I am dumbfounded by the results of reading 4 very large CSV files into a dataframe in Python:
I performed the read with a single thread in series, i.e. read the first CSV, then the second etc. It took 230s.
With 4 threads, one thread reading one CSV, in "parallel" it takes 220s, and with 2 threads it takes 220s.
I can't explain this because this suggests no integer number of disk read heads which makes sense; if there is a single head then both the 2 and 4-threaded version of the program would take significantly longer due to the read head constantly moving between addresses as threads are switched. If it was 2 or 4 read heads then surely both of the multi-threaded versions would outperform the single threaded version?
The access to the disk is managed by the OS, so if you are trying to read in parallel from the same disk you won't get a real improvement. I'm not really sure about having several read heads, but in the case that the files are in differents disks it will.
Anyways you can find more info here. multithread read from disk
Hope this helps.
Related
I'm currently involved in a Python project that involves handling massive amounts of data. In this, I have to print massive amounts of data to files. They are always one-liners, but sometimes consisting of millions of digits.
The actual mathematical operations in Python only take seconds, minutes at most. Printing them to a file takes up to several hours; which I don't always have.
Is there any way of speeding up the I/O?
From what I figure, the number is stored in the RAM (Or at least I assume so, it's the only thing which would take up 11GB of RAM), but Python does not print it to a text file immediately. Is there a way to dump that information -- if it is the number -- to a file? I've tried Task Manager's Dump, which gave me a 22GB dump file (Yes, you read that right), and it doesn't look like there's what I was looking for in there, albeit it wasn't very clear.
If it makes a difference, I have Python 3.5.1 (Anaconda and Spyder), Windows 8.1 x64 and 16GB RAM.
By the way, I do run Garbage Collect (gc module) inside the script, and I delete variables that are not needed, so those 11GB aren't just junk.
If you are indeed I/O bound by the time it takes to write the file, multi-threading with a pool of threads may help. Of course, there is a limit to that, but at least, it would allow you to issue non-blocking file writes.
Multithreading could speed it up (have printers on other threads that you write to in memory that have a queue).
Maybe a system design standpoint, but maybe evaluate whether or not you need to write everything to the file. Perhaps consider creating various levels of logging so that a release mode could run faster (if that makes sense in your context).
Use HDF5 file format
The problem is, you have to write a lot of data.
HDF5 is format being very efficient in size and allowing access to it by various tools.
Be prepared for few challenges:
there are multiple python packages for HDF5, you will have to find the one which fits your needs
installation is not always very simple (but there might be Windows installation binary)
expect a bit of study to understand the data structures to be stored.
it will occasionally need some CPU cycles - typically you write a lot of data quickly and at one moment it has to be flushed to the disk. At this moment it starts compressing the data what can take few seconds. See GIL for IO bounded thread in C extension (HDF5)
Anyway, I think, it is very likely, you will manage and apart of faster writes to the files you will also gain smaller files, which are simpler to handle.
Disclaimer: I know this question will annoy some people because it's vague, theoretical, and has little code.
I have a AWS Lambda function in Python which reads a file of denormalized records off S3, formats its contents correctly, and then uploads that to DynamoDB with a batch write. It all works as advertised. I then tried to break up the uploading part of this pipeline into threads with the hope of more efficiently utilizing DynamoDBs write capacity. However, the multithread version is slower by about 50%. Since the code is very long I have included pseudocode.
NUM_THREADS = 4
for every line in the file:
Add line to list of lines
if we've read enough lines for a single thread:
Create thread that uploads list of lines
thread.start()
clear list of lines.
for every thread started:
thread.join()
Important notes and possible sources of the problem I've checked so far:
When testing this locally using DynamoDB Local, threading does make my program run faster.
If instead I use only 1 thread, or even if I use multiple threads but I join the thread right after I start it (effectively single threaded), the program completes much quicker. With 1 thread ~30s, multi thread ~45s.
I have no shared memory between threads, no locks, etc.
I have tried creating new DynamoDB connections for each thread and sharing one connection instead, with no effect.
I have confirmed that adding more threads does not overwhelm the write capacity of DynamoDB, since it makes the same number of batch write requests and I don't have more unprocessed items throughout execution than with a single thread.
Threading should improve the execution time since the program is network bound, even though Python threads do not really run on multiple cores.
I have tried reading the entire file first, and then spawning all the threads, thinking that perhaps it's better to not interrupt the disk IO, but to no effect.
I have tried both the Thread library as well as the Process library.
Again I know this question is very theoretical so it's probably hard to see the source of the issue, but is there some Lambda quirk I'm not aware of? Is there something I else I can try to help diagnose the issue? Any help is appreciated.
Nate, have you completely ruled out a problem on the Dynamodb end? The total number of write requests may be the same, but the number per second would be different with a multi-thread.
The console has some useful graphs to show if your writes (or batch writes) are being throttled at all. If you don't have the right 'back off, retry' logic in your Lambda function, Lambda will just try and try again and your problem gets worse.
One other thing, which might have been obvious to you (but not me!). I was under the impression that batch_writes saved you money on the capacity planning front. (That 200 writes in batches of 20 would only cost you 10 write units, for example. I could have sworn I heard an AWS guy mention this in a presentation, but that's beside the point.)
In fact the batch_writes save you some time, but nothing economically.
One last thought: I'd bet that Lambda processing time is cheaper than upping your Dynamodb write capacity. If you're in no particular rush for Lambda to finish, why not let it run its course on single-thread?
Good luck!
Turns out that the threading is faster, but only when the file reached a certain file size. I was originally work on a file size of about 1/2 MG. With a 10 MG file, the threaded version came out about 50% faster. Still unsure why it wouldn't work with the smaller file, maybe it just needs time to get a'cooking, you know what I mean? Computers are moody things.
As a backdrop I have good experience with python and dynamoDB along with using python's multiprocessing library. Since your file size was fairly small it may have been the setup time of the process that confused you about performance. If you haven't already, use python multiprocessing pools and use map or imap depending on your use case if you need to communicate any data back to the main thread. Using a pool is the darn simpliest way to run multiple processes in python. If you need your application to run faster as a priority you may want to look into using golang concurrency and you could always build the code into binary to use from within python. Cheers.
I have a number of records in the database I want to process. Basically, I want to run several regex substitution over tokens of the text string rows and at the end, and write them back to the database.
I wish to know whether does multiprocessing speeds up the time required to do such tasks.
I did a
multiprocessing.cpu_count
and it returns 8. I have tried something like
process = []
for i in range(4):
if i == 3:
limit = resultsSize - (3 * division)
else:
limit = division
#limit and offset indicates the subset of records the function would fetch in the db
p = Process(target=sub_table.processR,args=(limit,offset,i,))
p.start()
process.append(p)
offset += division + 1
for po in process:
po.join()
but apparently, the time taken is higher than the time required to run a single thread. Why is this so? Can someone please enlighten is this a suitable case or what am i doing wrong here?
Why is this so?
Can someone please enlighten in what cases does multiprocessing gives better performances?
Here's one trick.
Multiprocessing only helps when your bottleneck is a resource that's not shared.
A shared resource (like a database) will be pulled in 8 different directions, which has little real benefit.
To find a non-shared resource, you must have independent objects. Like a list that's already in memory.
If you want to work from a database, you need to get 8 things started which then do no more database work. So, a central query that distributes work to separate processors can sometimes be beneficial.
Or 8 different files. Note that the file system -- as a whole -- is a shared resource and some kinds of file access are involve sharing something like a disk drive or a directory.
Or a pipeline of 8 smaller steps. The standard unix pipeline trick query | process1 | process2 | process3 >file works better than almost anything else because each stage in the pipeline is completely independent.
Here's the other trick.
Your computer system (OS, devices, database, network, etc.) is so complex that simplistic theories won't explain performance at all. You need to (a) take several measurements and (b) try several different algorithms until you understand all the degrees of freedom.
A question like "Can someone please enlighten in what cases does multiprocessing gives better performances?" doesn't have a simple answer.
In order to have a simple answer, you'd need a much, much simpler operating system. Fewer devices. No database and no network, for example. Since your OS is complex, there's no simple answer to your question.
Here are a couple of questions:
In your processR function, does it slurp a large number of records from the database at one time, or is it fetching 1 row at a time? (Each row fetch will be very costly, performance wise.)
It may not work for your specific application, but since you are processing "everything", using database will likely be slower than a flat file. Databases are optimised for logical queries, not seqential processing. In your case, can you export the whole table column to a CSV file, process it, and then re-import the results?
Hope this helps.
In general, multicpu or multicore processing help most when your problem is CPU bound (i.e., spends most of its time with the CPU running as fast as it can).
From your description, you have an IO bound problem: It takes forever to get data from disk to the CPU (which is idle) and then the CPU operation is very fast (because it is so simple).
Thus, accelerating the CPU operation does not make a very big difference overall.
I run across a lot of "embarrassingly parallel" projects I'd like to parallelize with the multiprocessing module. However, they often involve reading in huge files (greater than 2gb), processing them line by line, running basic calculations, and then writing results. What's the best way to split a file and process it using Python's multiprocessing module? Should Queue or JoinableQueue in multiprocessing be used? Or the Queue module itself? Or, should I map the file iterable over a pool of processes using multiprocessing? I've experimented with these approaches but the overhead is immense in distribution the data line by line. I've settled on a lightweight pipe-filters design by using cat file | process1 --out-file out1 --num-processes 2 | process2 --out-file out2, which passes a certain percentage of the first process's input directly to the second input (see this post), but I'd like to have a solution contained entirely in Python.
Surprisingly, the Python documentation doesn't suggest a canonical way of doing this (despite a lengthy section on programming guidelines in the multiprocessing documentation).
Thanks,
Vince
Additional information: Processing time per line varies. Some problems are fast and barely not I/O bound, some are CPU-bound. The CPU bound, non-dependent tasks will gain the post from parallelization, such that even inefficient ways of assigning data to a processing function would still be beneficial in terms of wall clock time.
A prime example is a script that extracts fields from lines, checks for a variety of bitwise flags, and writes lines with certain flags to a new file in an entirely new format. This seems like an I/O bound problem, but when I ran it with my cheap concurrent version with pipes, it was about 20% faster. When I run it with pool and map, or queue in multiprocessing it is always over 100% slower.
One of the best architectures is already part of Linux OS's. No special libraries required.
You want a "fan-out" design.
A "main" program creates a number of subprocesses connected by pipes.
The main program reads the file, writing lines to the pipes doing the minimum filtering required to deal the lines to appropriate subprocesses.
Each subprocess should probably be a pipeline of distinct processes that read and write from stdin.
You don't need a queue data structure, that's exactly what an in-memory pipeline is -- a queue of bytes between two concurrent processes.
One strategy is to assign each worker an offset so if you have eight worker processes you assign then numbers 0 to 7. Worker number 0 reads the first record processes it then skips 7 and goes on to process the 8th record etc., worker number 1 reads the second record then skips 7 and processes the 9th record.........
There are a number of advantages to this scheme. It doesnt matter how big the file is the work is always divided evenly, processes on the same machine will process at roughly the same rate, and use the same buffer areas so you dont incur any excessive I/O overhead. As long as the file hasnt been updated you can rerun individual threads to recover from failures.
You dont mention how you are processing the lines; possibly the most important piece of info.
Is each line independant? Is the calculation dependant on one line coming before the next? Must they be processed in blocks? How long does the processing for each line take? Is there a processing step that must incorporate "all" the data at the end? Or can intermediate results be thrown away and just a running total maintained? Can the file be initially split by dividing filesize by count of threads? Or does it grow as you process it?
If the lines are independant and the file doesn't grow, the only coordination you need is to farm out "starting addresses" and "lengths" to each of the workers; they can independantly open and seek into the file and then you must simply coordinate their results; perhaps by waiting for N results to come back into a queue.
If the lines are not independant, the answer will depend highly on the structure of the file.
I know you specifically asked about Python, but I will encourage you to look at Hadoop (http://hadoop.apache.org/): it implements the Map and Reduce algorithm which was specifically designed to address this kind of problem.
Good luck
It depends a lot on the format of your file.
Does it make sense to split it anywhere? Or do you need to split it at a new line? Or do you need to make sure that you split it at the end of an object definition?
Instead of splitting the file, you should use multiple readers on the same file, using os.lseek to jump to the appropriate part of the file.
Update: Poster added that he wants to split on new lines. Then I propose the following:
Let's say you have 4 processes. Then the simple solution is to os.lseek to 0%, 25%, 50% and 75% of the file, and read bytes until you hit the first new line. That's your starting point for each process. You don't need to split the file to do this, just seek to the right location in the large file in each process and start reading from there.
Fredrik Lundh's Some Notes on Tim Bray's Wide Finder Benchmark is an interesting read, about a very similar use case, with a lot of good advice. Various other authors also implemented the same thing, some are linked from the article, but you might want to try googling for "python wide finder" or something to find some more. (there was also a solution somewhere based on the multiprocessing module, but that doesn't seem to be available anymore)
If the run time is long, instead of having each process read its next line through a Queue, have the processes read batches of lines. This way the overhead is amortized over several lines (e.g. thousands or more).
I have a python program that does something like this:
Read a row from a csv file.
Do some transformations on it.
Break it up into the actual rows as they would be written to the database.
Write those rows to individual csv files.
Go back to step 1 unless the file has been totally read.
Run SQL*Loader and load those files into the database.
Step 6 isn't really taking much time at all. It seems to be step 4 that's taking up most of the time. For the most part, I'd like to optimize this for handling a set of records in the low millions running on a quad-core server with a RAID setup of some kind.
There are a few ideas that I have to solve this:
Read the entire file from step one (or at least read it in very large chunks) and write the file to disk as a whole or in very large chunks. The idea being that the hard disk would spend less time going back and forth between files. Would this do anything that buffering wouldn't?
Parallelize steps 1, 2&3, and 4 into separate processes. This would make steps 1, 2, and 3 not have to wait on 4 to complete.
Break the load file up into separate chunks and process them in parallel. The rows don't need to be handled in any sequential order. This would likely need to be combined with step 2 somehow.
Of course, the correct answer to this question is "do what you find to be the fastest by testing." However, I'm mainly trying to get an idea of where I should spend my time first. Does anyone with more experience in these matters have any advice?
Poor man's map-reduce:
Use split to break the file up into as many pieces as you have CPUs.
Use batch to run your muncher in parallel.
Use cat to concatenate the results.
Python already does IO buffering and the OS should handle both prefetching the input file and delaying writes until it needs the RAM for something else or just gets uneasy about having dirty data in RAM for too long. Unless you force the OS to write them immediately, like closing the file after each write or opening the file in O_SYNC mode.
If the OS isn't doing the right thing, you can try raising the buffer size (third parameter to open()). For some guidance on appropriate values given a 100MB/s 10ms latency IO system a 1MB IO size will result in approximately 50% latency overhead, while a 10MB IO size will result in 9% overhead. If its still IO bound, you probably just need more bandwidth. Use your OS specific tools to check what kind of bandwidth you are getting to/from the disks.
Also useful is to check if step 4 is taking a lot of time executing or waiting on IO. If it's executing you'll need to spend more time checking which part is the culprit and optimize that, or split out the work to different processes.
If you are I/O bound, the best way I have found to optimize is to read or write the entire file into/out of memory at once, then operate out of RAM from there on.
With extensive testing I found that my runtime eded up bound not by the amount of data I read from/wrote to disk, but by the number of I/O operations I used to do it. That is what you need to optimize.
I don't know Python, but if there is a way to tell it to write the whole file out of RAM in one go, rather than issuing a separate I/O for each byte, that's what you need to do.
Of course the drawback to this is that files can be considerably larger than available RAM. There are lots of ways to deal with that, but that is another question for another time.
Can you use a ramdisk for step 4? Low millions sounds doable if the rows are less than a couple of kB or so.
Use buffered writes for step 4.
Write a simple function that simply appends the output onto a string, checks the string length, and only writes when you have enough which should be some multiple of 4k bytes. I would say start with 32k buffers and time it.
You would have one buffer per file, so that most "writes" won't actually hit the disk.
Isn't it possible to collect a few thousand rows in ram, then go directly to the database server and execute them?
This would remove the save to and load from the disk that step 4 entails.
If the database server is transactional, this is also a safe way to do it - just have the database begin before your first row and commit after the last.
The first thing is to be certain of what you should optimize. You seem to not know precisely where your time is going. Before spending more time wondering, use a performance profiler to see exactly where the time is going.
http://docs.python.org/library/profile.html
When you know exactly where the time is going, you'll be in a better position to know where to spend your time optimizing.