=1, fontsize=10)
#plot points between the second and third level in red:
ax.scatter(points[:,0], points[:,1], c=filt.astype(float), cmap="bwr" )
plt.show()
I am not sure if I understand what points do you want to check, but, if you have the line vertices (two points) and want to check if the third point falls in between the two, you can take a simple (not efficient) approach and calculate the area of the triangle formed by the three. If the area is 0 then the point falls on the same line. Also, you can calculate the distance between the points and see if the point is in between on the line or outside (on the extended) line.
Hope this helps!
Ampere's law of magnetic fields can help here - although it can be computationally expensive. This law says that the path integral of a magnetic field along a closed loop is proportional to the current inside the loop.
Suppose you have a contour C and a point P (x0,y0). Imagine an infinite wire located at P perpendicular to the page (current going into the page) carrying some current. Using Ampere's law we can prove that the magnetic field produced by the wire at a point P (x,y) is inversely proportional to the distance from (x0,y0) to (x,y) and tangential to the circle centered at point P passing through point (x,y). Therefore if the wire is located outside the contour the path integral is zero.
import numpy as np
import pylab as plt
# generating a mesh and values on it
delta = 0.1
x = np.arange(-3.1*2, 3.1*2, delta)
y = np.arange(-3.1*2, 3.1*2, delta)
X, Y = np.meshgrid(x, y)
Z = np.sqrt(X**2 + Y**2)
# generating the contours with some levels
levels = [1.0]
plt.figure(figsize=(10,10))
cs = plt.contour(X,Y,Z,levels=levels)
# finding vertices on a particular level
contours = cs.collections[0]
vertices_level = contours.get_paths()[0].vertices # In this example the
shape of vertices_level is (161,2)
# converting points into two lists; one per dimension. This step can be optimized
lX, lY = list(zip(*vertices_level))
# computing Ampere's Law rhs
def AmpereLaw(x0,y0,lX,lY):
S = 0
for ii in range(len(lX)-1):
dx = lX[ii+1] - lX[ii]
dy = lY[ii+1] - lY[ii]
ds = (1/((lX[ii]-x0)**2+(lY[ii]-y0)**2))*(-(lY[ii]-y0)*dx+(lX[ii]-x0)*dy)
if -1000 < ds < 1000: #to avoid very lare numbers when denominator is small
S = S + ds
return(S)
# we know point (0,0) is inside the contour
AmpereLaw(0,0,lX,lY)
# result: -6.271376740062852
# we know point (0,0) is inside the contour
AmpereLaw(-2,0,lX,lY)
# result: 0.00013279920934375876
You can use this result to find points inside one contour but outside of the other.
I'm working in Python2.7 with 3D numpy arrays, and trying to retrieve only pixels who fall on a 2D tilted disc.
Here is my code to plot the border of the disc (= a circle) I am interested in
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
#creating a 3d numpy array (empty in this example, but will represent a binary 3D image in my application)
space=np.zeros((40,40,20))
r = 8 #radius of the circle
theta = np.pi / 4 # "tilt" of the circle
phirange = np.linspace(0, 2 * np.pi) #to make a full circle
#center of the circle
center=[20,20,10]
#computing the values of the circle in spherical coordinates and converting them
#back to cartesian
for phi in phirange:
x = r * np.cos(theta) * np.cos(phi) + center[0]
y= r*np.sin(phi) + center[1]
z= r*np.sin(theta)* np.cos(phi) + center[2]
space[int(round(x)),int(round(y)),int(round(z))]=1
x,y,z = space.nonzero()
#plotting
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x, y, z, zdir='z', c= 'red')
plt.show()
The plot gives the following figure :
which is a good start, but now I want a way to retrieve only the values of the pixels of space which are located in the disc defined by the circle : the ones in the pink zone in the following image (in my application, space will be a 3D binary image, here it is numpy.zeros() just to be able to plot and show you the disc I want):
How should I procede ?
I guess there is some numpy masking involved, an I understand how you would do it in 2D (like this question) but I'm having trouble applying this to 3D.
One easy way would be to calculate the normal vector to your disc plane. You can use your spherical coordinates for that. Be sure not to add the centre, set phi at zero and swap cos and sin theta, also stick a minus sign to the sin.
lets call that vector v. The plane is given by v0*x0 + v1*x1 + v2*x2 == c you can calculate c by inserting a point from your circle for x.
Next you can make a 2d grid for x0 and x1 and solve for x2. this gives you the height x2 as a function of the x0, x1 mesh. for these points you can calculate the distance from your disc centre and discard the points that are too far off. This you would indeed do using a mask.
Finally, depending on how precisely you want to plot you could round the x2 values to grid units, but for example for a surface plot I wouldn't do that.
To get a 3d mask as you describe you would round x2 and then starting from an all zero space set the disc pixels using space[x0, x1, x2] = True. This assumes that you have masked x0, x1, x2 as described earlier.
Well that is a math problem, you should ask it in the Mathematics Stack Exchange site.
From my perspective, you should first find the surface your disc is in, and do the area calculation within that surface, by, for example, the method you mentioned in the linked question.
numpy or matplotlib here definitely do not responsible for the projection, you do.
Without clearly point out which (or which kind of) surface they are in, and the equation does not guarantee it is a plane, the area does not mean anything.
I am trying to compare vectors of wind in matplotlib between gridded model output locations (via quiver on a basemap map) and scattered stations (via matplotlib arrow). The locations for both are in lat/lon, but wind vectors are in m/s.
When combined, I want the colors and lengths to vary by magnitude and for both qualities to be scaled the same way for the quiver and arrow data. I have given an example below where the quiver plot looks OK and is scaled in absolute length (inches). I don't know what to do to for arrow() to match. In the example I've divided it by SCALE to give a sense of what I'd like the final image to look like.
import numpy as np
import matplotlib.pylab as plt
from mpl_toolkits.basemap import Basemap
X, Y = np.meshgrid(np.arange(-123,-121,0.3),np.arange(37,39,0.3))
U = np.cos(X+123)*12
V = np.sin(Y-37)*12
mag = np.hypot(U,V)
fig,ax=plt.subplots(1)
m=Basemap(projection ='cyl',resolution='f',llcrnrlat=37,llcrnrlon=-123,
urcrnrlat=39,urcrnrlon=-121,ax=ax)
quiv = m.quiver(X,Y,U,V,mag,zorder=2,latlon=True,scale=30,scale_units='inches')
# Scattered points won't be on the grid
x0=X[2,2] - 0.025
y0=Y[2,2]
u0=U[2,2]
v0=V[2,2] + 0.5
SCALE = 72.
plt.arrow(x0,y0,u0/SCALE,v0/SCALE)
plt.show()
It's not terribly clear from the matplotlib documentation (in my opinion), but quiver does accept 1D arrays for all of X, Y, U and V, which do not need to be uniformly spaced. The basemap documentation gets that wrong, or is at least even more unclear. So as long as you form your scattered stations data into 1D arrays, you should be fine.
I added some random arrows to your plot by replacing your scattered points section with this (if you use the same seed you should get the same arrows):
# Make scattered locations
np.random.seed(33)
x0 = np.random.rand(5)*2.0 - 123
y0 = np.random.rand(5)*2.0 + 37
# Make some velocities
u0 = np.random.randn(5)*3 + 10
v0 = np.random.randn(5)*3 + 10
q2 = m.quiver(x0, y0, u0, v0, latlon=True, scale=30, scale_units='inches')
And this is the plot that I get (I use the YlGnBu_r colormap by default).
Be aware that if you start to use anything other than a cylindrical-type projection (and if your U and V are expressed in east-west and north-south) you will need to rotate the vectors to match the projection using the rotate_vector method.
You need to convert map coordinates into Cartesian coordinates by x,y = m(lon, lat), after this, plt.quiver(x,y, u, v) or m.quiver(x,y,u,v) will do the same job.
I want to make a streamplot in Basemap module, but I get a blank sphere. Please help me resolve this problem. I use matplotlib 1.3 and ordinary streamplot is working fine.
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.basemap import Basemap
map = Basemap(projection='ortho',lat_0=45,lon_0=-100,resolution='l')
# draw lat/lon grid lines every 30 degrees.
map.drawmeridians(np.arange(0,360,30))
map.drawparallels(np.arange(-90,90,30))
# prepare grids
lons = np.linspace(0, 2*np.pi, 100)
lats = np.linspace(-np.pi/2, np.pi/2, 100)
lons, lats = np.meshgrid(lons, lats)
# parameters for vector field
beta = 0.0
alpha = 1.0
u = -np.cos(lats)*(beta - alpha*np.cos(2.0*lons))
v = alpha*(1.0 - np.cos(lats)**2)*np.sin(2.0*lons)
speed = np.sqrt(u*u + v*v)
# compute native map projection coordinates of lat/lon grid.
x, y = map(lons*180./np.pi, lats*180./np.pi)
# contour data over the map.
cs = map.streamplot(x, y, u, v, latlon = True, color = speed, cmap=plt.cm.autumn, linewidth=0.5)
plt.show()
I can't exactly tell you what's wrong, but from the matplotlib.streamplot manual:
matplotlib.pyplot.streamplot(x, y, u, v, density=1, linewidth=None,
color=None, cmap=None, norm=None, arrowsize=1, arrowstyle=u'-|>',
minlength=0.1, transform=None, zorder=1, hold=None)ΒΆ
Draws streamlines of a vector flow.
x, y : 1d arrays
an evenly spaced grid.
u, v : 2d arrays
x and y-velocities. Number of rows should match length of y, and the number of columns should match x.
Additionally from matplotlib.basemap.streamplot you can read that
If latlon keyword is set to True, x,y are intrepreted as longitude and latitude in degrees.
Which corresponds to the fact that x and y should be 1D arrays (lat, lon). However in your example x and y are
>>> np.shape(x)
(100, 100)
>>> np.shape(y)
(100, 100)
Then again you call the method map() "to compute native map projection coordinates of lat/lon grid" which is coincidentally the same as the name of your basemap.map. So it depends on which one do you want? Because both will return a value! (or better to say, both will return an error)
Aditionally check out the values you have in your u array. They are of range e-17. While other values are easily in the range e+30. IIRC the way you get streamlines is by solving a differential equation in which points you sent it as values are used as parameters at coordinates you sent. It's not hard to imagine a that while calculating something with these numbers a floating point round-off occurs and you suddenly start getting NaN or 0 values.
Try to scale your example better or if you want to pursue the solution to the end you can try and use np.seterr to get a more detailed idea where it fails.
Sorry I couldn't have been of a bigger help.
I have a list of (x,y) values that are not uniformly spaced. Here is the archive used in this question.
I am able to interpolate between the values but what I get are not equispaced interpolating points. Here's what I do:
x_data = [0.613,0.615,0.615,...]
y_data = [5.919,5.349,5.413,...]
# Interpolate values for x and y.
t = np.linspace(0, 1, len(x_data))
t2 = np.linspace(0, 1, 100)
# One-dimensional linear interpolation.
x2 = np.interp(t2, t, x_data)
y2 = np.interp(t2, t, y_data)
# Plot x,y data.
plt.scatter(x_data, y_data, marker='o', color='k', s=40, lw=0.)
# Plot interpolated points.
plt.scatter(x2, y2, marker='o', color='r', s=10, lw=0.5)
Which results in:
As can be seen, the red dots are closer together in sections of the graph where the original points distribution is denser.
I need a way to generate the interpolated points equispaced in x, y according to a given step value (say 0.1)
As askewchan correctly points out, when I mean "equispaced in x, y" I mean that two consecutive interpolated points in the curve should be distanced from each other (euclidean straight line distance) by the same value.
I tried unubtu's answer and it works well for smooth curves but seems to break for not so smooth ones:
This happens because the code calculates the point distance in an euclidean way instead of directly over the curve and I need the distance over the curve to be the same between points. Can this issue be worked around somehow?
Convert your xy-data to a parametrized curve, i.e. calculate all all distances between the points and generate the coordinates on the curve by cumulative summing. Then interpolate the x- and y-coordinates independently with respect to the new coordinates.
import numpy as np
from matplotlib import pyplot as plt
data = '''0.615 5.349
0.615 5.413
0.617 6.674
0.617 6.616
0.63 7.418
0.642 7.809
0.648 8.04
0.673 8.789
0.695 9.45
0.712 9.825
0.734 10.265
0.748 10.516
0.764 10.782
0.775 10.979
0.783 11.1
0.808 11.479
0.849 11.951
0.899 12.295
0.951 12.537
0.972 12.675
1.038 12.937
1.098 13.173
1.162 13.464
1.228 13.789
1.294 14.126
1.363 14.518
1.441 14.969
1.545 15.538
1.64 16.071
1.765 16.7
1.904 17.484
2.027 18.36
2.123 19.235
2.149 19.655
2.172 20.096
2.198 20.528
2.221 20.945
2.265 21.352
2.312 21.76
2.365 22.228
2.401 22.836
2.477 23.804'''
data = np.array([line.split() for line in data.split('\n')],dtype=float)
x,y = data.T
xd = np.diff(x)
yd = np.diff(y)
dist = np.sqrt(xd**2+yd**2)
u = np.cumsum(dist)
u = np.hstack([[0],u])
t = np.linspace(0,u.max(),10)
xn = np.interp(t, u, x)
yn = np.interp(t, u, y)
f = plt.figure()
ax = f.add_subplot(111)
ax.set_aspect('equal')
ax.plot(x,y,'o', alpha=0.3)
ax.plot(xn,yn,'ro', markersize=8)
ax.set_xlim(0,5)
Let's first consider a simple case. Suppose your data looked like the blue line,
below.
If you wanted to select equidistant points that were r distance apart,
then there would be some critical value for r where the cusp at (1,2) is the first equidistant point.
If you wanted points that were greater than this critical distance apart, then
the first equidistant point would jump from (1,2) to some place very different --
depicted by the intersection of the green arc with the blue line. The change is not gradual.
This toy case suggests that a tiny change in the parameter r can have a radical, discontinuous affect on the solution.
It also suggests that you must know the location of the ith equidistant point
before you can determine the location of the (i+1)-th equidistant point.
So it appears an iterative solution is required:
import numpy as np
import matplotlib.pyplot as plt
import math
x, y = np.genfromtxt('data', unpack=True, skip_header=1)
# find lots of points on the piecewise linear curve defined by x and y
M = 1000
t = np.linspace(0, len(x), M)
x = np.interp(t, np.arange(len(x)), x)
y = np.interp(t, np.arange(len(y)), y)
tol = 1.5
i, idx = 0, [0]
while i < len(x):
total_dist = 0
for j in range(i+1, len(x)):
total_dist += math.sqrt((x[j]-x[j-1])**2 + (y[j]-y[j-1])**2)
if total_dist > tol:
idx.append(j)
break
i = j+1
xn = x[idx]
yn = y[idx]
fig, ax = plt.subplots()
ax.plot(x, y, '-')
ax.scatter(xn, yn, s=50)
ax.set_aspect('equal')
plt.show()
Note: I set the aspect ratio to 'equal' to make it more apparent that the points are equidistant.
The following script will interpolate points with a equal step of x_max - x_min / len(x) = 0.04438
import numpy as np
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt
data = np.loadtxt('data.txt')
x = data[:,0]
y = data[:,1]
f = interp1d(x, y)
x_new = np.linspace(np.min(x), np.max(x), x.shape[0])
y_new = f(x_new)
plt.plot(x,y,'o', x_new, y_new, '*r')
plt.show()
Expanding on the answer by #Christian K., here's how to do this for higher dimensional data with scipy.interpolate.interpn. Let's say we want to resample to 10 equally-spaced points:
import numpy as np
import scipy
# Assuming that 'data' is rows x dims (where dims is the dimensionality)
diffs = data[1:, :] - data[:-1, :]
dist = np.linalg.norm(diffs, axis=1)
u = np.cumsum(dist)
u = np.hstack([[0], u])
t = np.linspace(0, u[-1], 10)
resampled = scipy.interpolate.interpn((u,), pts, t)
It IS possible to generate equidistant points along the curve. But there must be more definition of what you want for a real answer. Sorry, but the code I've written for this task is in MATLAB, but I can describe the general ideas. There are three possibilities.
First, are the points to be truly equidistant from the neighbors in terms of a simple Euclidean distance? To do so would involve finding the intersection at any point on the curve with a circle of a fixed radius. Then just step along the curve.
Next, if you intend distance to mean distance along the curve itself, if the curve is a piecewise linear one, the problem is again easy to do. Just step along the curve, since distance on a line segment is easy to measure.
Finally, if you intend for the curve to be a cubic spline, again this is not incredibly difficult, but is a bit more work. Here the trick is to:
Compute the piecewise linear arclength from point to point along the curve. Call it t.
Generate a pair of cubic splines, x(t), y(t).
Differentiate x and y as functions of t. Since these are cubic segments, this is easy. The derivative functions will be piecewise quadratic.
Use an ode solver to move along the curve, integrating the differential arclength function. In MATLAB, ODE45 worked nicely.
Thus, one integrates
sqrt((x')^2 + (y')^2)
Again, in MATLAB, ODE45 can be set to identify those locations where the function crosses certain specified points.
If your MATLAB skills are up to the task, you can look at the code in interparc for more explanation. It is reasonably well commented code.