Related
To delete a column in a DataFrame, I can successfully use:
del df['column_name']
But why can't I use the following?
del df.column_name
Since it is possible to access the Series via df.column_name, I expected this to work.
The best way to do this in Pandas is to use drop:
df = df.drop('column_name', axis=1)
where 1 is the axis number (0 for rows and 1 for columns.)
Or, the drop() method accepts index/columns keywords as an alternative to specifying the axis. So we can now just do:
df = df.drop(columns=['column_nameA', 'column_nameB'])
This was introduced in v0.21.0 (October 27, 2017)
To delete the column without having to reassign df you can do:
df.drop('column_name', axis=1, inplace=True)
Finally, to drop by column number instead of by column label, try this to delete, e.g. the 1st, 2nd and 4th columns:
df = df.drop(df.columns[[0, 1, 3]], axis=1) # df.columns is zero-based pd.Index
Also working with "text" syntax for the columns:
df.drop(['column_nameA', 'column_nameB'], axis=1, inplace=True)
As you've guessed, the right syntax is
del df['column_name']
It's difficult to make del df.column_name work simply as the result of syntactic limitations in Python. del df[name] gets translated to df.__delitem__(name) under the covers by Python.
Use:
columns = ['Col1', 'Col2', ...]
df.drop(columns, inplace=True, axis=1)
This will delete one or more columns in-place. Note that inplace=True was added in pandas v0.13 and won't work on older versions. You'd have to assign the result back in that case:
df = df.drop(columns, axis=1)
Drop by index
Delete first, second and fourth columns:
df.drop(df.columns[[0,1,3]], axis=1, inplace=True)
Delete first column:
df.drop(df.columns[[0]], axis=1, inplace=True)
There is an optional parameter inplace so that the original
data can be modified without creating a copy.
Popped
Column selection, addition, deletion
Delete column column-name:
df.pop('column-name')
Examples:
df = DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6]), ('C', [7,8, 9])], orient='index', columns=['one', 'two', 'three'])
print df:
one two three
A 1 2 3
B 4 5 6
C 7 8 9
df.drop(df.columns[[0]], axis=1, inplace=True)
print df:
two three
A 2 3
B 5 6
C 8 9
three = df.pop('three')
print df:
two
A 2
B 5
C 8
The actual question posed, missed by most answers here is:
Why can't I use del df.column_name?
At first we need to understand the problem, which requires us to dive into Python magic methods.
As Wes points out in his answer, del df['column'] maps to the Python magic method df.__delitem__('column') which is implemented in Pandas to drop the column.
However, as pointed out in the link above about Python magic methods:
In fact, __del__ should almost never be used because of the precarious circumstances under which it is called; use it with caution!
You could argue that del df['column_name'] should not be used or encouraged, and thereby del df.column_name should not even be considered.
However, in theory, del df.column_name could be implemented to work in Pandas using the magic method __delattr__. This does however introduce certain problems, problems which the del df['column_name'] implementation already has, but to a lesser degree.
Example Problem
What if I define a column in a dataframe called "dtypes" or "columns"?
Then assume I want to delete these columns.
del df.dtypes would make the __delattr__ method confused as if it should delete the "dtypes" attribute or the "dtypes" column.
Architectural questions behind this problem
Is a dataframe a collection of columns?
Is a dataframe a collection of rows?
Is a column an attribute of a dataframe?
Pandas answers:
Yes, in all ways
No, but if you want it to be, you can use the .ix, .loc or .iloc methods.
Maybe, do you want to read data? Then yes, unless the name of the attribute is already taken by another attribute belonging to the dataframe. Do you want to modify data? Then no.
TLDR;
You cannot do del df.column_name, because Pandas has a quite wildly grown architecture that needs to be reconsidered in order for this kind of cognitive dissonance not to occur to its users.
Pro tip:
Don't use df.column_name. It may be pretty, but it causes cognitive dissonance.
Zen of Python quotes that fits in here:
There are multiple ways of deleting a column.
There should be one-- and preferably only one --obvious way to do it.
Columns are sometimes attributes but sometimes not.
Special cases aren't special enough to break the rules.
Does del df.dtypes delete the dtypes attribute or the dtypes column?
In the face of ambiguity, refuse the temptation to guess.
A nice addition is the ability to drop columns only if they exist. This way you can cover more use cases, and it will only drop the existing columns from the labels passed to it:
Simply add errors='ignore', for example.:
df.drop(['col_name_1', 'col_name_2', ..., 'col_name_N'], inplace=True, axis=1, errors='ignore')
This is new from pandas 0.16.1 onward. Documentation is here.
From version 0.16.1, you can do
df.drop(['column_name'], axis = 1, inplace = True, errors = 'ignore')
It's good practice to always use the [] notation. One reason is that attribute notation (df.column_name) does not work for numbered indices:
In [1]: df = DataFrame([[1, 2, 3], [4, 5, 6]])
In [2]: df[1]
Out[2]:
0 2
1 5
Name: 1
In [3]: df.1
File "<ipython-input-3-e4803c0d1066>", line 1
df.1
^
SyntaxError: invalid syntax
Pandas 0.21+ answer
Pandas version 0.21 has changed the drop method slightly to include both the index and columns parameters to match the signature of the rename and reindex methods.
df.drop(columns=['column_a', 'column_c'])
Personally, I prefer using the axis parameter to denote columns or index because it is the predominant keyword parameter used in nearly all pandas methods. But, now you have some added choices in version 0.21.
In Pandas 0.16.1+, you can drop columns only if they exist per the solution posted by eiTan LaVi. Prior to that version, you can achieve the same result via a conditional list comprehension:
df.drop([col for col in ['col_name_1','col_name_2',...,'col_name_N'] if col in df],
axis=1, inplace=True)
Use:
df.drop('columnname', axis =1, inplace = True)
Or else you can go with
del df['colname']
To delete multiple columns based on column numbers
df.drop(df.iloc[:,1:3], axis = 1, inplace = True)
To delete multiple columns based on columns names
df.drop(['col1','col2',..'coln'], axis = 1, inplace = True)
TL;DR
A lot of effort to find a marginally more efficient solution. Difficult to justify the added complexity while sacrificing the simplicity of df.drop(dlst, 1, errors='ignore')
df.reindex_axis(np.setdiff1d(df.columns.values, dlst), 1)
Preamble
Deleting a column is semantically the same as selecting the other columns. I'll show a few additional methods to consider.
I'll also focus on the general solution of deleting multiple columns at once and allowing for the attempt to delete columns not present.
Using these solutions are general and will work for the simple case as well.
Setup
Consider the pd.DataFrame df and list to delete dlst
df = pd.DataFrame(dict(zip('ABCDEFGHIJ', range(1, 11))), range(3))
dlst = list('HIJKLM')
df
A B C D E F G H I J
0 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 1 2 3 4 5 6 7 8 9 10
dlst
['H', 'I', 'J', 'K', 'L', 'M']
The result should look like:
df.drop(dlst, 1, errors='ignore')
A B C D E F G
0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 1 2 3 4 5 6 7
Since I'm equating deleting a column to selecting the other columns, I'll break it into two types:
Label selection
Boolean selection
Label Selection
We start by manufacturing the list/array of labels that represent the columns we want to keep and without the columns we want to delete.
df.columns.difference(dlst)
Index(['A', 'B', 'C', 'D', 'E', 'F', 'G'], dtype='object')
np.setdiff1d(df.columns.values, dlst)
array(['A', 'B', 'C', 'D', 'E', 'F', 'G'], dtype=object)
df.columns.drop(dlst, errors='ignore')
Index(['A', 'B', 'C', 'D', 'E', 'F', 'G'], dtype='object')
list(set(df.columns.values.tolist()).difference(dlst))
# does not preserve order
['E', 'D', 'B', 'F', 'G', 'A', 'C']
[x for x in df.columns.values.tolist() if x not in dlst]
['A', 'B', 'C', 'D', 'E', 'F', 'G']
Columns from Labels
For the sake of comparing the selection process, assume:
cols = [x for x in df.columns.values.tolist() if x not in dlst]
Then we can evaluate
df.loc[:, cols]
df[cols]
df.reindex(columns=cols)
df.reindex_axis(cols, 1)
Which all evaluate to:
A B C D E F G
0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 1 2 3 4 5 6 7
Boolean Slice
We can construct an array/list of booleans for slicing
~df.columns.isin(dlst)
~np.in1d(df.columns.values, dlst)
[x not in dlst for x in df.columns.values.tolist()]
(df.columns.values[:, None] != dlst).all(1)
Columns from Boolean
For the sake of comparison
bools = [x not in dlst for x in df.columns.values.tolist()]
df.loc[: bools]
Which all evaluate to:
A B C D E F G
0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 1 2 3 4 5 6 7
Robust Timing
Functions
setdiff1d = lambda df, dlst: np.setdiff1d(df.columns.values, dlst)
difference = lambda df, dlst: df.columns.difference(dlst)
columndrop = lambda df, dlst: df.columns.drop(dlst, errors='ignore')
setdifflst = lambda df, dlst: list(set(df.columns.values.tolist()).difference(dlst))
comprehension = lambda df, dlst: [x for x in df.columns.values.tolist() if x not in dlst]
loc = lambda df, cols: df.loc[:, cols]
slc = lambda df, cols: df[cols]
ridx = lambda df, cols: df.reindex(columns=cols)
ridxa = lambda df, cols: df.reindex_axis(cols, 1)
isin = lambda df, dlst: ~df.columns.isin(dlst)
in1d = lambda df, dlst: ~np.in1d(df.columns.values, dlst)
comp = lambda df, dlst: [x not in dlst for x in df.columns.values.tolist()]
brod = lambda df, dlst: (df.columns.values[:, None] != dlst).all(1)
Testing
res1 = pd.DataFrame(
index=pd.MultiIndex.from_product([
'loc slc ridx ridxa'.split(),
'setdiff1d difference columndrop setdifflst comprehension'.split(),
], names=['Select', 'Label']),
columns=[10, 30, 100, 300, 1000],
dtype=float
)
res2 = pd.DataFrame(
index=pd.MultiIndex.from_product([
'loc'.split(),
'isin in1d comp brod'.split(),
], names=['Select', 'Label']),
columns=[10, 30, 100, 300, 1000],
dtype=float
)
res = res1.append(res2).sort_index()
dres = pd.Series(index=res.columns, name='drop')
for j in res.columns:
dlst = list(range(j))
cols = list(range(j // 2, j + j // 2))
d = pd.DataFrame(1, range(10), cols)
dres.at[j] = timeit('d.drop(dlst, 1, errors="ignore")', 'from __main__ import d, dlst', number=100)
for s, l in res.index:
stmt = '{}(d, {}(d, dlst))'.format(s, l)
setp = 'from __main__ import d, dlst, {}, {}'.format(s, l)
res.at[(s, l), j] = timeit(stmt, setp, number=100)
rs = res / dres
rs
10 30 100 300 1000
Select Label
loc brod 0.747373 0.861979 0.891144 1.284235 3.872157
columndrop 1.193983 1.292843 1.396841 1.484429 1.335733
comp 0.802036 0.732326 1.149397 3.473283 25.565922
comprehension 1.463503 1.568395 1.866441 4.421639 26.552276
difference 1.413010 1.460863 1.587594 1.568571 1.569735
in1d 0.818502 0.844374 0.994093 1.042360 1.076255
isin 1.008874 0.879706 1.021712 1.001119 0.964327
setdiff1d 1.352828 1.274061 1.483380 1.459986 1.466575
setdifflst 1.233332 1.444521 1.714199 1.797241 1.876425
ridx columndrop 0.903013 0.832814 0.949234 0.976366 0.982888
comprehension 0.777445 0.827151 1.108028 3.473164 25.528879
difference 1.086859 1.081396 1.293132 1.173044 1.237613
setdiff1d 0.946009 0.873169 0.900185 0.908194 1.036124
setdifflst 0.732964 0.823218 0.819748 0.990315 1.050910
ridxa columndrop 0.835254 0.774701 0.907105 0.908006 0.932754
comprehension 0.697749 0.762556 1.215225 3.510226 25.041832
difference 1.055099 1.010208 1.122005 1.119575 1.383065
setdiff1d 0.760716 0.725386 0.849949 0.879425 0.946460
setdifflst 0.710008 0.668108 0.778060 0.871766 0.939537
slc columndrop 1.268191 1.521264 2.646687 1.919423 1.981091
comprehension 0.856893 0.870365 1.290730 3.564219 26.208937
difference 1.470095 1.747211 2.886581 2.254690 2.050536
setdiff1d 1.098427 1.133476 1.466029 2.045965 3.123452
setdifflst 0.833700 0.846652 1.013061 1.110352 1.287831
fig, axes = plt.subplots(2, 2, figsize=(8, 6), sharey=True)
for i, (n, g) in enumerate([(n, g.xs(n)) for n, g in rs.groupby('Select')]):
ax = axes[i // 2, i % 2]
g.plot.bar(ax=ax, title=n)
ax.legend_.remove()
fig.tight_layout()
This is relative to the time it takes to run df.drop(dlst, 1, errors='ignore'). It seems like after all that effort, we only improve performance modestly.
If fact the best solutions use reindex or reindex_axis on the hack list(set(df.columns.values.tolist()).difference(dlst)). A close second and still very marginally better than drop is np.setdiff1d.
rs.idxmin().pipe(
lambda x: pd.DataFrame(
dict(idx=x.values, val=rs.lookup(x.values, x.index)),
x.index
)
)
idx val
10 (ridx, setdifflst) 0.653431
30 (ridxa, setdifflst) 0.746143
100 (ridxa, setdifflst) 0.816207
300 (ridx, setdifflst) 0.780157
1000 (ridxa, setdifflst) 0.861622
We can remove or delete a specified column or specified columns by the drop() method.
Suppose df is a dataframe.
Column to be removed = column0
Code:
df = df.drop(column0, axis=1)
To remove multiple columns col1, col2, . . . , coln, we have to insert all the columns that needed to be removed in a list. Then remove them by the drop() method.
Code:
df = df.drop([col1, col2, . . . , coln], axis=1)
If your original dataframe df is not too big, you have no memory constraints, and you only need to keep a few columns, or, if you don't know beforehand the names of all the extra columns that you do not need, then you might as well create a new dataframe with only the columns you need:
new_df = df[['spam', 'sausage']]
Deleting a column using the iloc function of dataframe and slicing, when we have a typical column name with unwanted values:
df = df.iloc[:,1:] # Removing an unnamed index column
Here 0 is the default row and 1 is the first column, hence :,1: is our parameter for deleting the first column.
The dot syntax works in JavaScript, but not in Python.
Python: del df['column_name']
JavaScript: del df['column_name'] or del df.column_name
Another way of deleting a column in a Pandas DataFrame
If you're not looking for in-place deletion then you can create a new DataFrame by specifying the columns using DataFrame(...) function as:
my_dict = { 'name' : ['a','b','c','d'], 'age' : [10,20,25,22], 'designation' : ['CEO', 'VP', 'MD', 'CEO']}
df = pd.DataFrame(my_dict)
Create a new DataFrame as
newdf = pd.DataFrame(df, columns=['name', 'age'])
You get a result as good as what you get with del / drop.
Taking advantage by using Autocomplete or "IntelliSense" over string literals:
del df[df.column1.name]
# or
df.drop(df.column1.name, axis=1, inplace=True)
It works fine with current Pandas versions.
To remove columns before and after specific columns you can use the method truncate. For example:
A B C D E
0 1 10 100 1000 10000
1 2 20 200 2000 20000
df.truncate(before='B', after='D', axis=1)
Output:
B C D
0 10 100 1000
1 20 200 2000
Viewed from a general Python standpoint, del obj.column_name makes sense if the attribute column_name can be deleted. It needs to be a regular attribute - or a property with a defined deleter.
The reasons why this doesn't translate to Pandas, and does not make sense for Pandas Dataframes are:
Consider df.column_name to be a “virtual attribute”, it is not a thing in its own right, it is not the “seat” of that column, it's just a way to access the column. Much like a property with no deleter.
To delete a column in a DataFrame, I can successfully use:
del df['column_name']
But why can't I use the following?
del df.column_name
Since it is possible to access the Series via df.column_name, I expected this to work.
The best way to do this in Pandas is to use drop:
df = df.drop('column_name', axis=1)
where 1 is the axis number (0 for rows and 1 for columns.)
Or, the drop() method accepts index/columns keywords as an alternative to specifying the axis. So we can now just do:
df = df.drop(columns=['column_nameA', 'column_nameB'])
This was introduced in v0.21.0 (October 27, 2017)
To delete the column without having to reassign df you can do:
df.drop('column_name', axis=1, inplace=True)
Finally, to drop by column number instead of by column label, try this to delete, e.g. the 1st, 2nd and 4th columns:
df = df.drop(df.columns[[0, 1, 3]], axis=1) # df.columns is zero-based pd.Index
Also working with "text" syntax for the columns:
df.drop(['column_nameA', 'column_nameB'], axis=1, inplace=True)
As you've guessed, the right syntax is
del df['column_name']
It's difficult to make del df.column_name work simply as the result of syntactic limitations in Python. del df[name] gets translated to df.__delitem__(name) under the covers by Python.
Use:
columns = ['Col1', 'Col2', ...]
df.drop(columns, inplace=True, axis=1)
This will delete one or more columns in-place. Note that inplace=True was added in pandas v0.13 and won't work on older versions. You'd have to assign the result back in that case:
df = df.drop(columns, axis=1)
Drop by index
Delete first, second and fourth columns:
df.drop(df.columns[[0,1,3]], axis=1, inplace=True)
Delete first column:
df.drop(df.columns[[0]], axis=1, inplace=True)
There is an optional parameter inplace so that the original
data can be modified without creating a copy.
Popped
Column selection, addition, deletion
Delete column column-name:
df.pop('column-name')
Examples:
df = DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6]), ('C', [7,8, 9])], orient='index', columns=['one', 'two', 'three'])
print df:
one two three
A 1 2 3
B 4 5 6
C 7 8 9
df.drop(df.columns[[0]], axis=1, inplace=True)
print df:
two three
A 2 3
B 5 6
C 8 9
three = df.pop('three')
print df:
two
A 2
B 5
C 8
The actual question posed, missed by most answers here is:
Why can't I use del df.column_name?
At first we need to understand the problem, which requires us to dive into Python magic methods.
As Wes points out in his answer, del df['column'] maps to the Python magic method df.__delitem__('column') which is implemented in Pandas to drop the column.
However, as pointed out in the link above about Python magic methods:
In fact, __del__ should almost never be used because of the precarious circumstances under which it is called; use it with caution!
You could argue that del df['column_name'] should not be used or encouraged, and thereby del df.column_name should not even be considered.
However, in theory, del df.column_name could be implemented to work in Pandas using the magic method __delattr__. This does however introduce certain problems, problems which the del df['column_name'] implementation already has, but to a lesser degree.
Example Problem
What if I define a column in a dataframe called "dtypes" or "columns"?
Then assume I want to delete these columns.
del df.dtypes would make the __delattr__ method confused as if it should delete the "dtypes" attribute or the "dtypes" column.
Architectural questions behind this problem
Is a dataframe a collection of columns?
Is a dataframe a collection of rows?
Is a column an attribute of a dataframe?
Pandas answers:
Yes, in all ways
No, but if you want it to be, you can use the .ix, .loc or .iloc methods.
Maybe, do you want to read data? Then yes, unless the name of the attribute is already taken by another attribute belonging to the dataframe. Do you want to modify data? Then no.
TLDR;
You cannot do del df.column_name, because Pandas has a quite wildly grown architecture that needs to be reconsidered in order for this kind of cognitive dissonance not to occur to its users.
Pro tip:
Don't use df.column_name. It may be pretty, but it causes cognitive dissonance.
Zen of Python quotes that fits in here:
There are multiple ways of deleting a column.
There should be one-- and preferably only one --obvious way to do it.
Columns are sometimes attributes but sometimes not.
Special cases aren't special enough to break the rules.
Does del df.dtypes delete the dtypes attribute or the dtypes column?
In the face of ambiguity, refuse the temptation to guess.
A nice addition is the ability to drop columns only if they exist. This way you can cover more use cases, and it will only drop the existing columns from the labels passed to it:
Simply add errors='ignore', for example.:
df.drop(['col_name_1', 'col_name_2', ..., 'col_name_N'], inplace=True, axis=1, errors='ignore')
This is new from pandas 0.16.1 onward. Documentation is here.
From version 0.16.1, you can do
df.drop(['column_name'], axis = 1, inplace = True, errors = 'ignore')
It's good practice to always use the [] notation. One reason is that attribute notation (df.column_name) does not work for numbered indices:
In [1]: df = DataFrame([[1, 2, 3], [4, 5, 6]])
In [2]: df[1]
Out[2]:
0 2
1 5
Name: 1
In [3]: df.1
File "<ipython-input-3-e4803c0d1066>", line 1
df.1
^
SyntaxError: invalid syntax
Pandas 0.21+ answer
Pandas version 0.21 has changed the drop method slightly to include both the index and columns parameters to match the signature of the rename and reindex methods.
df.drop(columns=['column_a', 'column_c'])
Personally, I prefer using the axis parameter to denote columns or index because it is the predominant keyword parameter used in nearly all pandas methods. But, now you have some added choices in version 0.21.
In Pandas 0.16.1+, you can drop columns only if they exist per the solution posted by eiTan LaVi. Prior to that version, you can achieve the same result via a conditional list comprehension:
df.drop([col for col in ['col_name_1','col_name_2',...,'col_name_N'] if col in df],
axis=1, inplace=True)
Use:
df.drop('columnname', axis =1, inplace = True)
Or else you can go with
del df['colname']
To delete multiple columns based on column numbers
df.drop(df.iloc[:,1:3], axis = 1, inplace = True)
To delete multiple columns based on columns names
df.drop(['col1','col2',..'coln'], axis = 1, inplace = True)
TL;DR
A lot of effort to find a marginally more efficient solution. Difficult to justify the added complexity while sacrificing the simplicity of df.drop(dlst, 1, errors='ignore')
df.reindex_axis(np.setdiff1d(df.columns.values, dlst), 1)
Preamble
Deleting a column is semantically the same as selecting the other columns. I'll show a few additional methods to consider.
I'll also focus on the general solution of deleting multiple columns at once and allowing for the attempt to delete columns not present.
Using these solutions are general and will work for the simple case as well.
Setup
Consider the pd.DataFrame df and list to delete dlst
df = pd.DataFrame(dict(zip('ABCDEFGHIJ', range(1, 11))), range(3))
dlst = list('HIJKLM')
df
A B C D E F G H I J
0 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 1 2 3 4 5 6 7 8 9 10
dlst
['H', 'I', 'J', 'K', 'L', 'M']
The result should look like:
df.drop(dlst, 1, errors='ignore')
A B C D E F G
0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 1 2 3 4 5 6 7
Since I'm equating deleting a column to selecting the other columns, I'll break it into two types:
Label selection
Boolean selection
Label Selection
We start by manufacturing the list/array of labels that represent the columns we want to keep and without the columns we want to delete.
df.columns.difference(dlst)
Index(['A', 'B', 'C', 'D', 'E', 'F', 'G'], dtype='object')
np.setdiff1d(df.columns.values, dlst)
array(['A', 'B', 'C', 'D', 'E', 'F', 'G'], dtype=object)
df.columns.drop(dlst, errors='ignore')
Index(['A', 'B', 'C', 'D', 'E', 'F', 'G'], dtype='object')
list(set(df.columns.values.tolist()).difference(dlst))
# does not preserve order
['E', 'D', 'B', 'F', 'G', 'A', 'C']
[x for x in df.columns.values.tolist() if x not in dlst]
['A', 'B', 'C', 'D', 'E', 'F', 'G']
Columns from Labels
For the sake of comparing the selection process, assume:
cols = [x for x in df.columns.values.tolist() if x not in dlst]
Then we can evaluate
df.loc[:, cols]
df[cols]
df.reindex(columns=cols)
df.reindex_axis(cols, 1)
Which all evaluate to:
A B C D E F G
0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 1 2 3 4 5 6 7
Boolean Slice
We can construct an array/list of booleans for slicing
~df.columns.isin(dlst)
~np.in1d(df.columns.values, dlst)
[x not in dlst for x in df.columns.values.tolist()]
(df.columns.values[:, None] != dlst).all(1)
Columns from Boolean
For the sake of comparison
bools = [x not in dlst for x in df.columns.values.tolist()]
df.loc[: bools]
Which all evaluate to:
A B C D E F G
0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 1 2 3 4 5 6 7
Robust Timing
Functions
setdiff1d = lambda df, dlst: np.setdiff1d(df.columns.values, dlst)
difference = lambda df, dlst: df.columns.difference(dlst)
columndrop = lambda df, dlst: df.columns.drop(dlst, errors='ignore')
setdifflst = lambda df, dlst: list(set(df.columns.values.tolist()).difference(dlst))
comprehension = lambda df, dlst: [x for x in df.columns.values.tolist() if x not in dlst]
loc = lambda df, cols: df.loc[:, cols]
slc = lambda df, cols: df[cols]
ridx = lambda df, cols: df.reindex(columns=cols)
ridxa = lambda df, cols: df.reindex_axis(cols, 1)
isin = lambda df, dlst: ~df.columns.isin(dlst)
in1d = lambda df, dlst: ~np.in1d(df.columns.values, dlst)
comp = lambda df, dlst: [x not in dlst for x in df.columns.values.tolist()]
brod = lambda df, dlst: (df.columns.values[:, None] != dlst).all(1)
Testing
res1 = pd.DataFrame(
index=pd.MultiIndex.from_product([
'loc slc ridx ridxa'.split(),
'setdiff1d difference columndrop setdifflst comprehension'.split(),
], names=['Select', 'Label']),
columns=[10, 30, 100, 300, 1000],
dtype=float
)
res2 = pd.DataFrame(
index=pd.MultiIndex.from_product([
'loc'.split(),
'isin in1d comp brod'.split(),
], names=['Select', 'Label']),
columns=[10, 30, 100, 300, 1000],
dtype=float
)
res = res1.append(res2).sort_index()
dres = pd.Series(index=res.columns, name='drop')
for j in res.columns:
dlst = list(range(j))
cols = list(range(j // 2, j + j // 2))
d = pd.DataFrame(1, range(10), cols)
dres.at[j] = timeit('d.drop(dlst, 1, errors="ignore")', 'from __main__ import d, dlst', number=100)
for s, l in res.index:
stmt = '{}(d, {}(d, dlst))'.format(s, l)
setp = 'from __main__ import d, dlst, {}, {}'.format(s, l)
res.at[(s, l), j] = timeit(stmt, setp, number=100)
rs = res / dres
rs
10 30 100 300 1000
Select Label
loc brod 0.747373 0.861979 0.891144 1.284235 3.872157
columndrop 1.193983 1.292843 1.396841 1.484429 1.335733
comp 0.802036 0.732326 1.149397 3.473283 25.565922
comprehension 1.463503 1.568395 1.866441 4.421639 26.552276
difference 1.413010 1.460863 1.587594 1.568571 1.569735
in1d 0.818502 0.844374 0.994093 1.042360 1.076255
isin 1.008874 0.879706 1.021712 1.001119 0.964327
setdiff1d 1.352828 1.274061 1.483380 1.459986 1.466575
setdifflst 1.233332 1.444521 1.714199 1.797241 1.876425
ridx columndrop 0.903013 0.832814 0.949234 0.976366 0.982888
comprehension 0.777445 0.827151 1.108028 3.473164 25.528879
difference 1.086859 1.081396 1.293132 1.173044 1.237613
setdiff1d 0.946009 0.873169 0.900185 0.908194 1.036124
setdifflst 0.732964 0.823218 0.819748 0.990315 1.050910
ridxa columndrop 0.835254 0.774701 0.907105 0.908006 0.932754
comprehension 0.697749 0.762556 1.215225 3.510226 25.041832
difference 1.055099 1.010208 1.122005 1.119575 1.383065
setdiff1d 0.760716 0.725386 0.849949 0.879425 0.946460
setdifflst 0.710008 0.668108 0.778060 0.871766 0.939537
slc columndrop 1.268191 1.521264 2.646687 1.919423 1.981091
comprehension 0.856893 0.870365 1.290730 3.564219 26.208937
difference 1.470095 1.747211 2.886581 2.254690 2.050536
setdiff1d 1.098427 1.133476 1.466029 2.045965 3.123452
setdifflst 0.833700 0.846652 1.013061 1.110352 1.287831
fig, axes = plt.subplots(2, 2, figsize=(8, 6), sharey=True)
for i, (n, g) in enumerate([(n, g.xs(n)) for n, g in rs.groupby('Select')]):
ax = axes[i // 2, i % 2]
g.plot.bar(ax=ax, title=n)
ax.legend_.remove()
fig.tight_layout()
This is relative to the time it takes to run df.drop(dlst, 1, errors='ignore'). It seems like after all that effort, we only improve performance modestly.
If fact the best solutions use reindex or reindex_axis on the hack list(set(df.columns.values.tolist()).difference(dlst)). A close second and still very marginally better than drop is np.setdiff1d.
rs.idxmin().pipe(
lambda x: pd.DataFrame(
dict(idx=x.values, val=rs.lookup(x.values, x.index)),
x.index
)
)
idx val
10 (ridx, setdifflst) 0.653431
30 (ridxa, setdifflst) 0.746143
100 (ridxa, setdifflst) 0.816207
300 (ridx, setdifflst) 0.780157
1000 (ridxa, setdifflst) 0.861622
We can remove or delete a specified column or specified columns by the drop() method.
Suppose df is a dataframe.
Column to be removed = column0
Code:
df = df.drop(column0, axis=1)
To remove multiple columns col1, col2, . . . , coln, we have to insert all the columns that needed to be removed in a list. Then remove them by the drop() method.
Code:
df = df.drop([col1, col2, . . . , coln], axis=1)
If your original dataframe df is not too big, you have no memory constraints, and you only need to keep a few columns, or, if you don't know beforehand the names of all the extra columns that you do not need, then you might as well create a new dataframe with only the columns you need:
new_df = df[['spam', 'sausage']]
Deleting a column using the iloc function of dataframe and slicing, when we have a typical column name with unwanted values:
df = df.iloc[:,1:] # Removing an unnamed index column
Here 0 is the default row and 1 is the first column, hence :,1: is our parameter for deleting the first column.
The dot syntax works in JavaScript, but not in Python.
Python: del df['column_name']
JavaScript: del df['column_name'] or del df.column_name
Another way of deleting a column in a Pandas DataFrame
If you're not looking for in-place deletion then you can create a new DataFrame by specifying the columns using DataFrame(...) function as:
my_dict = { 'name' : ['a','b','c','d'], 'age' : [10,20,25,22], 'designation' : ['CEO', 'VP', 'MD', 'CEO']}
df = pd.DataFrame(my_dict)
Create a new DataFrame as
newdf = pd.DataFrame(df, columns=['name', 'age'])
You get a result as good as what you get with del / drop.
Taking advantage by using Autocomplete or "IntelliSense" over string literals:
del df[df.column1.name]
# or
df.drop(df.column1.name, axis=1, inplace=True)
It works fine with current Pandas versions.
To remove columns before and after specific columns you can use the method truncate. For example:
A B C D E
0 1 10 100 1000 10000
1 2 20 200 2000 20000
df.truncate(before='B', after='D', axis=1)
Output:
B C D
0 10 100 1000
1 20 200 2000
Viewed from a general Python standpoint, del obj.column_name makes sense if the attribute column_name can be deleted. It needs to be a regular attribute - or a property with a defined deleter.
The reasons why this doesn't translate to Pandas, and does not make sense for Pandas Dataframes are:
Consider df.column_name to be a “virtual attribute”, it is not a thing in its own right, it is not the “seat” of that column, it's just a way to access the column. Much like a property with no deleter.
I want to change the column labels of a Pandas DataFrame from
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
Rename Specific Columns
Use the df.rename() function and refer the columns to be renamed. Not all the columns have to be renamed:
df = df.rename(columns={'oldName1': 'newName1', 'oldName2': 'newName2'})
# Or rename the existing DataFrame (rather than creating a copy)
df.rename(columns={'oldName1': 'newName1', 'oldName2': 'newName2'}, inplace=True)
Minimal Code Example
df = pd.DataFrame('x', index=range(3), columns=list('abcde'))
df
a b c d e
0 x x x x x
1 x x x x x
2 x x x x x
The following methods all work and produce the same output:
df2 = df.rename({'a': 'X', 'b': 'Y'}, axis=1) # new method
df2 = df.rename({'a': 'X', 'b': 'Y'}, axis='columns')
df2 = df.rename(columns={'a': 'X', 'b': 'Y'}) # old method
df2
X Y c d e
0 x x x x x
1 x x x x x
2 x x x x x
Remember to assign the result back, as the modification is not-inplace. Alternatively, specify inplace=True:
df.rename({'a': 'X', 'b': 'Y'}, axis=1, inplace=True)
df
X Y c d e
0 x x x x x
1 x x x x x
2 x x x x x
From v0.25, you can also specify errors='raise' to raise errors if an invalid column-to-rename is specified. See v0.25 rename() docs.
Reassign Column Headers
Use df.set_axis() with axis=1 and inplace=False (to return a copy).
df2 = df.set_axis(['V', 'W', 'X', 'Y', 'Z'], axis=1, inplace=False)
df2
V W X Y Z
0 x x x x x
1 x x x x x
2 x x x x x
This returns a copy, but you can modify the DataFrame in-place by setting inplace=True (this is the default behaviour for versions <=0.24 but is likely to change in the future).
You can also assign headers directly:
df.columns = ['V', 'W', 'X', 'Y', 'Z']
df
V W X Y Z
0 x x x x x
1 x x x x x
2 x x x x x
Just assign it to the .columns attribute:
>>> df = pd.DataFrame({'$a':[1,2], '$b': [10,20]})
>>> df
$a $b
0 1 10
1 2 20
>>> df.columns = ['a', 'b']
>>> df
a b
0 1 10
1 2 20
The rename method can take a function, for example:
In [11]: df.columns
Out[11]: Index([u'$a', u'$b', u'$c', u'$d', u'$e'], dtype=object)
In [12]: df.rename(columns=lambda x: x[1:], inplace=True)
In [13]: df.columns
Out[13]: Index([u'a', u'b', u'c', u'd', u'e'], dtype=object)
As documented in Working with text data:
df.columns = df.columns.str.replace('$', '')
Pandas 0.21+ Answer
There have been some significant updates to column renaming in version 0.21.
The rename method has added the axis parameter which may be set to columns or 1. This update makes this method match the rest of the pandas API. It still has the index and columns parameters but you are no longer forced to use them.
The set_axis method with the inplace set to False enables you to rename all the index or column labels with a list.
Examples for Pandas 0.21+
Construct sample DataFrame:
df = pd.DataFrame({'$a':[1,2], '$b': [3,4],
'$c':[5,6], '$d':[7,8],
'$e':[9,10]})
$a $b $c $d $e
0 1 3 5 7 9
1 2 4 6 8 10
Using rename with axis='columns' or axis=1
df.rename({'$a':'a', '$b':'b', '$c':'c', '$d':'d', '$e':'e'}, axis='columns')
or
df.rename({'$a':'a', '$b':'b', '$c':'c', '$d':'d', '$e':'e'}, axis=1)
Both result in the following:
a b c d e
0 1 3 5 7 9
1 2 4 6 8 10
It is still possible to use the old method signature:
df.rename(columns={'$a':'a', '$b':'b', '$c':'c', '$d':'d', '$e':'e'})
The rename function also accepts functions that will be applied to each column name.
df.rename(lambda x: x[1:], axis='columns')
or
df.rename(lambda x: x[1:], axis=1)
Using set_axis with a list and inplace=False
You can supply a list to the set_axis method that is equal in length to the number of columns (or index). Currently, inplace defaults to True, but inplace will be defaulted to False in future releases.
df.set_axis(['a', 'b', 'c', 'd', 'e'], axis='columns', inplace=False)
or
df.set_axis(['a', 'b', 'c', 'd', 'e'], axis=1, inplace=False)
Why not use df.columns = ['a', 'b', 'c', 'd', 'e']?
There is nothing wrong with assigning columns directly like this. It is a perfectly good solution.
The advantage of using set_axis is that it can be used as part of a method chain and that it returns a new copy of the DataFrame. Without it, you would have to store your intermediate steps of the chain to another variable before reassigning the columns.
# new for pandas 0.21+
df.some_method1()
.some_method2()
.set_axis()
.some_method3()
# old way
df1 = df.some_method1()
.some_method2()
df1.columns = columns
df1.some_method3()
Since you only want to remove the $ sign in all column names, you could just do:
df = df.rename(columns=lambda x: x.replace('$', ''))
OR
df.rename(columns=lambda x: x.replace('$', ''), inplace=True)
Renaming columns in Pandas is an easy task.
df.rename(columns={'$a': 'a', '$b': 'b', '$c': 'c', '$d': 'd', '$e': 'e'}, inplace=True)
df.columns = ['a', 'b', 'c', 'd', 'e']
It will replace the existing names with the names you provide, in the order you provide.
Use:
old_names = ['$a', '$b', '$c', '$d', '$e']
new_names = ['a', 'b', 'c', 'd', 'e']
df.rename(columns=dict(zip(old_names, new_names)), inplace=True)
This way you can manually edit the new_names as you wish. It works great when you need to rename only a few columns to correct misspellings, accents, remove special characters, etc.
One line or Pipeline solutions
I'll focus on two things:
OP clearly states
I have the edited column names stored it in a list, but I don't know how to replace the column names.
I do not want to solve the problem of how to replace '$' or strip the first character off of each column header. OP has already done this step. Instead I want to focus on replacing the existing columns object with a new one given a list of replacement column names.
df.columns = new where new is the list of new columns names is as simple as it gets. The drawback of this approach is that it requires editing the existing dataframe's columns attribute and it isn't done inline. I'll show a few ways to perform this via pipelining without editing the existing dataframe.
Setup 1
To focus on the need to rename of replace column names with a pre-existing list, I'll create a new sample dataframe df with initial column names and unrelated new column names.
df = pd.DataFrame({'Jack': [1, 2], 'Mahesh': [3, 4], 'Xin': [5, 6]})
new = ['x098', 'y765', 'z432']
df
Jack Mahesh Xin
0 1 3 5
1 2 4 6
Solution 1
pd.DataFrame.rename
It has been said already that if you had a dictionary mapping the old column names to new column names, you could use pd.DataFrame.rename.
d = {'Jack': 'x098', 'Mahesh': 'y765', 'Xin': 'z432'}
df.rename(columns=d)
x098 y765 z432
0 1 3 5
1 2 4 6
However, you can easily create that dictionary and include it in the call to rename. The following takes advantage of the fact that when iterating over df, we iterate over each column name.
# Given just a list of new column names
df.rename(columns=dict(zip(df, new)))
x098 y765 z432
0 1 3 5
1 2 4 6
This works great if your original column names are unique. But if they are not, then this breaks down.
Setup 2
Non-unique columns
df = pd.DataFrame(
[[1, 3, 5], [2, 4, 6]],
columns=['Mahesh', 'Mahesh', 'Xin']
)
new = ['x098', 'y765', 'z432']
df
Mahesh Mahesh Xin
0 1 3 5
1 2 4 6
Solution 2
pd.concat using the keys argument
First, notice what happens when we attempt to use solution 1:
df.rename(columns=dict(zip(df, new)))
y765 y765 z432
0 1 3 5
1 2 4 6
We didn't map the new list as the column names. We ended up repeating y765. Instead, we can use the keys argument of the pd.concat function while iterating through the columns of df.
pd.concat([c for _, c in df.items()], axis=1, keys=new)
x098 y765 z432
0 1 3 5
1 2 4 6
Solution 3
Reconstruct. This should only be used if you have a single dtype for all columns. Otherwise, you'll end up with dtype object for all columns and converting them back requires more dictionary work.
Single dtype
pd.DataFrame(df.values, df.index, new)
x098 y765 z432
0 1 3 5
1 2 4 6
Mixed dtype
pd.DataFrame(df.values, df.index, new).astype(dict(zip(new, df.dtypes)))
x098 y765 z432
0 1 3 5
1 2 4 6
Solution 4
This is a gimmicky trick with transpose and set_index. pd.DataFrame.set_index allows us to set an index inline, but there is no corresponding set_columns. So we can transpose, then set_index, and transpose back. However, the same single dtype versus mixed dtype caveat from solution 3 applies here.
Single dtype
df.T.set_index(np.asarray(new)).T
x098 y765 z432
0 1 3 5
1 2 4 6
Mixed dtype
df.T.set_index(np.asarray(new)).T.astype(dict(zip(new, df.dtypes)))
x098 y765 z432
0 1 3 5
1 2 4 6
Solution 5
Use a lambda in pd.DataFrame.rename that cycles through each element of new.
In this solution, we pass a lambda that takes x but then ignores it. It also takes a y but doesn't expect it. Instead, an iterator is given as a default value and I can then use that to cycle through one at a time without regard to what the value of x is.
df.rename(columns=lambda x, y=iter(new): next(y))
x098 y765 z432
0 1 3 5
1 2 4 6
And as pointed out to me by the folks in sopython chat, if I add a * in between x and y, I can protect my y variable. Though, in this context I don't believe it needs protecting. It is still worth mentioning.
df.rename(columns=lambda x, *, y=iter(new): next(y))
x098 y765 z432
0 1 3 5
1 2 4 6
Column names vs Names of Series
I would like to explain a bit what happens behind the scenes.
Dataframes are a set of Series.
Series in turn are an extension of a numpy.array.
numpy.arrays have a property .name.
This is the name of the series. It is seldom that Pandas respects this attribute, but it lingers in places and can be used to hack some Pandas behaviors.
Naming the list of columns
A lot of answers here talks about the df.columns attribute being a list when in fact it is a Series. This means it has a .name attribute.
This is what happens if you decide to fill in the name of the columns Series:
df.columns = ['column_one', 'column_two']
df.columns.names = ['name of the list of columns']
df.index.names = ['name of the index']
name of the list of columns column_one column_two
name of the index
0 4 1
1 5 2
2 6 3
Note that the name of the index always comes one column lower.
Artefacts that linger
The .name attribute lingers on sometimes. If you set df.columns = ['one', 'two'] then the df.one.name will be 'one'.
If you set df.one.name = 'three' then df.columns will still give you ['one', 'two'], and df.one.name will give you 'three'.
BUT
pd.DataFrame(df.one) will return
three
0 1
1 2
2 3
Because Pandas reuses the .name of the already defined Series.
Multi-level column names
Pandas has ways of doing multi-layered column names. There is not so much magic involved, but I wanted to cover this in my answer too since I don't see anyone picking up on this here.
|one |
|one |two |
0 | 4 | 1 |
1 | 5 | 2 |
2 | 6 | 3 |
This is easily achievable by setting columns to lists, like this:
df.columns = [['one', 'one'], ['one', 'two']]
Many of pandas functions have an inplace parameter. When setting it True, the transformation applies directly to the dataframe that you are calling it on. For example:
df = pd.DataFrame({'$a':[1,2], '$b': [3,4]})
df.rename(columns={'$a': 'a'}, inplace=True)
df.columns
>>> Index(['a', '$b'], dtype='object')
Alternatively, there are cases where you want to preserve the original dataframe. I have often seen people fall into this case if creating the dataframe is an expensive task. For example, if creating the dataframe required querying a snowflake database. In this case, just make sure the the inplace parameter is set to False.
df = pd.DataFrame({'$a':[1,2], '$b': [3,4]})
df2 = df.rename(columns={'$a': 'a'}, inplace=False)
df.columns
>>> Index(['$a', '$b'], dtype='object')
df2.columns
>>> Index(['a', '$b'], dtype='object')
If these types of transformations are something that you do often, you could also look into a number of different pandas GUI tools. I'm the creator of one called Mito. It’s a spreadsheet that automatically converts your edits to python code.
Let's understand renaming by a small example...
Renaming columns using mapping:
df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) # Creating a df with column name A and B
df.rename({"A": "new_a", "B": "new_b"}, axis='columns', inplace =True) # Renaming column A with 'new_a' and B with 'new_b'
Output:
new_a new_b
0 1 4
1 2 5
2 3 6
Renaming index/Row_Name using mapping:
df.rename({0: "x", 1: "y", 2: "z"}, axis='index', inplace =True) # Row name are getting replaced by 'x', 'y', and 'z'.
Output:
new_a new_b
x 1 4
y 2 5
z 3 6
Suppose your dataset name is df, and df has.
df = ['$a', '$b', '$c', '$d', '$e']`
So, to rename these, we would simply do.
df.columns = ['a','b','c','d','e']
Let's say this is your dataframe.
You can rename the columns using two methods.
Using dataframe.columns=[#list]
df.columns=['a','b','c','d','e']
The limitation of this method is that if one column has to be changed, full column list has to be passed. Also, this method is not applicable on index labels.
For example, if you passed this:
df.columns = ['a','b','c','d']
This will throw an error. Length mismatch: Expected axis has 5 elements, new values have 4 elements.
Another method is the Pandas rename() method which is used to rename any index, column or row
df = df.rename(columns={'$a':'a'})
Similarly, you can change any rows or columns.
If you've got the dataframe, df.columns dumps everything into a list you can manipulate and then reassign into your dataframe as the names of columns...
columns = df.columns
columns = [row.replace("$", "") for row in columns]
df.rename(columns=dict(zip(columns, things)), inplace=True)
df.head() # To validate the output
Best way? I don't know. A way - yes.
A better way of evaluating all the main techniques put forward in the answers to the question is below using cProfile to gage memory and execution time. #kadee, #kaitlyn, and #eumiro had the functions with the fastest execution times - though these functions are so fast we're comparing the rounding of 0.000 and 0.001 seconds for all the answers. Moral: my answer above likely isn't the 'best' way.
import pandas as pd
import cProfile, pstats, re
old_names = ['$a', '$b', '$c', '$d', '$e']
new_names = ['a', 'b', 'c', 'd', 'e']
col_dict = {'$a': 'a', '$b': 'b', '$c': 'c', '$d': 'd', '$e': 'e'}
df = pd.DataFrame({'$a':[1, 2], '$b': [10, 20], '$c': ['bleep', 'blorp'], '$d': [1, 2], '$e': ['texa$', '']})
df.head()
def eumiro(df, nn):
df.columns = nn
# This direct renaming approach is duplicated in methodology in several other answers:
return df
def lexual1(df):
return df.rename(columns=col_dict)
def lexual2(df, col_dict):
return df.rename(columns=col_dict, inplace=True)
def Panda_Master_Hayden(df):
return df.rename(columns=lambda x: x[1:], inplace=True)
def paulo1(df):
return df.rename(columns=lambda x: x.replace('$', ''))
def paulo2(df):
return df.rename(columns=lambda x: x.replace('$', ''), inplace=True)
def migloo(df, on, nn):
return df.rename(columns=dict(zip(on, nn)), inplace=True)
def kadee(df):
return df.columns.str.replace('$', '')
def awo(df):
columns = df.columns
columns = [row.replace("$", "") for row in columns]
return df.rename(columns=dict(zip(columns, '')), inplace=True)
def kaitlyn(df):
df.columns = [col.strip('$') for col in df.columns]
return df
print 'eumiro'
cProfile.run('eumiro(df, new_names)')
print 'lexual1'
cProfile.run('lexual1(df)')
print 'lexual2'
cProfile.run('lexual2(df, col_dict)')
print 'andy hayden'
cProfile.run('Panda_Master_Hayden(df)')
print 'paulo1'
cProfile.run('paulo1(df)')
print 'paulo2'
cProfile.run('paulo2(df)')
print 'migloo'
cProfile.run('migloo(df, old_names, new_names)')
print 'kadee'
cProfile.run('kadee(df)')
print 'awo'
cProfile.run('awo(df)')
print 'kaitlyn'
cProfile.run('kaitlyn(df)')
df = pd.DataFrame({'$a': [1], '$b': [1], '$c': [1], '$d': [1], '$e': [1]})
If your new list of columns is in the same order as the existing columns, the assignment is simple:
new_cols = ['a', 'b', 'c', 'd', 'e']
df.columns = new_cols
>>> df
a b c d e
0 1 1 1 1 1
If you had a dictionary keyed on old column names to new column names, you could do the following:
d = {'$a': 'a', '$b': 'b', '$c': 'c', '$d': 'd', '$e': 'e'}
df.columns = df.columns.map(lambda col: d[col]) # Or `.map(d.get)` as pointed out by #PiRSquared.
>>> df
a b c d e
0 1 1 1 1 1
If you don't have a list or dictionary mapping, you could strip the leading $ symbol via a list comprehension:
df.columns = [col[1:] if col[0] == '$' else col for col in df]
df.rename(index=str, columns={'A':'a', 'B':'b'})
pandas.DataFrame.rename
If you already have a list for the new column names, you can try this:
new_cols = ['a', 'b', 'c', 'd', 'e']
new_names_map = {df.columns[i]:new_cols[i] for i in range(len(new_cols))}
df.rename(new_names_map, axis=1, inplace=True)
Another way we could replace the original column labels is by stripping the unwanted characters (here '$') from the original column labels.
This could have been done by running a for loop over df.columns and appending the stripped columns to df.columns.
Instead, we can do this neatly in a single statement by using list comprehension like below:
df.columns = [col.strip('$') for col in df.columns]
(strip method in Python strips the given character from beginning and end of the string.)
It is real simple. Just use:
df.columns = ['Name1', 'Name2', 'Name3'...]
And it will assign the column names by the order you put them in.
# This way it will work
import pandas as pd
# Define a dictionary
rankings = {'test': ['a'],
'odi': ['E'],
't20': ['P']}
# Convert the dictionary into DataFrame
rankings_pd = pd.DataFrame(rankings)
# Before renaming the columns
print(rankings_pd)
rankings_pd.rename(columns = {'test':'TEST'}, inplace = True)
You could use str.slice for that:
df.columns = df.columns.str.slice(1)
Another option is to rename using a regular expression:
import pandas as pd
import re
df = pd.DataFrame({'$a':[1,2], '$b':[3,4], '$c':[5,6]})
df = df.rename(columns=lambda x: re.sub('\$','',x))
>>> df
a b c
0 1 3 5
1 2 4 6
My method is generic wherein you can add additional delimiters by comma separating delimiters= variable and future-proof it.
Working Code:
import pandas as pd
import re
df = pd.DataFrame({'$a':[1,2], '$b': [3,4],'$c':[5,6], '$d': [7,8], '$e': [9,10]})
delimiters = '$'
matchPattern = '|'.join(map(re.escape, delimiters))
df.columns = [re.split(matchPattern, i)[1] for i in df.columns ]
Output:
>>> df
$a $b $c $d $e
0 1 3 5 7 9
1 2 4 6 8 10
>>> df
a b c d e
0 1 3 5 7 9
1 2 4 6 8 10
Note that the approaches in previous answers do not work for a MultiIndex. For a MultiIndex, you need to do something like the following:
>>> df = pd.DataFrame({('$a','$x'):[1,2], ('$b','$y'): [3,4], ('e','f'):[5,6]})
>>> df
$a $b e
$x $y f
0 1 3 5
1 2 4 6
>>> rename = {('$a','$x'):('a','x'), ('$b','$y'):('b','y')}
>>> df.columns = pandas.MultiIndex.from_tuples([
rename.get(item, item) for item in df.columns.tolist()])
>>> df
a b e
x y f
0 1 3 5
1 2 4 6
If you have to deal with loads of columns named by the providing system out of your control, I came up with the following approach that is a combination of a general approach and specific replacements in one go.
First create a dictionary from the dataframe column names using regular expressions in order to throw away certain appendixes of column names and then add specific replacements to the dictionary to name core columns as expected later in the receiving database.
This is then applied to the dataframe in one go.
dict = dict(zip(df.columns, df.columns.str.replace('(:S$|:C1$|:L$|:D$|\.Serial:L$)', '')))
dict['brand_timeseries:C1'] = 'BTS'
dict['respid:L'] = 'RespID'
dict['country:C1'] = 'CountryID'
dict['pim1:D'] = 'pim_actual'
df.rename(columns=dict, inplace=True)
If you just want to remove the '$' sign then use the below code
df.columns = pd.Series(df.columns.str.replace("$", ""))
In addition to the solution already provided, you can replace all the columns while you are reading the file. We can use names and header=0 to do that.
First, we create a list of the names that we like to use as our column names:
import pandas as pd
ufo_cols = ['city', 'color reported', 'shape reported', 'state', 'time']
ufo.columns = ufo_cols
ufo = pd.read_csv('link to the file you are using', names = ufo_cols, header = 0)
In this case, all the column names will be replaced with the names you have in your list.
Here's a nifty little function I like to use to cut down on typing:
def rename(data, oldnames, newname):
if type(oldnames) == str: # Input can be a string or list of strings
oldnames = [oldnames] # When renaming multiple columns
newname = [newname] # Make sure you pass the corresponding list of new names
i = 0
for name in oldnames:
oldvar = [c for c in data.columns if name in c]
if len(oldvar) == 0:
raise ValueError("Sorry, couldn't find that column in the dataset")
if len(oldvar) > 1: # Doesn't have to be an exact match
print("Found multiple columns that matched " + str(name) + ": ")
for c in oldvar:
print(str(oldvar.index(c)) + ": " + str(c))
ind = input('Please enter the index of the column you would like to rename: ')
oldvar = oldvar[int(ind)]
if len(oldvar) == 1:
oldvar = oldvar[0]
data = data.rename(columns = {oldvar : newname[i]})
i += 1
return data
Here is an example of how it works:
In [2]: df = pd.DataFrame(np.random.randint(0, 10, size=(10, 4)), columns = ['col1', 'col2', 'omg', 'idk'])
# First list = existing variables
# Second list = new names for those variables
In [3]: df = rename(df, ['col', 'omg'],['first', 'ohmy'])
Found multiple columns that matched col:
0: col1
1: col2
Please enter the index of the column you would like to rename: 0
In [4]: df.columns
Out[5]: Index(['first', 'col2', 'ohmy', 'idk'], dtype='object')
I want to change the column labels of a Pandas DataFrame from
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
Rename Specific Columns
Use the df.rename() function and refer the columns to be renamed. Not all the columns have to be renamed:
df = df.rename(columns={'oldName1': 'newName1', 'oldName2': 'newName2'})
# Or rename the existing DataFrame (rather than creating a copy)
df.rename(columns={'oldName1': 'newName1', 'oldName2': 'newName2'}, inplace=True)
Minimal Code Example
df = pd.DataFrame('x', index=range(3), columns=list('abcde'))
df
a b c d e
0 x x x x x
1 x x x x x
2 x x x x x
The following methods all work and produce the same output:
df2 = df.rename({'a': 'X', 'b': 'Y'}, axis=1) # new method
df2 = df.rename({'a': 'X', 'b': 'Y'}, axis='columns')
df2 = df.rename(columns={'a': 'X', 'b': 'Y'}) # old method
df2
X Y c d e
0 x x x x x
1 x x x x x
2 x x x x x
Remember to assign the result back, as the modification is not-inplace. Alternatively, specify inplace=True:
df.rename({'a': 'X', 'b': 'Y'}, axis=1, inplace=True)
df
X Y c d e
0 x x x x x
1 x x x x x
2 x x x x x
From v0.25, you can also specify errors='raise' to raise errors if an invalid column-to-rename is specified. See v0.25 rename() docs.
Reassign Column Headers
Use df.set_axis() with axis=1 and inplace=False (to return a copy).
df2 = df.set_axis(['V', 'W', 'X', 'Y', 'Z'], axis=1, inplace=False)
df2
V W X Y Z
0 x x x x x
1 x x x x x
2 x x x x x
This returns a copy, but you can modify the DataFrame in-place by setting inplace=True (this is the default behaviour for versions <=0.24 but is likely to change in the future).
You can also assign headers directly:
df.columns = ['V', 'W', 'X', 'Y', 'Z']
df
V W X Y Z
0 x x x x x
1 x x x x x
2 x x x x x
Just assign it to the .columns attribute:
>>> df = pd.DataFrame({'$a':[1,2], '$b': [10,20]})
>>> df
$a $b
0 1 10
1 2 20
>>> df.columns = ['a', 'b']
>>> df
a b
0 1 10
1 2 20
The rename method can take a function, for example:
In [11]: df.columns
Out[11]: Index([u'$a', u'$b', u'$c', u'$d', u'$e'], dtype=object)
In [12]: df.rename(columns=lambda x: x[1:], inplace=True)
In [13]: df.columns
Out[13]: Index([u'a', u'b', u'c', u'd', u'e'], dtype=object)
As documented in Working with text data:
df.columns = df.columns.str.replace('$', '')
Pandas 0.21+ Answer
There have been some significant updates to column renaming in version 0.21.
The rename method has added the axis parameter which may be set to columns or 1. This update makes this method match the rest of the pandas API. It still has the index and columns parameters but you are no longer forced to use them.
The set_axis method with the inplace set to False enables you to rename all the index or column labels with a list.
Examples for Pandas 0.21+
Construct sample DataFrame:
df = pd.DataFrame({'$a':[1,2], '$b': [3,4],
'$c':[5,6], '$d':[7,8],
'$e':[9,10]})
$a $b $c $d $e
0 1 3 5 7 9
1 2 4 6 8 10
Using rename with axis='columns' or axis=1
df.rename({'$a':'a', '$b':'b', '$c':'c', '$d':'d', '$e':'e'}, axis='columns')
or
df.rename({'$a':'a', '$b':'b', '$c':'c', '$d':'d', '$e':'e'}, axis=1)
Both result in the following:
a b c d e
0 1 3 5 7 9
1 2 4 6 8 10
It is still possible to use the old method signature:
df.rename(columns={'$a':'a', '$b':'b', '$c':'c', '$d':'d', '$e':'e'})
The rename function also accepts functions that will be applied to each column name.
df.rename(lambda x: x[1:], axis='columns')
or
df.rename(lambda x: x[1:], axis=1)
Using set_axis with a list and inplace=False
You can supply a list to the set_axis method that is equal in length to the number of columns (or index). Currently, inplace defaults to True, but inplace will be defaulted to False in future releases.
df.set_axis(['a', 'b', 'c', 'd', 'e'], axis='columns', inplace=False)
or
df.set_axis(['a', 'b', 'c', 'd', 'e'], axis=1, inplace=False)
Why not use df.columns = ['a', 'b', 'c', 'd', 'e']?
There is nothing wrong with assigning columns directly like this. It is a perfectly good solution.
The advantage of using set_axis is that it can be used as part of a method chain and that it returns a new copy of the DataFrame. Without it, you would have to store your intermediate steps of the chain to another variable before reassigning the columns.
# new for pandas 0.21+
df.some_method1()
.some_method2()
.set_axis()
.some_method3()
# old way
df1 = df.some_method1()
.some_method2()
df1.columns = columns
df1.some_method3()
Since you only want to remove the $ sign in all column names, you could just do:
df = df.rename(columns=lambda x: x.replace('$', ''))
OR
df.rename(columns=lambda x: x.replace('$', ''), inplace=True)
Renaming columns in Pandas is an easy task.
df.rename(columns={'$a': 'a', '$b': 'b', '$c': 'c', '$d': 'd', '$e': 'e'}, inplace=True)
df.columns = ['a', 'b', 'c', 'd', 'e']
It will replace the existing names with the names you provide, in the order you provide.
Use:
old_names = ['$a', '$b', '$c', '$d', '$e']
new_names = ['a', 'b', 'c', 'd', 'e']
df.rename(columns=dict(zip(old_names, new_names)), inplace=True)
This way you can manually edit the new_names as you wish. It works great when you need to rename only a few columns to correct misspellings, accents, remove special characters, etc.
One line or Pipeline solutions
I'll focus on two things:
OP clearly states
I have the edited column names stored it in a list, but I don't know how to replace the column names.
I do not want to solve the problem of how to replace '$' or strip the first character off of each column header. OP has already done this step. Instead I want to focus on replacing the existing columns object with a new one given a list of replacement column names.
df.columns = new where new is the list of new columns names is as simple as it gets. The drawback of this approach is that it requires editing the existing dataframe's columns attribute and it isn't done inline. I'll show a few ways to perform this via pipelining without editing the existing dataframe.
Setup 1
To focus on the need to rename of replace column names with a pre-existing list, I'll create a new sample dataframe df with initial column names and unrelated new column names.
df = pd.DataFrame({'Jack': [1, 2], 'Mahesh': [3, 4], 'Xin': [5, 6]})
new = ['x098', 'y765', 'z432']
df
Jack Mahesh Xin
0 1 3 5
1 2 4 6
Solution 1
pd.DataFrame.rename
It has been said already that if you had a dictionary mapping the old column names to new column names, you could use pd.DataFrame.rename.
d = {'Jack': 'x098', 'Mahesh': 'y765', 'Xin': 'z432'}
df.rename(columns=d)
x098 y765 z432
0 1 3 5
1 2 4 6
However, you can easily create that dictionary and include it in the call to rename. The following takes advantage of the fact that when iterating over df, we iterate over each column name.
# Given just a list of new column names
df.rename(columns=dict(zip(df, new)))
x098 y765 z432
0 1 3 5
1 2 4 6
This works great if your original column names are unique. But if they are not, then this breaks down.
Setup 2
Non-unique columns
df = pd.DataFrame(
[[1, 3, 5], [2, 4, 6]],
columns=['Mahesh', 'Mahesh', 'Xin']
)
new = ['x098', 'y765', 'z432']
df
Mahesh Mahesh Xin
0 1 3 5
1 2 4 6
Solution 2
pd.concat using the keys argument
First, notice what happens when we attempt to use solution 1:
df.rename(columns=dict(zip(df, new)))
y765 y765 z432
0 1 3 5
1 2 4 6
We didn't map the new list as the column names. We ended up repeating y765. Instead, we can use the keys argument of the pd.concat function while iterating through the columns of df.
pd.concat([c for _, c in df.items()], axis=1, keys=new)
x098 y765 z432
0 1 3 5
1 2 4 6
Solution 3
Reconstruct. This should only be used if you have a single dtype for all columns. Otherwise, you'll end up with dtype object for all columns and converting them back requires more dictionary work.
Single dtype
pd.DataFrame(df.values, df.index, new)
x098 y765 z432
0 1 3 5
1 2 4 6
Mixed dtype
pd.DataFrame(df.values, df.index, new).astype(dict(zip(new, df.dtypes)))
x098 y765 z432
0 1 3 5
1 2 4 6
Solution 4
This is a gimmicky trick with transpose and set_index. pd.DataFrame.set_index allows us to set an index inline, but there is no corresponding set_columns. So we can transpose, then set_index, and transpose back. However, the same single dtype versus mixed dtype caveat from solution 3 applies here.
Single dtype
df.T.set_index(np.asarray(new)).T
x098 y765 z432
0 1 3 5
1 2 4 6
Mixed dtype
df.T.set_index(np.asarray(new)).T.astype(dict(zip(new, df.dtypes)))
x098 y765 z432
0 1 3 5
1 2 4 6
Solution 5
Use a lambda in pd.DataFrame.rename that cycles through each element of new.
In this solution, we pass a lambda that takes x but then ignores it. It also takes a y but doesn't expect it. Instead, an iterator is given as a default value and I can then use that to cycle through one at a time without regard to what the value of x is.
df.rename(columns=lambda x, y=iter(new): next(y))
x098 y765 z432
0 1 3 5
1 2 4 6
And as pointed out to me by the folks in sopython chat, if I add a * in between x and y, I can protect my y variable. Though, in this context I don't believe it needs protecting. It is still worth mentioning.
df.rename(columns=lambda x, *, y=iter(new): next(y))
x098 y765 z432
0 1 3 5
1 2 4 6
Column names vs Names of Series
I would like to explain a bit what happens behind the scenes.
Dataframes are a set of Series.
Series in turn are an extension of a numpy.array.
numpy.arrays have a property .name.
This is the name of the series. It is seldom that Pandas respects this attribute, but it lingers in places and can be used to hack some Pandas behaviors.
Naming the list of columns
A lot of answers here talks about the df.columns attribute being a list when in fact it is a Series. This means it has a .name attribute.
This is what happens if you decide to fill in the name of the columns Series:
df.columns = ['column_one', 'column_two']
df.columns.names = ['name of the list of columns']
df.index.names = ['name of the index']
name of the list of columns column_one column_two
name of the index
0 4 1
1 5 2
2 6 3
Note that the name of the index always comes one column lower.
Artefacts that linger
The .name attribute lingers on sometimes. If you set df.columns = ['one', 'two'] then the df.one.name will be 'one'.
If you set df.one.name = 'three' then df.columns will still give you ['one', 'two'], and df.one.name will give you 'three'.
BUT
pd.DataFrame(df.one) will return
three
0 1
1 2
2 3
Because Pandas reuses the .name of the already defined Series.
Multi-level column names
Pandas has ways of doing multi-layered column names. There is not so much magic involved, but I wanted to cover this in my answer too since I don't see anyone picking up on this here.
|one |
|one |two |
0 | 4 | 1 |
1 | 5 | 2 |
2 | 6 | 3 |
This is easily achievable by setting columns to lists, like this:
df.columns = [['one', 'one'], ['one', 'two']]
Many of pandas functions have an inplace parameter. When setting it True, the transformation applies directly to the dataframe that you are calling it on. For example:
df = pd.DataFrame({'$a':[1,2], '$b': [3,4]})
df.rename(columns={'$a': 'a'}, inplace=True)
df.columns
>>> Index(['a', '$b'], dtype='object')
Alternatively, there are cases where you want to preserve the original dataframe. I have often seen people fall into this case if creating the dataframe is an expensive task. For example, if creating the dataframe required querying a snowflake database. In this case, just make sure the the inplace parameter is set to False.
df = pd.DataFrame({'$a':[1,2], '$b': [3,4]})
df2 = df.rename(columns={'$a': 'a'}, inplace=False)
df.columns
>>> Index(['$a', '$b'], dtype='object')
df2.columns
>>> Index(['a', '$b'], dtype='object')
If these types of transformations are something that you do often, you could also look into a number of different pandas GUI tools. I'm the creator of one called Mito. It’s a spreadsheet that automatically converts your edits to python code.
Let's understand renaming by a small example...
Renaming columns using mapping:
df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) # Creating a df with column name A and B
df.rename({"A": "new_a", "B": "new_b"}, axis='columns', inplace =True) # Renaming column A with 'new_a' and B with 'new_b'
Output:
new_a new_b
0 1 4
1 2 5
2 3 6
Renaming index/Row_Name using mapping:
df.rename({0: "x", 1: "y", 2: "z"}, axis='index', inplace =True) # Row name are getting replaced by 'x', 'y', and 'z'.
Output:
new_a new_b
x 1 4
y 2 5
z 3 6
Suppose your dataset name is df, and df has.
df = ['$a', '$b', '$c', '$d', '$e']`
So, to rename these, we would simply do.
df.columns = ['a','b','c','d','e']
Let's say this is your dataframe.
You can rename the columns using two methods.
Using dataframe.columns=[#list]
df.columns=['a','b','c','d','e']
The limitation of this method is that if one column has to be changed, full column list has to be passed. Also, this method is not applicable on index labels.
For example, if you passed this:
df.columns = ['a','b','c','d']
This will throw an error. Length mismatch: Expected axis has 5 elements, new values have 4 elements.
Another method is the Pandas rename() method which is used to rename any index, column or row
df = df.rename(columns={'$a':'a'})
Similarly, you can change any rows or columns.
If you've got the dataframe, df.columns dumps everything into a list you can manipulate and then reassign into your dataframe as the names of columns...
columns = df.columns
columns = [row.replace("$", "") for row in columns]
df.rename(columns=dict(zip(columns, things)), inplace=True)
df.head() # To validate the output
Best way? I don't know. A way - yes.
A better way of evaluating all the main techniques put forward in the answers to the question is below using cProfile to gage memory and execution time. #kadee, #kaitlyn, and #eumiro had the functions with the fastest execution times - though these functions are so fast we're comparing the rounding of 0.000 and 0.001 seconds for all the answers. Moral: my answer above likely isn't the 'best' way.
import pandas as pd
import cProfile, pstats, re
old_names = ['$a', '$b', '$c', '$d', '$e']
new_names = ['a', 'b', 'c', 'd', 'e']
col_dict = {'$a': 'a', '$b': 'b', '$c': 'c', '$d': 'd', '$e': 'e'}
df = pd.DataFrame({'$a':[1, 2], '$b': [10, 20], '$c': ['bleep', 'blorp'], '$d': [1, 2], '$e': ['texa$', '']})
df.head()
def eumiro(df, nn):
df.columns = nn
# This direct renaming approach is duplicated in methodology in several other answers:
return df
def lexual1(df):
return df.rename(columns=col_dict)
def lexual2(df, col_dict):
return df.rename(columns=col_dict, inplace=True)
def Panda_Master_Hayden(df):
return df.rename(columns=lambda x: x[1:], inplace=True)
def paulo1(df):
return df.rename(columns=lambda x: x.replace('$', ''))
def paulo2(df):
return df.rename(columns=lambda x: x.replace('$', ''), inplace=True)
def migloo(df, on, nn):
return df.rename(columns=dict(zip(on, nn)), inplace=True)
def kadee(df):
return df.columns.str.replace('$', '')
def awo(df):
columns = df.columns
columns = [row.replace("$", "") for row in columns]
return df.rename(columns=dict(zip(columns, '')), inplace=True)
def kaitlyn(df):
df.columns = [col.strip('$') for col in df.columns]
return df
print 'eumiro'
cProfile.run('eumiro(df, new_names)')
print 'lexual1'
cProfile.run('lexual1(df)')
print 'lexual2'
cProfile.run('lexual2(df, col_dict)')
print 'andy hayden'
cProfile.run('Panda_Master_Hayden(df)')
print 'paulo1'
cProfile.run('paulo1(df)')
print 'paulo2'
cProfile.run('paulo2(df)')
print 'migloo'
cProfile.run('migloo(df, old_names, new_names)')
print 'kadee'
cProfile.run('kadee(df)')
print 'awo'
cProfile.run('awo(df)')
print 'kaitlyn'
cProfile.run('kaitlyn(df)')
df = pd.DataFrame({'$a': [1], '$b': [1], '$c': [1], '$d': [1], '$e': [1]})
If your new list of columns is in the same order as the existing columns, the assignment is simple:
new_cols = ['a', 'b', 'c', 'd', 'e']
df.columns = new_cols
>>> df
a b c d e
0 1 1 1 1 1
If you had a dictionary keyed on old column names to new column names, you could do the following:
d = {'$a': 'a', '$b': 'b', '$c': 'c', '$d': 'd', '$e': 'e'}
df.columns = df.columns.map(lambda col: d[col]) # Or `.map(d.get)` as pointed out by #PiRSquared.
>>> df
a b c d e
0 1 1 1 1 1
If you don't have a list or dictionary mapping, you could strip the leading $ symbol via a list comprehension:
df.columns = [col[1:] if col[0] == '$' else col for col in df]
df.rename(index=str, columns={'A':'a', 'B':'b'})
pandas.DataFrame.rename
If you already have a list for the new column names, you can try this:
new_cols = ['a', 'b', 'c', 'd', 'e']
new_names_map = {df.columns[i]:new_cols[i] for i in range(len(new_cols))}
df.rename(new_names_map, axis=1, inplace=True)
Another way we could replace the original column labels is by stripping the unwanted characters (here '$') from the original column labels.
This could have been done by running a for loop over df.columns and appending the stripped columns to df.columns.
Instead, we can do this neatly in a single statement by using list comprehension like below:
df.columns = [col.strip('$') for col in df.columns]
(strip method in Python strips the given character from beginning and end of the string.)
It is real simple. Just use:
df.columns = ['Name1', 'Name2', 'Name3'...]
And it will assign the column names by the order you put them in.
# This way it will work
import pandas as pd
# Define a dictionary
rankings = {'test': ['a'],
'odi': ['E'],
't20': ['P']}
# Convert the dictionary into DataFrame
rankings_pd = pd.DataFrame(rankings)
# Before renaming the columns
print(rankings_pd)
rankings_pd.rename(columns = {'test':'TEST'}, inplace = True)
You could use str.slice for that:
df.columns = df.columns.str.slice(1)
Another option is to rename using a regular expression:
import pandas as pd
import re
df = pd.DataFrame({'$a':[1,2], '$b':[3,4], '$c':[5,6]})
df = df.rename(columns=lambda x: re.sub('\$','',x))
>>> df
a b c
0 1 3 5
1 2 4 6
My method is generic wherein you can add additional delimiters by comma separating delimiters= variable and future-proof it.
Working Code:
import pandas as pd
import re
df = pd.DataFrame({'$a':[1,2], '$b': [3,4],'$c':[5,6], '$d': [7,8], '$e': [9,10]})
delimiters = '$'
matchPattern = '|'.join(map(re.escape, delimiters))
df.columns = [re.split(matchPattern, i)[1] for i in df.columns ]
Output:
>>> df
$a $b $c $d $e
0 1 3 5 7 9
1 2 4 6 8 10
>>> df
a b c d e
0 1 3 5 7 9
1 2 4 6 8 10
Note that the approaches in previous answers do not work for a MultiIndex. For a MultiIndex, you need to do something like the following:
>>> df = pd.DataFrame({('$a','$x'):[1,2], ('$b','$y'): [3,4], ('e','f'):[5,6]})
>>> df
$a $b e
$x $y f
0 1 3 5
1 2 4 6
>>> rename = {('$a','$x'):('a','x'), ('$b','$y'):('b','y')}
>>> df.columns = pandas.MultiIndex.from_tuples([
rename.get(item, item) for item in df.columns.tolist()])
>>> df
a b e
x y f
0 1 3 5
1 2 4 6
If you have to deal with loads of columns named by the providing system out of your control, I came up with the following approach that is a combination of a general approach and specific replacements in one go.
First create a dictionary from the dataframe column names using regular expressions in order to throw away certain appendixes of column names and then add specific replacements to the dictionary to name core columns as expected later in the receiving database.
This is then applied to the dataframe in one go.
dict = dict(zip(df.columns, df.columns.str.replace('(:S$|:C1$|:L$|:D$|\.Serial:L$)', '')))
dict['brand_timeseries:C1'] = 'BTS'
dict['respid:L'] = 'RespID'
dict['country:C1'] = 'CountryID'
dict['pim1:D'] = 'pim_actual'
df.rename(columns=dict, inplace=True)
If you just want to remove the '$' sign then use the below code
df.columns = pd.Series(df.columns.str.replace("$", ""))
In addition to the solution already provided, you can replace all the columns while you are reading the file. We can use names and header=0 to do that.
First, we create a list of the names that we like to use as our column names:
import pandas as pd
ufo_cols = ['city', 'color reported', 'shape reported', 'state', 'time']
ufo.columns = ufo_cols
ufo = pd.read_csv('link to the file you are using', names = ufo_cols, header = 0)
In this case, all the column names will be replaced with the names you have in your list.
Here's a nifty little function I like to use to cut down on typing:
def rename(data, oldnames, newname):
if type(oldnames) == str: # Input can be a string or list of strings
oldnames = [oldnames] # When renaming multiple columns
newname = [newname] # Make sure you pass the corresponding list of new names
i = 0
for name in oldnames:
oldvar = [c for c in data.columns if name in c]
if len(oldvar) == 0:
raise ValueError("Sorry, couldn't find that column in the dataset")
if len(oldvar) > 1: # Doesn't have to be an exact match
print("Found multiple columns that matched " + str(name) + ": ")
for c in oldvar:
print(str(oldvar.index(c)) + ": " + str(c))
ind = input('Please enter the index of the column you would like to rename: ')
oldvar = oldvar[int(ind)]
if len(oldvar) == 1:
oldvar = oldvar[0]
data = data.rename(columns = {oldvar : newname[i]})
i += 1
return data
Here is an example of how it works:
In [2]: df = pd.DataFrame(np.random.randint(0, 10, size=(10, 4)), columns = ['col1', 'col2', 'omg', 'idk'])
# First list = existing variables
# Second list = new names for those variables
In [3]: df = rename(df, ['col', 'omg'],['first', 'ohmy'])
Found multiple columns that matched col:
0: col1
1: col2
Please enter the index of the column you would like to rename: 0
In [4]: df.columns
Out[5]: Index(['first', 'col2', 'ohmy', 'idk'], dtype='object')
I want to change the column labels of a Pandas DataFrame from
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
Rename Specific Columns
Use the df.rename() function and refer the columns to be renamed. Not all the columns have to be renamed:
df = df.rename(columns={'oldName1': 'newName1', 'oldName2': 'newName2'})
# Or rename the existing DataFrame (rather than creating a copy)
df.rename(columns={'oldName1': 'newName1', 'oldName2': 'newName2'}, inplace=True)
Minimal Code Example
df = pd.DataFrame('x', index=range(3), columns=list('abcde'))
df
a b c d e
0 x x x x x
1 x x x x x
2 x x x x x
The following methods all work and produce the same output:
df2 = df.rename({'a': 'X', 'b': 'Y'}, axis=1) # new method
df2 = df.rename({'a': 'X', 'b': 'Y'}, axis='columns')
df2 = df.rename(columns={'a': 'X', 'b': 'Y'}) # old method
df2
X Y c d e
0 x x x x x
1 x x x x x
2 x x x x x
Remember to assign the result back, as the modification is not-inplace. Alternatively, specify inplace=True:
df.rename({'a': 'X', 'b': 'Y'}, axis=1, inplace=True)
df
X Y c d e
0 x x x x x
1 x x x x x
2 x x x x x
From v0.25, you can also specify errors='raise' to raise errors if an invalid column-to-rename is specified. See v0.25 rename() docs.
Reassign Column Headers
Use df.set_axis() with axis=1 and inplace=False (to return a copy).
df2 = df.set_axis(['V', 'W', 'X', 'Y', 'Z'], axis=1, inplace=False)
df2
V W X Y Z
0 x x x x x
1 x x x x x
2 x x x x x
This returns a copy, but you can modify the DataFrame in-place by setting inplace=True (this is the default behaviour for versions <=0.24 but is likely to change in the future).
You can also assign headers directly:
df.columns = ['V', 'W', 'X', 'Y', 'Z']
df
V W X Y Z
0 x x x x x
1 x x x x x
2 x x x x x
Just assign it to the .columns attribute:
>>> df = pd.DataFrame({'$a':[1,2], '$b': [10,20]})
>>> df
$a $b
0 1 10
1 2 20
>>> df.columns = ['a', 'b']
>>> df
a b
0 1 10
1 2 20
The rename method can take a function, for example:
In [11]: df.columns
Out[11]: Index([u'$a', u'$b', u'$c', u'$d', u'$e'], dtype=object)
In [12]: df.rename(columns=lambda x: x[1:], inplace=True)
In [13]: df.columns
Out[13]: Index([u'a', u'b', u'c', u'd', u'e'], dtype=object)
As documented in Working with text data:
df.columns = df.columns.str.replace('$', '')
Pandas 0.21+ Answer
There have been some significant updates to column renaming in version 0.21.
The rename method has added the axis parameter which may be set to columns or 1. This update makes this method match the rest of the pandas API. It still has the index and columns parameters but you are no longer forced to use them.
The set_axis method with the inplace set to False enables you to rename all the index or column labels with a list.
Examples for Pandas 0.21+
Construct sample DataFrame:
df = pd.DataFrame({'$a':[1,2], '$b': [3,4],
'$c':[5,6], '$d':[7,8],
'$e':[9,10]})
$a $b $c $d $e
0 1 3 5 7 9
1 2 4 6 8 10
Using rename with axis='columns' or axis=1
df.rename({'$a':'a', '$b':'b', '$c':'c', '$d':'d', '$e':'e'}, axis='columns')
or
df.rename({'$a':'a', '$b':'b', '$c':'c', '$d':'d', '$e':'e'}, axis=1)
Both result in the following:
a b c d e
0 1 3 5 7 9
1 2 4 6 8 10
It is still possible to use the old method signature:
df.rename(columns={'$a':'a', '$b':'b', '$c':'c', '$d':'d', '$e':'e'})
The rename function also accepts functions that will be applied to each column name.
df.rename(lambda x: x[1:], axis='columns')
or
df.rename(lambda x: x[1:], axis=1)
Using set_axis with a list and inplace=False
You can supply a list to the set_axis method that is equal in length to the number of columns (or index). Currently, inplace defaults to True, but inplace will be defaulted to False in future releases.
df.set_axis(['a', 'b', 'c', 'd', 'e'], axis='columns', inplace=False)
or
df.set_axis(['a', 'b', 'c', 'd', 'e'], axis=1, inplace=False)
Why not use df.columns = ['a', 'b', 'c', 'd', 'e']?
There is nothing wrong with assigning columns directly like this. It is a perfectly good solution.
The advantage of using set_axis is that it can be used as part of a method chain and that it returns a new copy of the DataFrame. Without it, you would have to store your intermediate steps of the chain to another variable before reassigning the columns.
# new for pandas 0.21+
df.some_method1()
.some_method2()
.set_axis()
.some_method3()
# old way
df1 = df.some_method1()
.some_method2()
df1.columns = columns
df1.some_method3()
Since you only want to remove the $ sign in all column names, you could just do:
df = df.rename(columns=lambda x: x.replace('$', ''))
OR
df.rename(columns=lambda x: x.replace('$', ''), inplace=True)
Renaming columns in Pandas is an easy task.
df.rename(columns={'$a': 'a', '$b': 'b', '$c': 'c', '$d': 'd', '$e': 'e'}, inplace=True)
df.columns = ['a', 'b', 'c', 'd', 'e']
It will replace the existing names with the names you provide, in the order you provide.
Use:
old_names = ['$a', '$b', '$c', '$d', '$e']
new_names = ['a', 'b', 'c', 'd', 'e']
df.rename(columns=dict(zip(old_names, new_names)), inplace=True)
This way you can manually edit the new_names as you wish. It works great when you need to rename only a few columns to correct misspellings, accents, remove special characters, etc.
One line or Pipeline solutions
I'll focus on two things:
OP clearly states
I have the edited column names stored it in a list, but I don't know how to replace the column names.
I do not want to solve the problem of how to replace '$' or strip the first character off of each column header. OP has already done this step. Instead I want to focus on replacing the existing columns object with a new one given a list of replacement column names.
df.columns = new where new is the list of new columns names is as simple as it gets. The drawback of this approach is that it requires editing the existing dataframe's columns attribute and it isn't done inline. I'll show a few ways to perform this via pipelining without editing the existing dataframe.
Setup 1
To focus on the need to rename of replace column names with a pre-existing list, I'll create a new sample dataframe df with initial column names and unrelated new column names.
df = pd.DataFrame({'Jack': [1, 2], 'Mahesh': [3, 4], 'Xin': [5, 6]})
new = ['x098', 'y765', 'z432']
df
Jack Mahesh Xin
0 1 3 5
1 2 4 6
Solution 1
pd.DataFrame.rename
It has been said already that if you had a dictionary mapping the old column names to new column names, you could use pd.DataFrame.rename.
d = {'Jack': 'x098', 'Mahesh': 'y765', 'Xin': 'z432'}
df.rename(columns=d)
x098 y765 z432
0 1 3 5
1 2 4 6
However, you can easily create that dictionary and include it in the call to rename. The following takes advantage of the fact that when iterating over df, we iterate over each column name.
# Given just a list of new column names
df.rename(columns=dict(zip(df, new)))
x098 y765 z432
0 1 3 5
1 2 4 6
This works great if your original column names are unique. But if they are not, then this breaks down.
Setup 2
Non-unique columns
df = pd.DataFrame(
[[1, 3, 5], [2, 4, 6]],
columns=['Mahesh', 'Mahesh', 'Xin']
)
new = ['x098', 'y765', 'z432']
df
Mahesh Mahesh Xin
0 1 3 5
1 2 4 6
Solution 2
pd.concat using the keys argument
First, notice what happens when we attempt to use solution 1:
df.rename(columns=dict(zip(df, new)))
y765 y765 z432
0 1 3 5
1 2 4 6
We didn't map the new list as the column names. We ended up repeating y765. Instead, we can use the keys argument of the pd.concat function while iterating through the columns of df.
pd.concat([c for _, c in df.items()], axis=1, keys=new)
x098 y765 z432
0 1 3 5
1 2 4 6
Solution 3
Reconstruct. This should only be used if you have a single dtype for all columns. Otherwise, you'll end up with dtype object for all columns and converting them back requires more dictionary work.
Single dtype
pd.DataFrame(df.values, df.index, new)
x098 y765 z432
0 1 3 5
1 2 4 6
Mixed dtype
pd.DataFrame(df.values, df.index, new).astype(dict(zip(new, df.dtypes)))
x098 y765 z432
0 1 3 5
1 2 4 6
Solution 4
This is a gimmicky trick with transpose and set_index. pd.DataFrame.set_index allows us to set an index inline, but there is no corresponding set_columns. So we can transpose, then set_index, and transpose back. However, the same single dtype versus mixed dtype caveat from solution 3 applies here.
Single dtype
df.T.set_index(np.asarray(new)).T
x098 y765 z432
0 1 3 5
1 2 4 6
Mixed dtype
df.T.set_index(np.asarray(new)).T.astype(dict(zip(new, df.dtypes)))
x098 y765 z432
0 1 3 5
1 2 4 6
Solution 5
Use a lambda in pd.DataFrame.rename that cycles through each element of new.
In this solution, we pass a lambda that takes x but then ignores it. It also takes a y but doesn't expect it. Instead, an iterator is given as a default value and I can then use that to cycle through one at a time without regard to what the value of x is.
df.rename(columns=lambda x, y=iter(new): next(y))
x098 y765 z432
0 1 3 5
1 2 4 6
And as pointed out to me by the folks in sopython chat, if I add a * in between x and y, I can protect my y variable. Though, in this context I don't believe it needs protecting. It is still worth mentioning.
df.rename(columns=lambda x, *, y=iter(new): next(y))
x098 y765 z432
0 1 3 5
1 2 4 6
Column names vs Names of Series
I would like to explain a bit what happens behind the scenes.
Dataframes are a set of Series.
Series in turn are an extension of a numpy.array.
numpy.arrays have a property .name.
This is the name of the series. It is seldom that Pandas respects this attribute, but it lingers in places and can be used to hack some Pandas behaviors.
Naming the list of columns
A lot of answers here talks about the df.columns attribute being a list when in fact it is a Series. This means it has a .name attribute.
This is what happens if you decide to fill in the name of the columns Series:
df.columns = ['column_one', 'column_two']
df.columns.names = ['name of the list of columns']
df.index.names = ['name of the index']
name of the list of columns column_one column_two
name of the index
0 4 1
1 5 2
2 6 3
Note that the name of the index always comes one column lower.
Artefacts that linger
The .name attribute lingers on sometimes. If you set df.columns = ['one', 'two'] then the df.one.name will be 'one'.
If you set df.one.name = 'three' then df.columns will still give you ['one', 'two'], and df.one.name will give you 'three'.
BUT
pd.DataFrame(df.one) will return
three
0 1
1 2
2 3
Because Pandas reuses the .name of the already defined Series.
Multi-level column names
Pandas has ways of doing multi-layered column names. There is not so much magic involved, but I wanted to cover this in my answer too since I don't see anyone picking up on this here.
|one |
|one |two |
0 | 4 | 1 |
1 | 5 | 2 |
2 | 6 | 3 |
This is easily achievable by setting columns to lists, like this:
df.columns = [['one', 'one'], ['one', 'two']]
Many of pandas functions have an inplace parameter. When setting it True, the transformation applies directly to the dataframe that you are calling it on. For example:
df = pd.DataFrame({'$a':[1,2], '$b': [3,4]})
df.rename(columns={'$a': 'a'}, inplace=True)
df.columns
>>> Index(['a', '$b'], dtype='object')
Alternatively, there are cases where you want to preserve the original dataframe. I have often seen people fall into this case if creating the dataframe is an expensive task. For example, if creating the dataframe required querying a snowflake database. In this case, just make sure the the inplace parameter is set to False.
df = pd.DataFrame({'$a':[1,2], '$b': [3,4]})
df2 = df.rename(columns={'$a': 'a'}, inplace=False)
df.columns
>>> Index(['$a', '$b'], dtype='object')
df2.columns
>>> Index(['a', '$b'], dtype='object')
If these types of transformations are something that you do often, you could also look into a number of different pandas GUI tools. I'm the creator of one called Mito. It’s a spreadsheet that automatically converts your edits to python code.
Let's understand renaming by a small example...
Renaming columns using mapping:
df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) # Creating a df with column name A and B
df.rename({"A": "new_a", "B": "new_b"}, axis='columns', inplace =True) # Renaming column A with 'new_a' and B with 'new_b'
Output:
new_a new_b
0 1 4
1 2 5
2 3 6
Renaming index/Row_Name using mapping:
df.rename({0: "x", 1: "y", 2: "z"}, axis='index', inplace =True) # Row name are getting replaced by 'x', 'y', and 'z'.
Output:
new_a new_b
x 1 4
y 2 5
z 3 6
Suppose your dataset name is df, and df has.
df = ['$a', '$b', '$c', '$d', '$e']`
So, to rename these, we would simply do.
df.columns = ['a','b','c','d','e']
Let's say this is your dataframe.
You can rename the columns using two methods.
Using dataframe.columns=[#list]
df.columns=['a','b','c','d','e']
The limitation of this method is that if one column has to be changed, full column list has to be passed. Also, this method is not applicable on index labels.
For example, if you passed this:
df.columns = ['a','b','c','d']
This will throw an error. Length mismatch: Expected axis has 5 elements, new values have 4 elements.
Another method is the Pandas rename() method which is used to rename any index, column or row
df = df.rename(columns={'$a':'a'})
Similarly, you can change any rows or columns.
If you've got the dataframe, df.columns dumps everything into a list you can manipulate and then reassign into your dataframe as the names of columns...
columns = df.columns
columns = [row.replace("$", "") for row in columns]
df.rename(columns=dict(zip(columns, things)), inplace=True)
df.head() # To validate the output
Best way? I don't know. A way - yes.
A better way of evaluating all the main techniques put forward in the answers to the question is below using cProfile to gage memory and execution time. #kadee, #kaitlyn, and #eumiro had the functions with the fastest execution times - though these functions are so fast we're comparing the rounding of 0.000 and 0.001 seconds for all the answers. Moral: my answer above likely isn't the 'best' way.
import pandas as pd
import cProfile, pstats, re
old_names = ['$a', '$b', '$c', '$d', '$e']
new_names = ['a', 'b', 'c', 'd', 'e']
col_dict = {'$a': 'a', '$b': 'b', '$c': 'c', '$d': 'd', '$e': 'e'}
df = pd.DataFrame({'$a':[1, 2], '$b': [10, 20], '$c': ['bleep', 'blorp'], '$d': [1, 2], '$e': ['texa$', '']})
df.head()
def eumiro(df, nn):
df.columns = nn
# This direct renaming approach is duplicated in methodology in several other answers:
return df
def lexual1(df):
return df.rename(columns=col_dict)
def lexual2(df, col_dict):
return df.rename(columns=col_dict, inplace=True)
def Panda_Master_Hayden(df):
return df.rename(columns=lambda x: x[1:], inplace=True)
def paulo1(df):
return df.rename(columns=lambda x: x.replace('$', ''))
def paulo2(df):
return df.rename(columns=lambda x: x.replace('$', ''), inplace=True)
def migloo(df, on, nn):
return df.rename(columns=dict(zip(on, nn)), inplace=True)
def kadee(df):
return df.columns.str.replace('$', '')
def awo(df):
columns = df.columns
columns = [row.replace("$", "") for row in columns]
return df.rename(columns=dict(zip(columns, '')), inplace=True)
def kaitlyn(df):
df.columns = [col.strip('$') for col in df.columns]
return df
print 'eumiro'
cProfile.run('eumiro(df, new_names)')
print 'lexual1'
cProfile.run('lexual1(df)')
print 'lexual2'
cProfile.run('lexual2(df, col_dict)')
print 'andy hayden'
cProfile.run('Panda_Master_Hayden(df)')
print 'paulo1'
cProfile.run('paulo1(df)')
print 'paulo2'
cProfile.run('paulo2(df)')
print 'migloo'
cProfile.run('migloo(df, old_names, new_names)')
print 'kadee'
cProfile.run('kadee(df)')
print 'awo'
cProfile.run('awo(df)')
print 'kaitlyn'
cProfile.run('kaitlyn(df)')
df = pd.DataFrame({'$a': [1], '$b': [1], '$c': [1], '$d': [1], '$e': [1]})
If your new list of columns is in the same order as the existing columns, the assignment is simple:
new_cols = ['a', 'b', 'c', 'd', 'e']
df.columns = new_cols
>>> df
a b c d e
0 1 1 1 1 1
If you had a dictionary keyed on old column names to new column names, you could do the following:
d = {'$a': 'a', '$b': 'b', '$c': 'c', '$d': 'd', '$e': 'e'}
df.columns = df.columns.map(lambda col: d[col]) # Or `.map(d.get)` as pointed out by #PiRSquared.
>>> df
a b c d e
0 1 1 1 1 1
If you don't have a list or dictionary mapping, you could strip the leading $ symbol via a list comprehension:
df.columns = [col[1:] if col[0] == '$' else col for col in df]
df.rename(index=str, columns={'A':'a', 'B':'b'})
pandas.DataFrame.rename
If you already have a list for the new column names, you can try this:
new_cols = ['a', 'b', 'c', 'd', 'e']
new_names_map = {df.columns[i]:new_cols[i] for i in range(len(new_cols))}
df.rename(new_names_map, axis=1, inplace=True)
Another way we could replace the original column labels is by stripping the unwanted characters (here '$') from the original column labels.
This could have been done by running a for loop over df.columns and appending the stripped columns to df.columns.
Instead, we can do this neatly in a single statement by using list comprehension like below:
df.columns = [col.strip('$') for col in df.columns]
(strip method in Python strips the given character from beginning and end of the string.)
It is real simple. Just use:
df.columns = ['Name1', 'Name2', 'Name3'...]
And it will assign the column names by the order you put them in.
# This way it will work
import pandas as pd
# Define a dictionary
rankings = {'test': ['a'],
'odi': ['E'],
't20': ['P']}
# Convert the dictionary into DataFrame
rankings_pd = pd.DataFrame(rankings)
# Before renaming the columns
print(rankings_pd)
rankings_pd.rename(columns = {'test':'TEST'}, inplace = True)
You could use str.slice for that:
df.columns = df.columns.str.slice(1)
Another option is to rename using a regular expression:
import pandas as pd
import re
df = pd.DataFrame({'$a':[1,2], '$b':[3,4], '$c':[5,6]})
df = df.rename(columns=lambda x: re.sub('\$','',x))
>>> df
a b c
0 1 3 5
1 2 4 6
My method is generic wherein you can add additional delimiters by comma separating delimiters= variable and future-proof it.
Working Code:
import pandas as pd
import re
df = pd.DataFrame({'$a':[1,2], '$b': [3,4],'$c':[5,6], '$d': [7,8], '$e': [9,10]})
delimiters = '$'
matchPattern = '|'.join(map(re.escape, delimiters))
df.columns = [re.split(matchPattern, i)[1] for i in df.columns ]
Output:
>>> df
$a $b $c $d $e
0 1 3 5 7 9
1 2 4 6 8 10
>>> df
a b c d e
0 1 3 5 7 9
1 2 4 6 8 10
Note that the approaches in previous answers do not work for a MultiIndex. For a MultiIndex, you need to do something like the following:
>>> df = pd.DataFrame({('$a','$x'):[1,2], ('$b','$y'): [3,4], ('e','f'):[5,6]})
>>> df
$a $b e
$x $y f
0 1 3 5
1 2 4 6
>>> rename = {('$a','$x'):('a','x'), ('$b','$y'):('b','y')}
>>> df.columns = pandas.MultiIndex.from_tuples([
rename.get(item, item) for item in df.columns.tolist()])
>>> df
a b e
x y f
0 1 3 5
1 2 4 6
If you have to deal with loads of columns named by the providing system out of your control, I came up with the following approach that is a combination of a general approach and specific replacements in one go.
First create a dictionary from the dataframe column names using regular expressions in order to throw away certain appendixes of column names and then add specific replacements to the dictionary to name core columns as expected later in the receiving database.
This is then applied to the dataframe in one go.
dict = dict(zip(df.columns, df.columns.str.replace('(:S$|:C1$|:L$|:D$|\.Serial:L$)', '')))
dict['brand_timeseries:C1'] = 'BTS'
dict['respid:L'] = 'RespID'
dict['country:C1'] = 'CountryID'
dict['pim1:D'] = 'pim_actual'
df.rename(columns=dict, inplace=True)
If you just want to remove the '$' sign then use the below code
df.columns = pd.Series(df.columns.str.replace("$", ""))
In addition to the solution already provided, you can replace all the columns while you are reading the file. We can use names and header=0 to do that.
First, we create a list of the names that we like to use as our column names:
import pandas as pd
ufo_cols = ['city', 'color reported', 'shape reported', 'state', 'time']
ufo.columns = ufo_cols
ufo = pd.read_csv('link to the file you are using', names = ufo_cols, header = 0)
In this case, all the column names will be replaced with the names you have in your list.
Here's a nifty little function I like to use to cut down on typing:
def rename(data, oldnames, newname):
if type(oldnames) == str: # Input can be a string or list of strings
oldnames = [oldnames] # When renaming multiple columns
newname = [newname] # Make sure you pass the corresponding list of new names
i = 0
for name in oldnames:
oldvar = [c for c in data.columns if name in c]
if len(oldvar) == 0:
raise ValueError("Sorry, couldn't find that column in the dataset")
if len(oldvar) > 1: # Doesn't have to be an exact match
print("Found multiple columns that matched " + str(name) + ": ")
for c in oldvar:
print(str(oldvar.index(c)) + ": " + str(c))
ind = input('Please enter the index of the column you would like to rename: ')
oldvar = oldvar[int(ind)]
if len(oldvar) == 1:
oldvar = oldvar[0]
data = data.rename(columns = {oldvar : newname[i]})
i += 1
return data
Here is an example of how it works:
In [2]: df = pd.DataFrame(np.random.randint(0, 10, size=(10, 4)), columns = ['col1', 'col2', 'omg', 'idk'])
# First list = existing variables
# Second list = new names for those variables
In [3]: df = rename(df, ['col', 'omg'],['first', 'ohmy'])
Found multiple columns that matched col:
0: col1
1: col2
Please enter the index of the column you would like to rename: 0
In [4]: df.columns
Out[5]: Index(['first', 'col2', 'ohmy', 'idk'], dtype='object')