Is area integral and area weighted mean possible with xarray? - python

I am new to xarray and I need this functionality often to analyze an output of a general circulation model. I can do this with numpy, but I wonder if a shortcut functions for weighted mean and integral along coordinates, are already implemented in xarray? If not, is there a plan to include them into a future release, or should they belong to packages built on top of xarray?

For simple use cases, weighted averaging and integrals have been discussed for xarray, but not implemented yet. Help would be appreciated! (Please reach out on GitHub to discuss details.)
For your specific needs, xgcm might be worth a look. It includes utilities for doing these sort of transformations on native GCM grids.

Related

How to get a time series based on a spectrogram in Python?

I have a time series and generate its spectrogram in Python with matplotlib.pyplot.specgram.
After I make some analysis and changes I need to convert the spectrogram back into time series.
Is there any function in matplotlib or in other library that I can use directly? Or if not, could you please elaborate on which direction I should work on?
Your warm help is appreciated.
Matplotlib is a library for plotting data. Generally if you're trying to do any computation you'd use a library suited for that.
numpy is a very popular library for doing numerical computation in Python. It just so happens they have a fairly extensive set of fft and ifft methods.
I would check them out here and see if they can solve your problem.
One thing commonly done (for example in the source separation community) is to use the phase data of the original signal (before transformation where applied to it) - the result is much better than null or random phase, and not so far from algorithms aiming at reconstructing the phase information from scratch.
A classic reconstruction algorithm is Griffin&Lim's, described in the paper "Signal estimation from modified short-time Fourier transform". This is an iterative algorithm, each iteration requires a full STFT / inverse STFT, which makes it quite costly.
This problem is indeed an active area of research, a search for STFT + reconstruction + magnitude will yield plenty of papers aiming at improving on Griffin&Lim in terms of signal quality and/or computational efficiency.
You can find detailed dicussion hereThread on DSP Stack Exchange

PCA with missing values in Python

I'm trying to do a PCA analysis on a masked array. From what I can tell, matplotlib.mlab.PCA doesn't work if the original 2D matrix has missing values. Does anyone have recommendations for doing a PCA with missing values in Python?
Thanks.
Imputing data will skew the result in ways that might bias the PCA estimates. A better approach is to use a PPCA algorithm, which gives the same result as PCA, but in some implementations can deal with missing data more robustly.
I have found two libraries. You have
Package PPCA on PyPI, which is called PCA-magic on github
Package PyPPCA, having the same name on PyPI and github
Since the packages are in low maintenance, you might want to implement it yourself instead. The code above build on theory presented in the well quoted (and well written!) paper by Tipping and Bishop 1999. It is available on Tippings home page if you want guidance on how to implement PPCA properly.
As an aside, the sklearn implementation of PCA is actually a PPCA implementation based on TippingBishop1999, but they have not chosen to implement it in such a way that it handles missing values.
EDIT: both the libraries above had issues so I could not use them directly myself. I forked PyPPCA and bug fixed it. Available on github.
I think you will probably need to do some preprocessing of the data before doing PCA.
You can use:
sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
With this function you can automatically replace the missing values for the mean, median or most frequent value. Which of this options is the best is hard to tell, it depends on many factors such as how the data looks like.
By the way, you can also use PCA using the same library with:
sklearn.decomposition.PCA
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
And many others statistical functions and machine learning tecniques.

Multilateration Algorithm

I'm trying to call upon the famous multilateration algorithm in order to pinpoint a radiation emission source given a set of arrival times for various detectors. I have the necessary data, but I'm still having trouble implementing this calculation; I am relatively new with Python.
I know that, if I were to do this by hand, I would use matrices and carry out elementary row operations in order to find my 3 unknowns (x,y,z), but I'm not sure how to code this. Is there a way to have Python implement ERO, or is there a better way to carry out my computation?
Depending on your needs, you could try:
NumPy if your interested in numerical solutions. As far as I remember, it could solve linear equations. Don't know how it deals with non-linear resolution.
SymPy for symbolic math. It solves symbolically linear equations ... according to their main page.
The two above are "generic" math packages. I doubt you will find (easily) any dedicated (and maintained) library for your specific need. Their was already a question on that topic here: Multilateration of GPS Coordinates

Classifying a Distribution of Points for Object Identification

I have some points that I need to classify. Given the collection of these points, I need to say which other (known) distribution they match best. For example, given the points in the top left distribution, my algorithm would have to say whether they are a better match to the 2nd, 3rd, or 4th distribution. (Here the bottom-left would be correct due to the similar orientations)
I have some background in Machine Learning, but I am no expert. I was thinking of using Gaussian Mixture Models, or perhaps Hidden Markov Models (as I have previously classified signatures with these- similar problem).
I would appreciate any help as to which approach to use for this problem. As background information, I am working with OpenCV and Python, so I would most likely not have to implement the chosen algorithm from scratch, I just want a pointer to know which algorithms would be applicable to this problem.
Disclaimer: I originally wanted to post this on the Mathematics section of StackExchange, but I lacked the necessary reputation to post images. I felt that my point could not be made clear without showing some images, so I posted it here instead. I believe that it is still relevant to Computer Vision and Machine Learning, as it will eventually be used for object identification.
EDIT:
I read and considered some of the answers given below, and would now like to add some new information. My main reason for not wanting to model these distributions as a single Gaussian is that eventually I will also have to be able to discriminate between distributions. That is, there might be two different and separate distributions representing two different objects, and then my algorithm should be aware that only one of the two distributions represents the object that we are interested in.
I think this depends on where exactly the data comes from and what sort of assumptions you would like to make as to its distribution. The points above can easily be drawn even from a single Gaussian distribution, in which case the estimation of parameters for each one and then the selection of the closest match are pretty simple.
Alternatively you could go for the discriminative option, i.e. calculate whatever statistics you think may be helpful in determining the class a set of points belongs to and perform classification using SVM or something similar. This can be viewed as embedding these samples (sets of 2d points) in a higher-dimensional space to get a single vector.
Also, if the data is actually as simple as in this example, you could just do the principle component analysis and match by the first eigenvector.
You should just fit the distributions to the data, determine the chi^2 deviation for each one, look at F-Test. See for instance these notes on model fitting etc
You might want to consider also non-parametric techniques (e.g. multivariate kernel density estimation on each of your new data set) in order to compare the statistics or distances of the estimated distributions. In Python stats.kde is an implementation in SciPy.Stats.

Python KMeans clustering words

I am interested to perform kmeans clustering on a list of words with the distance measure being Leveshtein.
1) I know there are a lot of frameworks out there, including scipy and orange that has a kmeans implementation. However they all require some sort of vector as the data which doesn't really fit me.
2) I need a good clustering implementation. I looked at python-clustering and realize that it doesn't a) return the sum of all the distance to each centroid, and b) it doesn't have any sort of iteration limit or cut off which ensures the quality of the clustering. python-clustering and the clustering algorithm on daniweb doesn't really work for me.
Can someone find me a good lib? Google hasn't been my friend
Yeah I think there isn't a good implementation to what I need.
I have some crazy requirements, like distance caching etc.
So i think i will just write my own lib and release it as GPLv3 soon.
Not really an answer to your specific question, but I recommend glancing at "Programming Collective Intelligence". At the end of each chapter, e.g., clustering, it wanders off into describing all the best reading on the subject.
Maybe have a look at Weka. It is a Java library with some unsupervised learning implementations and nice visualization tools. It has been a while since I used it, not sure if it is great for a real production environment but defenitely a good starting point.
What about this very nice answer on CrossValidated?
It uses Affinity Propagation instead of k-means and in that case you can give as input a distance metric. I do not think any k-means based approach could work in your case since it is based on building a centroid and in order to do that you have to be in a vector space.
Affinity Propagation has the bonus that it selects automatically the number of clusters, which you can tweak (to have more or less clusters) by altering the preference (which by default is the median of all pairwise distance, but you can choose other percentiles).
If you need to specify the exact number of clusters, besides tweaking Affinity Propagation by trial and error, you could look for implementation of k-medoids (apparently there is no implementation of it in sklearn, but people have asked for it here and there). K-medoids does not build centroids, so it does not need the concept of vector space. So implementation might accept as input a precomputed distance matrix (haven't checked the references I give, though).

Categories