Convert from decimal to any base number in Python - python

This function takes in any base-10 integer and returns the string representation of that number in its specified base-32 form:
def encodeN(n,N,D="0123456789qwertyuiopasdfghjklzxc"):
return (encodeN(n//N,N)+D[n%N]).lstrip("0") if n>0 else "0"
Example:
print (encodeN(16002,32))
Output:
ya2
But I have a problem with writing a decoding function from base-32 back to base-10. How can I write it? Can I enter custom nonstandard characters to extend the base-n?

You could cheat:
tmap = str.maketrans('qwertyuiopasdfghjklzxc', 'abcdefghijklmnopqrstuv')
result = int(inputvalue.translate(tmap), 32)
Demo:
>>> tmap = str.maketrans('qwertyuiopasdfghjklzxc', 'abcdefghijklmnopqrstuv')
>>> inputvalue = 'ya2'
>>> int(inputvalue.translate(tmap), 32)
16002
int() is perfectly capable of translating arbitrary bases back to integer values; all you need to do is use the standard progression of letters. The str.translate() call above maps your custom progression to the standard.
Otherwise, take each character from your input string, starting at the left, map that to an integer from your character map, and multiply by the base N each time:
def decodeN(n, N, D={c: i for i, c in enumerate("0123456789qwertyuiopasdfghjklzxc")}):
result = 0
for c in n:
result = (result * N) + D[c]
return result
This is the slower option; str.translate() and int() both use optimised C code to do their jobs, and will always be faster than a pure-python approach.
Translating that to a recursive version to match your encodeN() implementation:
def decodeN(n, N, D={c: i for i, c in enumerate("0123456789qwertyuiopasdfghjklzxc")}):
return decodeN(n[:-1], N) * N + D[n[-1]] if n else 0

With the same recursive structure, you could write:
def encodeN(n,N,D="0123456789qwertyuiopasdfghjklzxc"):
return (encodeN(n//N,N)+D[n%N]).lstrip("0") if n>0 else "0"
def decodeN(n,N,D="0123456789qwertyuiopasdfghjklzxc"):
return decodeN(n[:-1],N) * N + D.index(n[-1]) if n else 0
It seems to work fine:
print(encodeN(16002, 32))
# "ya2"
print(decodeN("ya2", 32))
# 16002
print(all(decodeN(encodeN(x, b), b) == x for b in range(2, 33) for x in range(10000)))
# True
print(all(encodeN(decodeN(str(x),32), 32) == str(x) for b in range(2, 33) for x in range(10000)))
# True
It's not very efficient though. Using a dict like MartijnPieters would be a better idea than using str.index.

>>> import string
>>> len(string.readable)
100
Judging by this you could have up to base 100 with no issues like duplicating characters or changing the encoding. But if we take out \t\n\r\x0b\x0c we get to 94.
Besides this you would have to result to some kind of custom rules, duplicating characters or prefixing them and such.

Related

Python recursion (format issue)

Write a recursive function replace_digit(n, d, r) which replaces each occurrence of digit d in the number n by r.
replace_digit(31242154125, 1, 0) => 30242054025
My code is as such
def replace_digit(n, d, r):
y=str(n)
if len(y)==0:
return ''
else:
if y[0]== str(d):
return str(r) + replace_digit(str(n)[1:],d,r)
else:
return y[0]+ replace_digit(str(n)[1:],d,r)
However, the answer I get is in a string format. Any idea how to convert into an integer format? I have been stuck for quite some time on this :(
If your recursive function must return an integer, then return integers. You can always convert the returned integer back into a string for recursive calls.
You'll have to stop when you run out of digits before calling, so only recurse if there are 2 or more characters in y.
However, this approach a big problem: leading zeros are dropped when converting to int():
>>> int('025')
25
You have two options here:
Pad the number when you convert to a string (using str.zfill() or format(), and use the length of the value you passed into the recursive call).
Recurse from the end. This would also allow you to not use strings.
Here is an approach using zero-padding:
def replace_digit(n, d, r):
nstr = str(n)
first, rest = nstr[0], nstr[1:]
if rest:
rest = str(replace_digit(rest, d, r)).zfill(len(rest))
if first == str(d):
first = str(r)
return int(first + rest)
Note that you always want to separate out the first character from the tail anyway, so I used variables for both.
This way, you can use if rest: to guard against recursing when there are no digits left, and you can call str() on the return value. The function returns the int() conversion of the (possibly replaced first value) with the updated rest value.
Demo:
>>> replace_digit(31242154125, 1, 0)
30242054025
Recursing from the opposite end would not have problems with zeros, except if the input value was 0 to begin with. However, you could instead use division and modules operations to work on the integer value directly:
number % 10 gives you the right-most digit, as an integer.
number // 10 gives you the remaining numbers, again as integer.
You could combine the two operations into one using the divmod() function. Personally, I don't do so, as I don't think it particularly improves readability, and using the operators is slightly faster when using CPython.
You can re-combine the recursive call result with the (possibly replaced) last digit by multiplying the returned value by 10 again:
def replace_digit(n, d, r):
head, last = n // 10, n % 10
if head:
head = replace_digit(head, d, r)
if last == d:
last = r
return (head * 10) + last
This works for any natural number, including 0:
>>> replace_digit(0, 1, 0)
0
>>> replace_digit(0, 0, 1)
1
>>> replace_digit(31242154125, 1, 0)
30242054025
>>> replace_digit(31242154125, 4, 9)
31292159125

Convert an integer to an alphanumeric string with as few characters as possible

I am looking for a way to reduce a decimal integer representation to a string with the fewest characters possible.
E.g. hexadecimal uses the letters A-F on top of the decimal numbers.
hex(123)
Is there a smooth way to make use of all letters to reduce the string length even more?
So that you can use your own alphabet and even expand it with 0-9, A-Z, a-z:
Recursive:
BS="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def to_base(n, b):
if not n: return "0"
return to_base(n//b, b).lstrip("0") + BS[n%b]
Iterative:
BS="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def to_base(n, b):
res = ""
while n:
res+=BS[n%b]
n//= b
return res[::-1] or "0"
Note: recursive version can raise RuntimeError: maximum recursion depth exceeded in cmp for very large integers and negative numbers.
Encoder usage:
Parameters (n, b) mean (number to convert, base to use), for example:
>>> to_base(123,2)
'1111011'
>>> to_base(123,16)
'7B'
>>> to_base(123,len(BS))
'3F'
>>> to_base(1234567890000,16)
'11F71FB0450'
>>> to_base(1234567890000,len(BS))
'FR5HUGK0'
Using len(BS) means you will use all the characters from your BS variable as the base of conversion.
Iterative decoder:
def to_dec(n, b):
res = 0
power = 1
for letter in enumerate(n[::-1]):
i = BS.find(letter)
res += i*power
power *= b
return res
Decoder usage:
Parameters (n, b) mean (number to convert, base to use), for example:
>>> to_dec('1111011',2)
123
>>> to_dec('7B',16)
123
>>> to_dec('3F',len(BS))
123
>>> to_dec('11F71FB0450',16)
1234567890000
>>> to_dec('FR5HUGK0',len(BS))
1234567890000
Hope this was useful ;)
Edit: added encoder usage
Edit: added decoder
Edit: added decoder usage

Converting a base 10 number to any base without strings

I'm trying to make a function that takes in a number in base 10 and can be changed to any base from 2 though 9. I'm trying to only use the math module and just some simple math.
My code involves strings and I would like to eliminate them, and instead have the function do some math instead of using the numbers in a string. Also I'm trying to make the output integers.
def conver(n,b):
digits = ('0123456789')
ans = ""
while n > 0:
ans = digits[n%b] + ans
n //= b
return ans
For example the user could in put in the values (14,2) and get the output 1110
a simple implementation which can "convert" up to base 9 is as follows:
def conver(n,b):
a = 0
i = 0
while n:
n,r = divmod(n,b)
a += 10**i * r
i += 1
return a
note that n,r = divmod(n,b) could be r = n % b; n //= b
Note that the number you're getting is an integer all right (as a type), but it makes no sense using it as such because the base is wrong: Ex: 1110 is not really 1110. So it's not really different than a string...
Well, that's just for the sake of the exercise.

Python: How to convert a string of zeros and ones to binary [duplicate]

I'd simply like to convert a base-2 binary number string into an int, something like this:
>>> '11111111'.fromBinaryToInt()
255
Is there a way to do this in Python?
You use the built-in int() function, and pass it the base of the input number, i.e. 2 for a binary number:
>>> int('11111111', 2)
255
Here is documentation for Python 2, and for Python 3.
Just type 0b11111111 in python interactive interface:
>>> 0b11111111
255
Another way to do this is by using the bitstring module:
>>> from bitstring import BitArray
>>> b = BitArray(bin='11111111')
>>> b.uint
255
Note that the unsigned integer (uint) is different from the signed integer (int):
>>> b.int
-1
Your question is really asking for the unsigned integer representation; this is an important distinction.
The bitstring module isn't a requirement, but it has lots of performant methods for turning input into and from bits into other forms, as well as manipulating them.
Using int with base is the right way to go. I used to do this before I found int takes base also. It is basically a reduce applied on a list comprehension of the primitive way of converting binary to decimal ( e.g. 110 = 2**0 * 0 + 2 ** 1 * 1 + 2 ** 2 * 1)
add = lambda x,y : x + y
reduce(add, [int(x) * 2 ** y for x, y in zip(list(binstr), range(len(binstr) - 1, -1, -1))])
If you wanna know what is happening behind the scene, then here you go.
class Binary():
def __init__(self, binNumber):
self._binNumber = binNumber
self._binNumber = self._binNumber[::-1]
self._binNumber = list(self._binNumber)
self._x = [1]
self._count = 1
self._change = 2
self._amount = 0
print(self._ToNumber(self._binNumber))
def _ToNumber(self, number):
self._number = number
for i in range (1, len (self._number)):
self._total = self._count * self._change
self._count = self._total
self._x.append(self._count)
self._deep = zip(self._number, self._x)
for self._k, self._v in self._deep:
if self._k == '1':
self._amount += self._v
return self._amount
mo = Binary('101111110')
Here's another concise way to do it not mentioned in any of the above answers:
>>> eval('0b' + '11111111')
255
Admittedly, it's probably not very fast, and it's a very very bad idea if the string is coming from something you don't have control over that could be malicious (such as user input), but for completeness' sake, it does work.
A recursive Python implementation:
def int2bin(n):
return int2bin(n >> 1) + [n & 1] if n > 1 else [1]
If you are using python3.6 or later you can use f-string to do the
conversion:
Binary to decimal:
>>> print(f'{0b1011010:#0}')
90
>>> bin_2_decimal = int(f'{0b1011010:#0}')
>>> bin_2_decimal
90
binary to octal hexa and etc.
>>> f'{0b1011010:#o}'
'0o132' # octal
>>> f'{0b1011010:#x}'
'0x5a' # hexadecimal
>>> f'{0b1011010:#0}'
'90' # decimal
Pay attention to 2 piece of information separated by colon.
In this way, you can convert between {binary, octal, hexadecimal, decimal} to {binary, octal, hexadecimal, decimal} by changing right side of colon[:]
:#b -> converts to binary
:#o -> converts to octal
:#x -> converts to hexadecimal
:#0 -> converts to decimal as above example
Try changing left side of colon to have octal/hexadecimal/decimal.
For large matrix (10**5 rows and up) it is better to use a vectorized matmult. Pass in all rows and cols in one shot. It is extremely fast. There is no looping in python here. I originally designed it for converting many binary columns like 0/1 for like 10 different genre columns in MovieLens into a single integer for each example row.
def BitsToIntAFast(bits):
m,n = bits.shape
a = 2**np.arange(n)[::-1] # -1 reverses array of powers of 2 of same length as bits
return bits # a
For the record to go back and forth in basic python3:
a = 10
bin(a)
# '0b1010'
int(bin(a), 2)
# 10
eval(bin(a))
# 10

Python int to binary string?

Are there any canned Python methods to convert an Integer (or Long) into a binary string in Python?
There are a myriad of dec2bin() functions out on Google... But I was hoping I could use a built-in function / library.
Python's string format method can take a format spec.
>>> "{0:b}".format(37)
'100101'
Format spec docs for Python 2
Format spec docs for Python 3
If you're looking for bin() as an equivalent to hex(), it was added in python 2.6.
Example:
>>> bin(10)
'0b1010'
Python actually does have something already built in for this, the ability to do operations such as '{0:b}'.format(42), which will give you the bit pattern (in a string) for 42, or 101010.
For a more general philosophy, no language or library will give its user base everything that they desire. If you're working in an environment that doesn't provide exactly what you need, you should be collecting snippets of code as you develop to ensure you never have to write the same thing twice. Such as, for example, the pseudo-code:
define intToBinString, receiving intVal:
if intVal is equal to zero:
return "0"
set strVal to ""
while intVal is greater than zero:
if intVal is odd:
prefix "1" to strVal
else:
prefix "0" to strVal
divide intVal by two, rounding down
return strVal
which will construct your binary string based on the decimal value. Just keep in mind that's a generic bit of pseudo-code which may not be the most efficient way of doing it though, with the iterations you seem to be proposing, it won't make much difference. It's really just meant as a guideline on how it could be done.
The general idea is to use code from (in order of preference):
the language or built-in libraries.
third-party libraries with suitable licenses.
your own collection.
something new you need to write (and save in your own collection for later).
If you want a textual representation without the 0b-prefix, you could use this:
get_bin = lambda x: format(x, 'b')
print(get_bin(3))
>>> '11'
print(get_bin(-3))
>>> '-11'
When you want a n-bit representation:
get_bin = lambda x, n: format(x, 'b').zfill(n)
>>> get_bin(12, 32)
'00000000000000000000000000001100'
>>> get_bin(-12, 32)
'-00000000000000000000000000001100'
Alternatively, if you prefer having a function:
def get_bin(x, n=0):
"""
Get the binary representation of x.
Parameters
----------
x : int
n : int
Minimum number of digits. If x needs less digits in binary, the rest
is filled with zeros.
Returns
-------
str
"""
return format(x, 'b').zfill(n)
I am surprised there is no mention of a nice way to accomplish this using formatting strings that are supported in Python 3.6 and higher. TLDR:
>>> number = 1
>>> f'0b{number:08b}'
'0b00000001'
Longer story
This is functionality of formatting strings available from Python 3.6:
>>> x, y, z = 1, 2, 3
>>> f'{x} {y} {2*z}'
'1 2 6'
You can request binary as well:
>>> f'{z:b}'
'11'
Specify the width:
>>> f'{z:8b}'
' 11'
Request zero padding:
f'{z:08b}'
'00000011'
And add common prefix to signify binary number:
>>> f'0b{z:08b}'
'0b00000011'
You can also let Python add the prefix for you but I do not like it so much as the version above because you have to take the prefix into width consideration:
>>> f'{z:#010b}'
'0b00000011'
More info is available in official documentation on Formatted string literals and Format Specification Mini-Language.
As a reference:
def toBinary(n):
return ''.join(str(1 & int(n) >> i) for i in range(64)[::-1])
This function can convert a positive integer as large as 18446744073709551615, represented as string '1111111111111111111111111111111111111111111111111111111111111111'.
It can be modified to serve a much larger integer, though it may not be as handy as "{0:b}".format() or bin().
This is for python 3 and it keeps the leading zeros !
print(format(0, '08b'))
A simple way to do that is to use string format, see this page.
>> "{0:b}".format(10)
'1010'
And if you want to have a fixed length of the binary string, you can use this:
>> "{0:{fill}8b}".format(10, fill='0')
'00001010'
If two's complement is required, then the following line can be used:
'{0:{fill}{width}b}'.format((x + 2**n) % 2**n, fill='0', width=n)
where n is the width of the binary string.
one-liner with lambda:
>>> binary = lambda n: '' if n==0 else binary(n/2) + str(n%2)
test:
>>> binary(5)
'101'
EDIT:
but then :(
t1 = time()
for i in range(1000000):
binary(i)
t2 = time()
print(t2 - t1)
# 6.57236599922
in compare to
t1 = time()
for i in range(1000000):
'{0:b}'.format(i)
t2 = time()
print(t2 - t1)
# 0.68017411232
As the preceding answers mostly used format(),
here is an f-string implementation.
integer = 7
bit_count = 5
print(f'{integer:0{bit_count}b}')
Output:
00111
For convenience here is the python docs link for formatted string literals: https://docs.python.org/3/reference/lexical_analysis.html#f-strings.
Summary of alternatives:
n=42
assert "-101010" == format(-n, 'b')
assert "-101010" == "{0:b}".format(-n)
assert "-101010" == (lambda x: x >= 0 and str(bin(x))[2:] or "-" + str(bin(x))[3:])(-n)
assert "0b101010" == bin(n)
assert "101010" == bin(n)[2:] # But this won't work for negative numbers.
Contributors include John Fouhy, Tung Nguyen, mVChr, Martin Thoma. and Martijn Pieters.
>>> format(123, 'b')
'1111011'
For those of us who need to convert signed integers (range -2**(digits-1) to 2**(digits-1)-1) to 2's complement binary strings, this works:
def int2bin(integer, digits):
if integer >= 0:
return bin(integer)[2:].zfill(digits)
else:
return bin(2**digits + integer)[2:]
This produces:
>>> int2bin(10, 8)
'00001010'
>>> int2bin(-10, 8)
'11110110'
>>> int2bin(-128, 8)
'10000000'
>>> int2bin(127, 8)
'01111111'
you can do like that :
bin(10)[2:]
or :
f = str(bin(10))
c = []
c.append("".join(map(int, f[2:])))
print c
Using numpy pack/unpackbits, they are your best friends.
Examples
--------
>>> a = np.array([[2], [7], [23]], dtype=np.uint8)
>>> a
array([[ 2],
[ 7],
[23]], dtype=uint8)
>>> b = np.unpackbits(a, axis=1)
>>> b
array([[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8)
Yet another solution with another algorithm, by using bitwise operators.
def int2bin(val):
res=''
while val>0:
res += str(val&1)
val=val>>1 # val=val/2
return res[::-1] # reverse the string
A faster version without reversing the string.
def int2bin(val):
res=''
while val>0:
res = chr((val&1) + 0x30) + res
val=val>>1
return res
numpy.binary_repr(num, width=None)
Examples from the documentation link above:
>>> np.binary_repr(3)
'11'
>>> np.binary_repr(-3)
'-11'
>>> np.binary_repr(3, width=4)
'0011'
The two’s complement is returned when the input number is negative and width is specified:
>>> np.binary_repr(-3, width=3)
'101'
>>> np.binary_repr(-3, width=5)
'11101'
The accepted answer didn't address negative numbers, which I'll cover.
In addition to the answers above, you can also just use the bin and hex functions. And in the opposite direction, use binary notation:
>>> bin(37)
'0b100101'
>>> 0b100101
37
But with negative numbers, things get a bit more complicated. The question doesn't specify how you want to handle negative numbers.
Python just adds a negative sign so the result for -37 would be this:
>>> bin(-37)
'-0b100101'
In computer/hardware binary data, negative signs don't exist. All we have is 1's and 0's. So if you're reading or producing binary streams of data to be processed by other software/hardware, you need to first know the notation being used.
One notation is sign-magnitude notation, where the first bit represents the negative sign, and the rest is the actual value. In that case, -37 would be 0b1100101 and 37 would be 0b0100101. This looks like what python produces, but just add a 0 or 1 in front for positive / negative numbers.
More common is Two's complement notation, which seems more complicated and the result is very different from python's string formatting. You can read the details in the link, but with an 8bit signed integer -37 would be 0b11011011 and 37 would be 0b00100101.
Python has no easy way to produce these binary representations. You can use numpy to turn Two's complement binary values into python integers:
>>> import numpy as np
>>> np.int8(0b11011011)
-37
>>> np.uint8(0b11011011)
219
>>> np.uint8(0b00100101)
37
>>> np.int8(0b00100101)
37
But I don't know an easy way to do the opposite with builtin functions. The bitstring package can help though.
>>> from bitstring import BitArray
>>> arr = BitArray(int=-37, length=8)
>>> arr.uint
219
>>> arr.int
-37
>>> arr.bin
'11011011'
>>> BitArray(bin='11011011').int
-37
>>> BitArray(bin='11011011').uint
219
Python 3.6 added a new string formatting approach called formatted string literals or “f-strings”.
Example:
name = 'Bob'
number = 42
f"Hello, {name}, your number is {number:>08b}"
Output will be 'Hello, Bob, your number is 00001010!'
A discussion of this question can be found here - Here
Unless I'm misunderstanding what you mean by binary string I think the module you are looking for is struct
n=input()
print(bin(n).replace("0b", ""))
def binary(decimal) :
otherBase = ""
while decimal != 0 :
otherBase = str(decimal % 2) + otherBase
decimal //= 2
return otherBase
print binary(10)
output:
1010
Here is the code I've just implemented. This is not a method but you can use it as a ready-to-use function!
def inttobinary(number):
if number == 0:
return str(0)
result =""
while (number != 0):
remainder = number%2
number = number/2
result += str(remainder)
return result[::-1] # to invert the string
Calculator with all neccessary functions for DEC,BIN,HEX:
(made and tested with Python 3.5)
You can change the input test numbers and get the converted ones.
# CONVERTER: DEC / BIN / HEX
def dec2bin(d):
# dec -> bin
b = bin(d)
return b
def dec2hex(d):
# dec -> hex
h = hex(d)
return h
def bin2dec(b):
# bin -> dec
bin_numb="{0:b}".format(b)
d = eval(bin_numb)
return d,bin_numb
def bin2hex(b):
# bin -> hex
h = hex(b)
return h
def hex2dec(h):
# hex -> dec
d = int(h)
return d
def hex2bin(h):
# hex -> bin
b = bin(h)
return b
## TESTING NUMBERS
numb_dec = 99
numb_bin = 0b0111
numb_hex = 0xFF
## CALCULATIONS
res_dec2bin = dec2bin(numb_dec)
res_dec2hex = dec2hex(numb_dec)
res_bin2dec,bin_numb = bin2dec(numb_bin)
res_bin2hex = bin2hex(numb_bin)
res_hex2dec = hex2dec(numb_hex)
res_hex2bin = hex2bin(numb_hex)
## PRINTING
print('------- DECIMAL to BIN / HEX -------\n')
print('decimal:',numb_dec,'\nbin: ',res_dec2bin,'\nhex: ',res_dec2hex,'\n')
print('------- BINARY to DEC / HEX -------\n')
print('binary: ',bin_numb,'\ndec: ',numb_bin,'\nhex: ',res_bin2hex,'\n')
print('----- HEXADECIMAL to BIN / HEX -----\n')
print('hexadec:',hex(numb_hex),'\nbin: ',res_hex2bin,'\ndec: ',res_hex2dec,'\n')
Somewhat similar solution
def to_bin(dec):
flag = True
bin_str = ''
while flag:
remainder = dec % 2
quotient = dec / 2
if quotient == 0:
flag = False
bin_str += str(remainder)
dec = quotient
bin_str = bin_str[::-1] # reverse the string
return bin_str
here is simple solution using the divmod() fucntion which returns the reminder and the result of a division without the fraction.
def dectobin(number):
bin = ''
while (number >= 1):
number, rem = divmod(number, 2)
bin = bin + str(rem)
return bin
Here's yet another way using regular math, no loops, only recursion. (Trivial case 0 returns nothing).
def toBin(num):
if num == 0:
return ""
return toBin(num//2) + str(num%2)
print ([(toBin(i)) for i in range(10)])
['', '1', '10', '11', '100', '101', '110', '111', '1000', '1001']
To calculate binary of numbers:
print("Binary is {0:>08b}".format(16))
To calculate the Hexa decimal of a number:
print("Hexa Decimal is {0:>0x}".format(15))
To Calculate all the binary no till 16::
for i in range(17):
print("{0:>2}: binary is {0:>08b}".format(i))
To calculate Hexa decimal no till 17
for i in range(17):
print("{0:>2}: Hexa Decimal is {0:>0x}".format(i))
##as 2 digit is enogh for hexa decimal representation of a number
try:
while True:
p = ""
a = input()
while a != 0:
l = a % 2
b = a - l
a = b / 2
p = str(l) + p
print(p)
except:
print ("write 1 number")
I found a method using matrix operation to convert decimal to binary.
import numpy as np
E_mat = np.tile(E,[1,M])
M_order = pow(2,(M-1-np.array(range(M)))).T
bindata = np.remainder(np.floor(E_mat /M_order).astype(np.int),2)
Eis input decimal data,M is the binary orders. bindata is output binary data, which is in a format of 1 by M binary matrix.

Categories