How do I stitch multiple images in a panaroma? - python

I am using opencv and want to stick with it.
I have 5 images with some common areas in a pairwise manner. I want to merge them together in a single image. I have been successful joining two images together, as they were of the same resolution(a little tweak brought them to the same resolution without distorting the contents significantly). But now this first stage of merging gives me a highly inflated image, the resolution has gone significantly up(kind of an addition of two images).
To merge the two images I had brought their resolutions to the same value and it didn't cause much distortion. But now there's this image with double the length. If I change its resolution to the level of the image next in line for stitching, it is going to highly distort the content of the first stage and hence the result from here on.
How do I fix this issue given that I need to go through 5-6 iterations of stitching where the resolution is going to keep increasing?
Also, if there is any text which goes into details of image processing with examples, like above.
Stitcher.py
# -*- coding: utf-8 -*-
"""
Spyder Editor
This is a temporary script file.
"""
# import the necessary packages
import numpy as np
import imutils
import cv2
class Stitcher:
def __init__(self):
# determine if we are using OpenCV v3.X
self.isv3 = imutils.is_cv3()
def stitch(self, images, ratio=0.75, reprojThresh=4.0,
showMatches=False):
# unpack the images, then detect keypoints and extract
# local invariant descriptors from them
(imageB, imageA) = images
#(b, g, r) = cv2.split(imageA)
#imageA = cv2.merge([r,g,b])
#(b, g, r) = cv2.split(imageB)
#imageB = cv2.merge([r,g,b])
(kpsA, featuresA) = self.detectAndDescribe(imageA)
(kpsB, featuresB) = self.detectAndDescribe(imageB)
# match features between the two images
M = self.matchKeypoints(kpsA, kpsB,
featuresA, featuresB, ratio, reprojThresh)
# if the match is None, then there aren't enough matched
# keypoints to create a panorama
if M is None:
return None
# otherwise, apply a perspective warp to stitch the images
# together
(matches, H, status) = M
result = cv2.warpPerspective(imageA, H,
(imageA.size[1] + imageB.size[1], imageA.size[0]))
result[0:imageB.size[0], 0:imageB.size[1]] = imageB
# check to see if the keypoint matches should be visualized
if showMatches:
vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches,
status)
# return a tuple of the stitched image and the
# visualization
return (result, vis)
# return the stitched image
return result
def detectAndDescribe(self, image):
# convert the image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# check to see if we are using OpenCV 3.X
if self.isv3:
# detect and extract features from the image
descriptor = cv2.xfeatures2d.SIFT_create()
(kps, features) = descriptor.detectAndCompute(image, None)
# otherwise, we are using OpenCV 2.4.X
else:
# detect keypoints in the image
detector = cv2.FeatureDetector_create("SIFT")
kps = detector.detect(gray)
# extract features from the image
extractor = cv2.DescriptorExtractor_create("SIFT")
(kps, features) = extractor.compute(gray, kps)
# convert the keypoints from KeyPoint objects to NumPy
# arrays
kps = np.float32([kp.pt for kp in kps])
# return a tuple of keypoints and features
return (kps, features)
def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB,
ratio, reprojThresh):
# compute the raw matches and initialize the list of actual
# matches
matcher = cv2.DescriptorMatcher_create("BruteForce")
rawMatches = matcher.knnMatch(featuresA, featuresB, 2)
matches = []
# loop over the raw matches
for m in rawMatches:
# ensure the distance is within a certain ratio of each
# other (i.e. Lowe's ratio test)
if len(m) == 2 and m[0].distance < m[1].distance * ratio:
matches.append((m[0].trainIdx, m[0].queryIdx))
# computing a homography requires at least 4 matches
if len(matches) > 4:
# construct the two sets of points
ptsA = np.float32([kpsA[i] for (_, i) in matches])
ptsB = np.float32([kpsB[i] for (i, _) in matches])
# compute the homography between the two sets of points
(H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC,
reprojThresh)
# return the matches along with the homograpy matrix
# and status of each matched point
return (matches, H, status)
# otherwise, no homograpy could be computed
return None
def drawMatches(self, imageA, imageB, kpsA, kpsB, matches, status):
# initialize the output visualization image
(hA, wA) = imageA.shape[:2]
(hB, wB) = imageB.shape[:2]
vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")
vis[0:hA, 0:wA] = imageA
vis[0:hB, wA:] = imageB
# loop over the matches
for ((trainIdx, queryIdx), s) in zip(matches, status):
# only process the match if the keypoint was successfully
# matched
if s == 1:
# draw the match
ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))
ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))
cv2.line(vis, ptA, ptB, (0, 255, 0), 1)
# return the visualization
return vis
run.py
# -*- coding: utf-8 -*-
"""
Created on Mon Dec 18 11:13:23 2017
#author: user
"""
# import the necessary packages
import os
os.chdir('/home/user/Desktop/stitcher')
from str import Stitcher
import argparse
import imutils
import cv2
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-f", "--first", required=True,
help="path to the first image")
ap.add_argument("-s", "--second", required=True,
help="path to the second image")
args = vars(ap.parse_args())
# load the two images and resize them to have a width of 400 pixels
# (for faster processing)
#from PIL import Image
#imageA = Image.open(args['first']).convert('RGB')
#imageB = Image.open(args['second']).convert('RGB')
imageA = cv2.imread(args["first"])
imageB = cv2.imread(args["second"])
#imageA = imutils.resize(imageA, width=400)
#imageB = imutils.resize(imageB, width=400)
imageA = cv2.resize(imageA,(2464,832)) #hardcoded values
imageB = cv2.resize(imageB,(2464,832)) #hardcoded values
# stitch the images together to create a panorama
stitcher = Stitcher()
(result, vis) = stitcher.stitch([imageA, imageB], showMatches=True)
cv2.imwrite('stage1.png',result)
# show the images
cv2.imshow("Image A", imageA)
cv2.imshow("Image B", imageB)
cv2.imshow("Keypoint Matches", vis)
cv2.imshow("Result", result)
cv2.waitKey(0)
As you can see, I have resized the images so that they have the same height and width with hardcoded values. I could have just got the minimum of two and put that as their length and breadth.
When I bring in the third image, I can't inflate it to match the resolution of stage1 or neither can I decrease the stage1's resolution to match the third image.
P.S. : imgutils didn't give me a way to choose both length and breadth.

Related

Stitching two images together using CV2 in Python

so I was wondering if there is a way to stitch two parts of an image at the right position using key-points and homography matrix.
as an example here are the two images.
so for the keypoints detection I am using "Superpoint" and I am getting the following result.
so I am searching for a way to maybe use the cv2.warpAffine function to align the images together, all my attempts so far didn't work. The goal is to let the program decide where to place the second image in the first one.
here is the code I am using:
enter code here
import argparse
from pathlib import Path
import cv2
import numpy as np
import tensorflow as tf # noqa: E402
from superpoint.settings import EXPER_PATH # noqa: E402
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
def extract_superpoint_keypoints_and_descriptors(keypoint_map, descriptor_map,
keep_k_points=1000):
def select_k_best(points, k):
""" Select the k most probable points (and strip their proba).
points has shape (num_points, 3) where the last coordinate is the proba. """
sorted_prob = points[points[:, 2].argsort(), :2]
start = min(k, points.shape[0])
return sorted_prob[-start:, :]
# Extract keypoints
keypoints = np.where(keypoint_map > 0)
prob = keypoint_map[keypoints[0], keypoints[1]]
keypoints = np.stack([keypoints[0], keypoints[1], prob], axis=-1)
keypoints = select_k_best(keypoints, keep_k_points)
keypoints = keypoints.astype(int)
# Get descriptors for keypoints
desc = descriptor_map[keypoints[:, 0], keypoints[:, 1]]
# Convert from just pts to cv2.KeyPoints
keypoints = [cv2.KeyPoint(p[1], p[0], 1) for p in keypoints]
return keypoints, desc
def match_descriptors(kp1, desc1, kp2, desc2):
# Match the keypoints with the warped_keypoints with nearest neighbor search
bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)
matches = bf.match(desc1, desc2)
matches_idx = np.array([m.queryIdx for m in matches])
m_kp1 = [kp1[idx] for idx in matches_idx]
matches_idx = np.array([m.trainIdx for m in matches])
m_kp2 = [kp2[idx] for idx in matches_idx]
return m_kp1, m_kp2, matches
def compute_homography(matched_kp1, matched_kp2):
matched_pts1 = cv2.KeyPoint_convert(matched_kp1)
matched_pts2 = cv2.KeyPoint_convert(matched_kp2)
H, inliers = cv2.findHomography(matched_pts1[:, [1, 0]],
matched_pts2[:, [1, 0]],cv2.RANSAC,5.0)
inliers = inliers.flatten()
print(H)
return H, inliers
def preprocess_image(img_file, img_size):
img = cv2.imread(img_file, cv2.IMREAD_COLOR)
img = cv2.resize(img, img_size)
img_orig = img.copy()
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = np.expand_dims(img, 2)
img = img.astype(np.float32)
img_preprocessed = img / 255.
return img_preprocessed, img_orig
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser = argparse.ArgumentParser(description='Compute the homography \
between two images with the SuperPoint feature matches.')
parser.add_argument('weights_name', type=str)
parser.add_argument('img1_path', type=str)
parser.add_argument('img2_path', type=str)
parser.add_argument('--H', type=int, default=480,
help='The height in pixels to resize the images to. \
(default: 480)')
parser.add_argument('--W', type=int, default=640,
help='The width in pixels to resize the images to. \
(default: 640)')
parser.add_argument('--k_best', type=int, default=1000,
help='Maximum number of keypoints to keep \
(default: 1000)')
args = parser.parse_args()
weights_name = args.weights_name
img1_file = args.img1_path
img2_file = args.img2_path
img_size = (args.W, args.H)
keep_k_best = args.k_best
weights_root_dir = Path(EXPER_PATH, 'saved_models')
weights_root_dir.mkdir(parents=True, exist_ok=True)
weights_dir = Path(weights_root_dir, weights_name)
graph = tf.Graph()
with tf.Session(graph=graph) as sess:
tf.saved_model.loader.load(sess,
[tf.saved_model.tag_constants.SERVING],
str(weights_dir))
input_img_tensor = graph.get_tensor_by_name('superpoint/image:0')
output_prob_nms_tensor = graph.get_tensor_by_name('superpoint/prob_nms:0')
output_desc_tensors = graph.get_tensor_by_name('superpoint/descriptors:0')
img1, img1_orig = preprocess_image(img1_file, img_size)
out1 = sess.run([output_prob_nms_tensor, output_desc_tensors],
feed_dict={input_img_tensor: np.expand_dims(img1, 0)})
keypoint_map1 = np.squeeze(out1[0])
descriptor_map1 = np.squeeze(out1[1])
kp1, desc1 = extract_superpoint_keypoints_and_descriptors(
keypoint_map1, descriptor_map1, keep_k_best)
img2, img2_orig = preprocess_image(img2_file, img_size)
out2 = sess.run([output_prob_nms_tensor, output_desc_tensors],
feed_dict={input_img_tensor: np.expand_dims(img2, 0)})
keypoint_map2 = np.squeeze(out2[0])
descriptor_map2 = np.squeeze(out2[1])
kp2, desc2 = extract_superpoint_keypoints_and_descriptors(
keypoint_map2, descriptor_map2, keep_k_best)
# Match and get rid of outliers
m_kp1, m_kp2, matches = match_descriptors(kp1, desc1, kp2, desc2)
H, inliers= compute_homography(m_kp1, m_kp2)
matches = np.array(matches)[inliers.astype(bool)].tolist()
matched_img = cv2.drawMatches(img1_orig, kp1, img2_orig, kp2, matches,
None, matchColor=(0, 255, 0),
singlePointColor=(0, 0, 255))
I appreciate your help!
So for closure, using homographies or affine transformations to stitch these two images together is not the right way to do this. There are too many interest points that are candidates between each portion that are highly ambiguous which would not allow this stitching to be successful.
The only way for this to have worked would be if your feature matches were specified at the boundaries of where the two images were disconnected from each other. However, these points would never be interest points as the local neighbourhoods do not offer any unique information. Also, edges by definition are not interest points so any detector would never yield those as proper points.
I apologize if this wasn't the answer you were looking for!
This should hopefully be what you are looking for. The addWeighted function is the function in cv2 for merging images
import cv2
img1 = cv2.imread('7FgBZ.jpg',1)
img2 = cv2.imread('qqiH8.jpg',1)
print(img2)
dst = cv2.addWeighted(img1,0.2,img2,0.2,0)
print(dst)
cv2.imshow('dst',dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

How to improve image alignment with OpenCV

I have a project where people can add data about utility bills, and there's also an OCR service inside. So people from my city can recognize data from bills just by loading their photos of bills. The trouble is that I can't reach this goal fully.
So I have 4 templates of bills (like for heating, water, gas and so on) in high quality. Example is below:
My user can load a picture like that:
And after alignment I get this result:
And it's obvious that I can't get good recognition with such image.
My code which I use for image alignment:
import os
import cv2
import numpy as np
from config import folder_path_aligned_images
MAX_FEATURES = 500
GOOD_MATCH_PERCENT = 0.15
class OpenCV:
#classmethod
def match_img(cls, im1, im2):
# Convert images to grayscale
im1_gray = cv2.cvtColor(im1, cv2.COLOR_BGR2GRAY)
im2_gray = cv2.cvtColor(im2, cv2.COLOR_BGR2GRAY)
# Detect ORB features and compute descriptors.
orb = cv2.ORB_create(MAX_FEATURES)
keypoints_1, descriptors_1 = orb.detectAndCompute(im1_gray, None)
keypoints_2, descriptors_2 = orb.detectAndCompute(im2_gray, None)
# Match features.
matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING)
matches = matcher.match(descriptors_1, descriptors_2, None)
# Sort matches by score
matches.sort(key=lambda x: x.distance, reverse=False)
# Remove not so good matches
num_good_matches = int(len(matches) * GOOD_MATCH_PERCENT)
matches = matches[:num_good_matches]
# Draw top matches
im_matches = cv2.drawMatches(im1, keypoints_1, im2, keypoints_2, matches, None)
cv2.imwrite(os.path.join(folder_path_aligned_images, "matches.jpg"), im_matches)
# Extract location of good matches
points_1 = np.zeros((len(matches), 2), dtype=np.float32)
points_2 = np.zeros((len(matches), 2), dtype=np.float32)
for i, match in enumerate(matches):
points_1[i, :] = keypoints_1[match.queryIdx].pt
points_2[i, :] = keypoints_2[match.trainIdx].pt
# Find homography
h, mask = cv2.findHomography(points_1, points_2, cv2.RANSAC)
# Use homography
height, width, channels = im2.shape
im1_reg = cv2.warpPerspective(im1, h, (width, height))
return im1_reg, h
#classmethod
def align_img(cls, template_path, raw_img_path, result_img_path):
# Read reference image
ref_filename = template_path
print("Reading reference image: ", ref_filename)
im_reference = cv2.imread(ref_filename, cv2.IMREAD_COLOR)
# Read image to be aligned
im_filename = raw_img_path
print("Reading image to align: ", im_filename)
im = cv2.imread(raw_img_path, cv2.IMREAD_COLOR)
print("Aligning images ...")
# Registered image will be resorted in im_reg.
im_reg, h = OpenCV.match_img(im, im_reference)
# Write aligned image to disk.
print("Saving aligned image : ", result_img_path)
cv2.imwrite(result_img_path, im_reg)
return result_img_path
How can I improve this?
EDIT: image with matches:
Don't know if this helps almost a year on, but I used a similar code that you have, and what worked for me was to increase the number of MAX_FEATURES (I use 80000, but you might not even need that much) and to decrease the GOOD_MATCH_PERCENT to like 0.05. Try playing with the numbers!

Featured based image alignment issue

I am trying to learn OpenCV in order to improve a script I wrote for comparing engineering drawings. I am using the code (see below) found on this tutorial but I am having zero success with it. In the tutorial the author uses the example of a blank form for the reference image and a photo of the completed form as the image to align. My situation is very similar because I am attempting to use a blank drawing title block as my reference image and a scanned image of a drawing as my image to align.
My goal is to use OpenCV to clean up the scanned engineering drawings so that they are aligned properly but no matter what I try in the MAX_FEATURES and GOOD_MATCH_PERCENT parameters, I get an image that looks like a black and white star burst. Also, when I review the "matches.jpg" file generated by the script, it appears that there are no correct matches. I have tried multiple drawings and I get the same results.
Can anyone see a reason why this script would not work in the way I am trying to use it?
from __future__ import print_function
import cv2
import numpy as np
MAX_FEATURES = 500
GOOD_MATCH_PERCENT = 0.15
def alignImages(im1, im2):
# Convert images to grayscale
im1Gray = cv2.cvtColor(im1, cv2.COLOR_BGR2GRAY)
im2Gray = cv2.cvtColor(im2, cv2.COLOR_BGR2GRAY)
# Detect ORB features and compute descriptors.
orb = cv2.ORB_create(MAX_FEATURES)
keypoints1, descriptors1 = orb.detectAndCompute(im1Gray, None)
keypoints2, descriptors2 = orb.detectAndCompute(im2Gray, None)
# Match features.
matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING)
matches = matcher.match(descriptors1, descriptors2, None)
# Sort matches by score
matches.sort(key=lambda x: x.distance, reverse=False)
# Remove not so good matches
numGoodMatches = int(len(matches) * GOOD_MATCH_PERCENT)
matches = matches[:numGoodMatches]
# Draw top matches
imMatches = cv2.drawMatches(im1, keypoints1, im2, keypoints2, matches, None)
cv2.imwrite("matches.jpg", imMatches)
# Extract location of good matches
points1 = np.zeros((len(matches), 2), dtype=np.float32)
points2 = np.zeros((len(matches), 2), dtype=np.float32)
for i, match in enumerate(matches):
points1[i, :] = keypoints1[match.queryIdx].pt
points2[i, :] = keypoints2[match.trainIdx].pt
# Find homography
h, mask = cv2.findHomography(points1, points2, cv2.RANSAC)
# Use homography
height, width, channels = im2.shape
im1Reg = cv2.warpPerspective(im1, h, (width, height))
return im1Reg, h
if __name__ == '__main__':
# Read reference image
refFilename = "form.jpg"
print("Reading reference image : ", refFilename)
imReference = cv2.imread(refFilename, cv2.IMREAD_COLOR)
# Read image to be aligned
imFilename = "scanned-form.jpg"
print("Reading image to align : ", imFilename);
im = cv2.imread(imFilename, cv2.IMREAD_COLOR)
print("Aligning images ...")
# Registered image will be resotred in imReg.
# The estimated homography will be stored in h.
imReg, h = alignImages(im, imReference)
# Write aligned image to disk.
outFilename = "aligned.jpg"
print("Saving aligned image : ", outFilename);
cv2.imwrite(outFilename, imReg)
# Print estimated homography
print("Estimated homography : \n", h)
Template Image:
Image to Align:
Expected output Image:
Here is one way in Python/OpenCV using a Rigid Affine Transformation (scale, rotation and translation only - no skew or perspective) to warp one image to match the other. It uses findTransformECC() -- Enhanced Correlation Coefficient Maximization) -- to get the rotation matrix and then uses warpAffine to do the rigid warping.
Template:
Image to be warped:
import cv2
import numpy as np
import math
import sys
# Get the image files from the command line arguments
# These are full paths to the images
# image2 will be warped to match image1
# argv[0] is name of script
image1 = sys.argv[1]
image2 = sys.argv[2]
outfile = sys.argv[3]
# Read the images to be aligned
# im2 is to be warped to match im1
im1 = cv2.imread(image1);
im2 = cv2.imread(image2);
# Convert images to grayscale for computing the rotation via ECC method
im1_gray = cv2.cvtColor(im1,cv2.COLOR_BGR2GRAY)
im2_gray = cv2.cvtColor(im2,cv2.COLOR_BGR2GRAY)
# Find size of image1
sz = im1.shape
# Define the motion model - euclidean is rigid (SRT)
warp_mode = cv2.MOTION_EUCLIDEAN
# Define 2x3 matrix and initialize the matrix to identity matrix I (eye)
warp_matrix = np.eye(2, 3, dtype=np.float32)
# Specify the number of iterations.
number_of_iterations = 5000;
# Specify the threshold of the increment
# in the correlation coefficient between two iterations
termination_eps = 1e-3;
# Define termination criteria
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, number_of_iterations, termination_eps)
# Run the ECC algorithm. The results are stored in warp_matrix.
(cc, warp_matrix) = cv2.findTransformECC (im1_gray, im2_gray, warp_matrix, warp_mode, criteria, None, 1)
# Warp im2 using affine
im2_aligned = cv2.warpAffine(im2, warp_matrix, (sz[1],sz[0]), flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP);
# write output
cv2.imwrite(outfile, im2_aligned)
# Print rotation angle
row1_col0 = warp_matrix[0,1]
angle = math.degrees(math.asin(row1_col0))
print(angle)
Result:
Resulting Angle of Rotation (in deg):
-0.3102187026194794
Note, you can change the background color in the affineWarp to white if desired.
Also make the termination epsilon smaller by an order of magnitude or two for more accuracy, but longer processing times.
The other Rigid Affine approach that I mentioned in my comments earlier is to use ORB feature matching, filter the key points, then use estimateAffinePartial2D() to get the rigid affine matrix. Then use that to warp the image. For large angles this seems to me to be more reliable than the ECC method. But the ECC method seems more accurate for small rotations.
import cv2
import numpy as np
import math
import sys
MAX_FEATURES = 10000
GOOD_MATCH_PERCENT = 0.15
DIFFY_THRESH = 2
# Get the image files from the command line arguments
# These are full paths to the images
# image[2] will be warped to match image[1]
# argv[0] is name of script
file1 = sys.argv[1]
file2 = sys.argv[2]
outFile = sys.argv[3]
# Read image1
image1 = cv2.imread(file1, cv2.IMREAD_COLOR)
# Read image2 to be warped to match image1
image2 = cv2.imread(file2, cv2.IMREAD_COLOR)
# Convert images to grayscale
image1Gray = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY)
image2Gray = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
# Detect ORB features and compute descriptors.
orb = cv2.ORB_create(MAX_FEATURES)
keypoints1, descriptors1 = orb.detectAndCompute(image1Gray, None)
keypoints2, descriptors2 = orb.detectAndCompute(image2Gray, None)
# Match features.
matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = matcher.match(descriptors1, descriptors2, None)
# Sort matches by score
matches.sort(key=lambda x: x.distance, reverse=False)
# Remove not so good matches
numGoodMatches = int(len(matches) * GOOD_MATCH_PERCENT)
matches = matches[:numGoodMatches]
#print('numgood',numGoodMatches)
# Extract location of good matches and filter by diffy if rotation is small
points1 = np.zeros((len(matches), 2), dtype=np.float32)
points2 = np.zeros((len(matches), 2), dtype=np.float32)
for i, match in enumerate(matches):
points1[i, :] = keypoints1[match.queryIdx].pt
points2[i, :] = keypoints2[match.trainIdx].pt
# initialize empty arrays for newpoints1 and newpoints2 and mask
newpoints1 = np.empty(shape=[0, 2], dtype=np.float32)
newpoints2 = np.empty(shape=[0, 2], dtype=np.float32)
matches_Mask = [0] * len(matches)
count=0
for i in range(len(matches)):
pt1 = points1[i]
pt2 = points2[i]
pt1x, pt1y = zip(*[pt1])
pt2x, pt2y = zip(*[pt2])
diffy = np.float32( np.float32(pt2y) - np.float32(pt1y) )
if abs(diffy) < DIFFY_THRESH:
newpoints1 = np.append(newpoints1, [pt1], axis=0).astype(np.uint8)
newpoints2 = np.append(newpoints2, [pt2], axis=0).astype(np.uint8)
matches_Mask[i]=1
count += 1
# Find Affine Transformation
# note swap of order of newpoints here so that image2 is warped to match image1
m, inliers = cv2.estimateAffinePartial2D(newpoints2,newpoints1)
# Use affine transform to warp im2 to match im1
height, width, channels = image1.shape
image2Reg = cv2.warpAffine(image2, m, (width, height))
# Write aligned image to disk.
cv2.imwrite(outFile, image2Reg)
# Print angle
row1_col0 = m[1,0]
print('row1_col0:',row1_col0)
angle = math.degrees(math.asin(row1_col0))
print('angle', angle)
Result Image:
Result Rotation Angle:
-0.6123936361765413
After some trial and error I determined that I don't need to find a homography in order to align my images properly. Since my images only need to be scaled and rotated slightly, my best option is to find the outer most points of the drawing title block and align one image to the other with a transform.
My approach is to use the Harris corner finding function to find all of the corners on the drawing, then do a simple calculation to find the points that are the shortest distance to the corners of the drawing canvas (these are the outside corners of the drawing title block). I then take 3 of the points (top left, top right, and bottom left) and use a transform to scale/rotate one drawing to the other.
Below is the code that I used:
import cv2
import numpy as np
import math
img1 = cv2.imread('reference.jpg')
img2 = cv2.imread('to-be-aligned.jpg')
#Find the corner points of img1
h1,w1,c=img1.shape
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray1 = np.float32(gray1)
dst1 = cv2.cornerHarris(gray1,5,3,0.04)
ret1, dst1 = cv2.threshold(dst1,0.1*dst1.max(),255,0)
dst1 = np.uint8(dst1)
ret1, labels1, stats1, centroids1 = cv2.connectedComponentsWithStats(dst1)
criteria1 = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.001)
corners1 = cv2.cornerSubPix(gray1,np.float32(centroids1),(5,5),(-1,-1),criteria1)
#Find the corner points of img2
h2,w2,c=img2.shape
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
gray2 = np.float32(gray2)
dst2 = cv2.cornerHarris(gray2,5,3,0.04)
ret2, dst2 = cv2.threshold(dst2,0.1*dst2.max(),255,0)
dst2 = np.uint8(dst2)
ret2, labels2, stats2, centroids2 = cv2.connectedComponentsWithStats(dst2)
criteria2 = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.001)
corners2 = cv2.cornerSubPix(gray2,np.float32(centroids2),(5,5),(-1,-1),criteria2)
#Find the top left, top right, and bottom left outer corners of the drawing frame for img1
a1=[0,0]
b1=[w1,0]
c1=[0,h1]
a1_dist=[]
b1_dist=[]
c1_dist=[]
for i in corners1:
temp_a1=math.sqrt((i[0]-a1[0])**2+(i[1]-a1[1])**2)
temp_b1=math.sqrt((i[0]-b1[0])**2+(i[1]-b1[1])**2)
temp_c1=math.sqrt((i[0]-c1[0])**2+(i[1]-c1[1])**2)
a1_dist.append(temp_a1)
b1_dist.append(temp_b1)
c1_dist.append(temp_c1)
print("Image #1 (reference):")
print("Top Left:")
print(corners1[a1_dist.index(min(a1_dist))])
print("Top Right:")
print(corners1[b1_dist.index(min(b1_dist))])
print("Bottom Left:")
print(corners1[c1_dist.index(min(c1_dist))])
#Find the top left, top right, and bottom left outer corners of the drawing frame for img2
a2=[0,0]
b2=[w2,0]
c2=[0,h2]
a2_dist=[]
b2_dist=[]
c2_dist=[]
for i in corners2:
temp_a2=math.sqrt((i[0]-a2[0])**2+(i[1]-a2[1])**2)
temp_b2=math.sqrt((i[0]-b2[0])**2+(i[1]-b2[1])**2)
temp_c2=math.sqrt((i[0]-c2[0])**2+(i[1]-c2[1])**2)
a2_dist.append(temp_a2)
b2_dist.append(temp_b2)
c2_dist.append(temp_c2)
print("Image #2 (image to align):")
print("Top Left:")
print(corners2[a2_dist.index(min(a2_dist))])
print("Top Right:")
print(corners2[b2_dist.index(min(b2_dist))])
print("Bottom Left:")
print(corners2[c2_dist.index(min(c2_dist))])
#Create the points for img1
point1 = np.zeros((3,2), dtype=np.float32)
point1[0][0]=corners1[a1_dist.index(min(a1_dist))][0]
point1[0][1]=corners1[a1_dist.index(min(a1_dist))][1]
point1[1][0]=corners1[b1_dist.index(min(b1_dist))][0]
point1[1][1]=corners1[b1_dist.index(min(b1_dist))][1]
point1[2][0]=corners1[c1_dist.index(min(c1_dist))][0]
point1[2][1]=corners1[c1_dist.index(min(c1_dist))][1]
#Create the points for img2
point2 = np.zeros((3,2), dtype=np.float32)
point2[0][0]=corners2[a2_dist.index(min(a2_dist))][0]
point2[0][1]=corners2[a2_dist.index(min(a2_dist))][1]
point2[1][0]=corners2[b2_dist.index(min(b2_dist))][0]
point2[1][1]=corners2[b2_dist.index(min(b2_dist))][1]
point2[2][0]=corners2[c2_dist.index(min(c2_dist))][0]
point2[2][1]=corners2[c2_dist.index(min(c2_dist))][1]
#Make sure points look ok:
print(point1)
print(point2)
#Transform the image
m = cv2.getAffineTransform(point2,point1)
image2Reg = cv2.warpAffine(img2, m, (w1, h1), borderValue=(255,255,255))
#Highlight found points in red:
img1[dst1>0.1*dst1.max()]=[0,0,255]
img2[dst2>0.1*dst2.max()]=[0,0,255]
#Output the images:
cv2.imwrite("output-img1-harris.jpg", img1)
cv2.imwrite("output-img2-harris.jpg", img2)
cv2.imwrite("output-harris-transform.jpg",image2Reg)

remove moving objects using warped perspective image

Intro: From what I understand, given 2 images of the same scene with moving objects, I can make a mean on each pixel in order to "remove" the moving objects (it will have ghosting effects, but if I'll repeat with several images it will do fine).
However, this wouldn't work at all if I have different scenes, so I want to move all my images to the same scene (warping the perspective) and then do the suggested above.
I want to remove moving-objects from movie-frames I have. To do so, I find the matching key-points between 2 images, use RANSAC to remove outliers, and warp the perspective of image A to image B's perspective to get a warped image.
Now I want to that warped image to be in the same size of the src,dst images but that's not what I get:
Eventually I want to have a full warped image from several frames, and to use it to remove objects that move from frame to frame.
How to create the warped images in full size?
How to find the corresponding pixels on which I want to mean the values in order to delete moving objects?
# find key points + features of a given image
def get_keyPoints_and_features(img):
descriptor = cv2.xfeatures2d.SIFT_create()
kps, features = descriptor.detectAndCompute(img, None)
kps = np.float32([kp.pt for kp in kps])
return kps, features
# match key points of 2 images
def match_key_points(a, b, ratio = 0.75):
# unpack
kpsA, featuresA = a
kpsB, featuresB = b
matcher = cv2.DescriptorMatcher_create("BruteForce")
rawMatches = matcher.knnMatch(featuresA, featuresB, 2)
matches = []
# remove outliers using RANSAC
for m in rawMatches:
if len(m) == 2 and m[0].distance < m[1].distance * ratio:
matches.append((m[0].trainIdx, m[0].queryIdx))
# must have more than 4 matches
# the more matches we have, the more noise robust it will be
assert(len(matches) > 4)
ptsA = np.float32([kpsA[i] for (_, i) in matches])
ptsB = np.float32([kpsB[i] for (i, _) in matches])
(H, status) = cv2.findHomography(ptsA, ptsB, method = cv2.RANSAC,
ransacReprojThreshold = 0.4)
return matches, H
# warp src image to have perspective like dst image using the
# homogrpahy between both images
def warp_perspective(src, dst):
# read images
a,b = cv2.imread(src), cv2.imread(dst)
# generate key points and features
kps_and_features_a = get_keyPoints_and_features(a)
kps_and_features_b = get_keyPoints_and_features(b)
# get homography
_, H = match_key_points(kps_and_features_a, kps_and_features_b)
warped = cv2.warpPerspective(a, H, (a.shape[1], a.shape[0]))
inv_warped = cv2.warpPerspective(warped, inv(H), (a.shape[1], a.shape[0]))
cv2.imshow("a", a)
cv2.imshow("b", b)
cv2.imshow("warped", warped)
cv2.imshow("inv_warped", inv_warped)
cv2.moveWindow("a",0,0)
cv2.moveWindow("b",0,370)
cv2.moveWindow("warped",600,0)
cv2.moveWindow("inv_warped",600,370)
cv2.waitKey(0)
cv2.destroyAllWindows()
def main():
# get images
path = r'...'
images = [os.path.join(path, file) for file in os.listdir(path)]
warp_perspective(images[0], images[1])
main()

How to visualize descriptor matching using opencv module in python

I am trying to use opencv with python. I wrote a descriptor (SIFT, SURF, or ORB) matching code in C++ version of opencv 2.4. I want to convert this code to opencv with python. I found some documents about how to use opencv functions in c++ but many of the opencv function in python I could not find how to use them. Here is my python code, and my current problem is that I don't know how to use "drawMatches" of opencv c++ in python. I found cv2.DRAW_MATCHES_FLAGS_DEFAULT but I have no idea how to use it. Here is my python code of matching using ORB descriptors:
im1 = cv2.imread(r'C:\boldt.jpg')
im2 = cv2.cvtColor(im1, cv2.COLOR_BGR2GRAY)
im3 = cv2.imread(r'C:\boldt_resize50.jpg')
im4 = cv2.cvtColor(im3, cv2.COLOR_BGR2GRAY)
orbDetector2 = cv2.FeatureDetector_create("ORB")
orbDescriptorExtractor2 = cv2.DescriptorExtractor_create("ORB")
orbDetector4 = cv2.FeatureDetector_create("ORB")
orbDescriptorExtractor4 = cv2.DescriptorExtractor_create("ORB")
keypoints2 = orbDetector2.detect(im2)
(keypoints2, descriptors2) = orbDescriptorExtractor2.compute(im2,keypoints2)
keypoints4 = orbDetector4.detect(im4)
(keypoints4, descriptors4) = orbDescriptorExtractor4.compute(im4,keypoints4)
matcher = cv2.DescriptorMatcher_create('BruteForce-Hamming')
raw_matches = matcher.match(descriptors2, descriptors4)
img_matches = cv2.DRAW_MATCHES_FLAGS_DEFAULT(im2, keypoints2, im4, keypoints4, raw_matches)
cv2.namedWindow("Match")
cv2.imshow( "Match", img_matches);
Error message of the line "img_matches = cv2.DRAW_MATCHES_FLAGS_DEFAULT(im2, keypoints2, im4, keypoints4, raw_matches)"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'long' object is not callable
I spent much time search documentation and examples of using opencv functions with python. However, I am very frustrated because there is very little information of using opencv functions in python. It will be extremely helpful if anyone can teach me where I can find the documentation of how to use every function of the opencv module in python. I appreciate your time and help.
I've also written something myself that just uses the OpenCV Python interface and I didn't use scipy. drawMatches is part of OpenCV 3.0.0 and isn't part of OpenCV 2, which is what I'm currently using. Even though I'm late to the party, here's my own implementation that mimics drawMatches to the best of my ability.
I've provided my own images where one is of a camera man, and the other one is the same image but rotated by 55 degrees counter-clockwise.
The basic premise of what I wrote is that I allocate an output RGB image where the amount of rows is the maximum of the two images to accommodate for placing both of the images in the output image and the columns are simply the summation of both the columns together. I place each image in their corresponding spots, then run through a loop of all of the matched keypoints. I extract which keypoints matched between the two images, then extract their (x,y) co-ordinates. I then draw circles at each of the detected locations, then draw a line connecting these circles together.
Bear in mind that the detected keypoint in the second image is with respect to its own co-ordinate system. If you want to place this in the final output image, you need to offset the column co-ordinate by the amount of columns from the first image so that the column co-ordinate is with respect to the co-ordinate system of the output image.
Without further ado:
import numpy as np
import cv2
def drawMatches(img1, kp1, img2, kp2, matches):
"""
My own implementation of cv2.drawMatches as OpenCV 2.4.9
does not have this function available but it's supported in
OpenCV 3.0.0
This function takes in two images with their associated
keypoints, as well as a list of DMatch data structure (matches)
that contains which keypoints matched in which images.
An image will be produced where a montage is shown with
the first image followed by the second image beside it.
Keypoints are delineated with circles, while lines are connected
between matching keypoints.
img1,img2 - Grayscale images
kp1,kp2 - Detected list of keypoints through any of the OpenCV keypoint
detection algorithms
matches - A list of matches of corresponding keypoints through any
OpenCV keypoint matching algorithm
"""
# Create a new output image that concatenates the two images together
# (a.k.a) a montage
rows1 = img1.shape[0]
cols1 = img1.shape[1]
rows2 = img2.shape[0]
cols2 = img2.shape[1]
out = np.zeros((max([rows1,rows2]),cols1+cols2,3), dtype='uint8')
# Place the first image to the left
out[:rows1,:cols1,:] = np.dstack([img1, img1, img1])
# Place the next image to the right of it
out[:rows2,cols1:cols1+cols2,:] = np.dstack([img2, img2, img2])
# For each pair of points we have between both images
# draw circles, then connect a line between them
for mat in matches:
# Get the matching keypoints for each of the images
img1_idx = mat.queryIdx
img2_idx = mat.trainIdx
# x - columns
# y - rows
(x1,y1) = kp1[img1_idx].pt
(x2,y2) = kp2[img2_idx].pt
# Draw a small circle at both co-ordinates
# radius 4
# colour blue
# thickness = 1
cv2.circle(out, (int(x1),int(y1)), 4, (255, 0, 0), 1)
cv2.circle(out, (int(x2)+cols1,int(y2)), 4, (255, 0, 0), 1)
# Draw a line in between the two points
# thickness = 1
# colour blue
cv2.line(out, (int(x1),int(y1)), (int(x2)+cols1,int(y2)), (255, 0, 0), 1)
# Show the image
cv2.imshow('Matched Features', out)
cv2.waitKey(0)
cv2.destroyAllWindows()
To illustrate that this works, here are the two images that I used:
I used OpenCV's ORB detector to detect the keypoints, and used the normalized Hamming distance as the distance measure for similarity as this is a binary descriptor. As such:
import numpy as np
import cv2
img1 = cv2.imread('cameraman.png') # Original image
img2 = cv2.imread('cameraman_rot55.png') # Rotated image
# Create ORB detector with 1000 keypoints with a scaling pyramid factor
# of 1.2
orb = cv2.ORB(1000, 1.2)
# Detect keypoints of original image
(kp1,des1) = orb.detectAndCompute(img1, None)
# Detect keypoints of rotated image
(kp2,des2) = orb.detectAndCompute(img2, None)
# Create matcher
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
# Do matching
matches = bf.match(des1,des2)
# Sort the matches based on distance. Least distance
# is better
matches = sorted(matches, key=lambda val: val.distance)
# Show only the top 10 matches
drawMatches(img1, kp1, img2, kp2, matches[:10])
This is the image I get:
you can visualize the feature matching in Python as following. Note the use of scipy library.
# matching features of two images
import cv2
import sys
import scipy as sp
if len(sys.argv) < 3:
print 'usage: %s img1 img2' % sys.argv[0]
sys.exit(1)
img1_path = sys.argv[1]
img2_path = sys.argv[2]
img1 = cv2.imread(img1_path, cv2.CV_LOAD_IMAGE_GRAYSCALE)
img2 = cv2.imread(img2_path, cv2.CV_LOAD_IMAGE_GRAYSCALE)
detector = cv2.FeatureDetector_create("SURF")
descriptor = cv2.DescriptorExtractor_create("BRIEF")
matcher = cv2.DescriptorMatcher_create("BruteForce-Hamming")
# detect keypoints
kp1 = detector.detect(img1)
kp2 = detector.detect(img2)
print '#keypoints in image1: %d, image2: %d' % (len(kp1), len(kp2))
# descriptors
k1, d1 = descriptor.compute(img1, kp1)
k2, d2 = descriptor.compute(img2, kp2)
print '#keypoints in image1: %d, image2: %d' % (len(d1), len(d2))
# match the keypoints
matches = matcher.match(d1, d2)
# visualize the matches
print '#matches:', len(matches)
dist = [m.distance for m in matches]
print 'distance: min: %.3f' % min(dist)
print 'distance: mean: %.3f' % (sum(dist) / len(dist))
print 'distance: max: %.3f' % max(dist)
# threshold: half the mean
thres_dist = (sum(dist) / len(dist)) * 0.5
# keep only the reasonable matches
sel_matches = [m for m in matches if m.distance < thres_dist]
print '#selected matches:', len(sel_matches)
# #####################################
# visualization of the matches
h1, w1 = img1.shape[:2]
h2, w2 = img2.shape[:2]
view = sp.zeros((max(h1, h2), w1 + w2, 3), sp.uint8)
view[:h1, :w1, :] = img1
view[:h2, w1:, :] = img2
view[:, :, 1] = view[:, :, 0]
view[:, :, 2] = view[:, :, 0]
for m in sel_matches:
# draw the keypoints
# print m.queryIdx, m.trainIdx, m.distance
color = tuple([sp.random.randint(0, 255) for _ in xrange(3)])
cv2.line(view, (int(k1[m.queryIdx].pt[0]), int(k1[m.queryIdx].pt[1])) , (int(k2[m.trainIdx].pt[0] + w1), int(k2[m.trainIdx].pt[1])), color)
cv2.imshow("view", view)
cv2.waitKey()
As the error message says, DRAW_MATCHES_FLAGS_DEFAULT is of type 'long'. It is a constant defined by the cv2 module, not a function. Unfortunately, the function you want, 'drawMatches' only exists in OpenCV's C++ interface.

Categories