Neural network not producing results - python

Here is my project. It consists of: m = 24 where m is the number of training examples; 3 hidden layers and the input layer; 3 sets of weights connecting each layer; the data is 1x38 with a response of y (1x1).
import numpy as np
x = np.array([
[1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0],
[1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0],
[0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0],
[1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1],
[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0],
[1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0],
[0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0],
[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1],
[1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0],
[0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0],
[1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0],
[0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0],
[0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]])
y = np.array([
[1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1,0]]).T
w = np.random.random((38, 39))
w2 = np.random.random((39, 39))
w3 = np.random.random((39, 1))
for j in xrange(100000):
a2 = 1/(1 + np.exp(-(np.dot(x, w) + 1)))
a3 = 1/(1 + np.exp(-(np.dot(a2, w2) + 1)))
a4 = 1/(1 + np.exp(-(np.dot(a3, w3) + 1)))
a4delta = (y - a4) * (1 * (1 - a4))
a3delta = a4delta.dot(w3.T) * (1 * (1 - a3))
a2delta = a3delta.dot(w2.T) * (1 * (1 - a2))
w3 += a3.T.dot(a4delta)
w2 += a2.T.dot(a3delta)
w += x.T.dot(a2delta)
print(a4)
Here are the results:
[[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]]
Can anyone see if i have gone wrong? Does my network need to be changed? I have tried experimenting with the hyperparameters by adding more hidden layers and more memory

You have some mistakes and some things I think are mistakes, but maybe just a different implementation.
You are adding your gradients to your weights, when you should be subtracting your gradient multiplied by a step size. This is why your weights shoot up to 1.0 in only a single iteration.
These:
w3 += a3.T.dot(a4delta)
Should be something like this:
w3 -= addBias(a3).T.dot(a4delta) * step
Also, I don't think you have the correct formulation for the partial derivative of the sigmoid function. I think these:
a3delta = a4delta.dot(w3.T) * (1 * (1 - a3))
Should be:
a3delta = a4delta.dot(w3.T) * (a3 * (1 - a3))
You should also initialize your weight around zero with something like:
ep = 0.12
w = np.random.random((39, 39)) * 2 * ep - ep
Most implementations add a bias node to each layer, you're not doing that. It complicates things a little, but I think it will make it converge faster.
For me, this converges on a confident answer in 200 iterations:
# Weights have different shapes to account for bias node
w = np.random.random((39, 39)) * 2 * ep - ep
w2 = np.random.random((40, 39))* 2 * ep - ep
w3 = np.random.random((40, 1)) * 2 * ep - ep
ep = 0.12
w = np.random.random((39, 39)) * 2 * ep - ep
w2 = np.random.random((40, 39))* 2 * ep - ep
w3 = np.random.random((40, 1)) * 2 * ep - ep
def addBias(mat):
return np.hstack((np.ones((mat.shape[0], 1)), mat))
step = -.1
for j in range(200):
# Forward prop
a2 = 1/(1 + np.exp(- addBias(x).dot(w)))
a3 = 1/(1 + np.exp(- addBias(a2).dot(w2)))
a4 = 1/(1 + np.exp(- addBias(a3).dot(w3)))
# Back prop
a4delta = (y - a4)
# need to remove bias nodes here
a3delta = a4delta.dot(w3[1:,:].T) * (a3 * (1 - a3))
a2delta = a3delta.dot(w2[1:,:].T) * (a2 * (1 - a2))
# Gradient Descent
# Multiply gradient by step then subtract
w3 -= addBias(a3).T.dot(a4delta) * step
w2 -= addBias(a2).T.dot(a3delta) * step
w -= addBias(x).T.dot(a2delta) * step
print(np.rint(a4))

Related

python cv2.findContours does a bad job finding contours in a simple grayscale image

I have the following back and white image
import numpy as np
thresh = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1]]).astype('uint8')
I am trying to find contour in the thresh image, like this
import cv2
contours, hierarchy = cv2.findContours(
thresh,
cv2.RETR_CCOMP,
cv2.CHAIN_APPROX_SIMPLE
)
Just looking at the threshold image, it's intuitive that there is 1 big contour around the 1, that is shaped like an arrow.
However, visually inspection of the returned contour from cv2 found using
canvas = np.zeros_like(thresh)
for ct in contours:
cv2.drawContours(canvas, ct,-1, 1, 1)
yeilds the following;
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1]],
dtype=uint8)
In summary, how would be best get the contour from thresh image?
The result you obtained is correct.
Contours allow you to find the points along the boundary of any shape. The third parameter in cv2.findContours lets you decide how you want to store the boundary points. You have 2 ways of doing that (1) either store all the points OR (2) find a good approximation.
In your case, you are using the flag cv2.CHAIN_APPROX_SIMPLE. This method does not store all the boundary points of the shape. For every line along the boundary, it stores just 2 points (the ends of each line). This is the best way to approximate the shape of any contour and it also saves memory.
If you want to store all the boundary points you need to use cv2.CHAIN_APPROX_NONE.
Here's the documentation for more
Illustration:
Consider the following array as input:
thresh = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
dtype=uint8)
Using the flag cv2.CHAIN_APPROX_SIMPLE you would get:
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
dtype=uint8)
And using the flag cv2.CHAIN_APPROX_NONE you would get:
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
dtype=uint8)

Why am i getting an error with this line of code, when the logic is used else where and it has no issues?

Im trying to write Conways Game of Life, and for some reason 1 line of code comes up with an error even though it's same logic has been used elsewhere in the code and is fine.
Code:
origin = [
[0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1],
[0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
]
c = origin
current_cycle = 1
while current_cycle < (x_cycle + 1):
for i in origin:
for j in i:
count = 0
x = i #X-Coordinate
y = j #Y-Coordinate
elif y == 0:
if x == 0: #Top Left Corner
if c[x + 1][j] == 1:
count += 1
if c[x][j + 1] == 1:
count += 1
if c[x + 1][j + 1]:
count += 1
elif x == c[-1][-1]: #Top Right Corner
if c[x - 1][y] == 1:
count += 1
if c[x-1][y + 1] == 1:
count += 1
if c[x][y + 1] == 1:
count += 1
else: #Top Left to Top Right
if c[x-1][y] == 1:
count += 1
if c[x-1][y+1] == 1:
count += 1
if c[x][y+1] == 1:
count += 1
if c[x+1][y+1] == 1:
count += 1
if c[x+1][y] == y:
count += 1
The error I am getting is:
line 111, in gameoflife
if c[x-1][y] == 1:
TypeError: unsupported operand type(s) for -: 'list' and 'int'
Any help/advice is appreciated
Thanks!

Morgan fingerprint rdkit

Working in an example I realized that there are at least two ways of computing morgan fingerprints for a molecule using rdkit. But using the exact same properties in both ways I get different vectors. Am I missing something?
First approach:
info = {}
mol = Chem.MolFromSmiles('C/C1=C\\C[C#H]([C+](C)C)CC/C(C)=C/CC1')
fp = AllChem.GetMorganFingerprintAsBitVect(mol, useChirality=True, radius=2, nBits = 124, bitInfo=info)
vector = np.array(fp)
vector
array([0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1])
Second approach:
morgan_fp_gen = rdFingerprintGenerator.GetMorganGenerator(includeChirality=True, radius=2, fpSize=124)
mol = Chem.MolFromSmiles('C/C1=C\\C[C#H]([C+](C)C)CC/C(C)=C/CC1')
fp = morgan_fp_gen.GetFingerprint(mol)
vector = np.array(fp)
vector
array([0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0,
1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0])
Which are clearly different, even using chirality in both cases.
Besides, there is a way to get the bitInfo from a bit vector using the second approach?
By default the Morgan Generator uses "count simulation": adding extra bits to a bit vector fingerprint in order to get bit-vector similarities. If you turn this off by passing useCountSimulation=False the fingerprints should be equivalent:
mol = Chem.MolFromSmiles('C/C1=C\\C[C#H]([C+](C)C)CC/C(C)=C/CC1')
fp1 = AllChem.GetMorganFingerprintAsBitVect(mol, useChirality=True, radius=2, nBits=124)
vec1 = np.array(fp1)
morgan_fp_gen = rdFingerprintGenerator.GetMorganGenerator(includeChirality=True, radius=2, fpSize=124, useCountSimulation=False)
fp2 = morgan_fp_gen.GetFingerprint(mol)
vec2 = np.array(fp2)
assert np.all(vec1 == vec2) == True
as for the bitInfo I am not sure this can be done with the second method, although someone may correct me

3d matrix to 2d adjacency matrix or edgelist

Consider a 3 x 3 x 3 cube where each of the 27 elements is connected to other elements along faces. A cube-shaped element has 6 sides, thus a maximum of 6 connections is possible per element (for example, the center-most element in a 3 x 3 x 3 cube is bounded by 6 elements, and has 6 connections).
Then, let m1, m2, and m3 be the first, second, and third layers of the cube respectively. The name of each element is xyz, where x, y, z are the row number, column number, and layer number of the element. For example, the element 213 is in the second row, first column, and 3rd layer of the cube. This element is connected to 4 other elements: three are in its layer (113, 313, 223), and one is one layer above it (212).
x = 3 # nrow
y = 3 # ncol
z = 3 # nlay
# print each layer as a 2D matrix
for(k in 1:z){
m = paste0(rep(1:x, each=x), rep(1:y, times = y), k)
print(matrix(m, nrow=x, byrow=T))
}
[,1] [,2] [,3]
[1,] "111" "121" "131"
[2,] "211" "221" "231"
[3,] "311" "321" "331"
[,1] [,2] [,3]
[1,] "112" "122" "132"
[2,] "212" "222" "232"
[3,] "312" "322" "332"
[,1] [,2] [,3]
[1,] "113" "123" "133"
[2,] "213" "223" "233"
[3,] "313" "323" "333"
Is there an out-of-the-box function in igraph or a related package for creating either an adjacency matrix OR an edge list for a network like this? I need a solution that scales to any number of rows, columns, and layers. Python solutions are welcome.
I manually created the 2D adjacency matrix, where the rows and columns are given by c(m1, m2, m3) below:
m1 = paste0(rep(1:x, each=x), rep(1:y, times = y), 1)
m2 = paste0(rep(1:x, each=x), rep(1:y, times = y), 2)
m3 = paste0(rep(1:x, each=x), rep(1:y, times = y), 3)
c(m1, m2, m3)
[1] "111" "121" "131" "211" "221" "231" "311" "321" "331" "112" "122" "132" "212" "222" "232" "312" "322" "332"
[19] "113" "123" "133" "213" "223" "233" "313" "323" "333"
For this simple example the adjacency matrix is sparse, has 0's along the diagonal, and is symmetric. It looks like this:
And here's a dput() to C&P and validate with.
dput(temp)
structure(c(0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0), .Dim = c(27L,
27L), .Dimnames = list(c("111", "121", "131", "211", "221", "231",
"311", "321", "331", "112", "122", "132", "212", "222", "232",
"312", "322", "332", "113", "123", "133", "213", "223", "233",
"313", "323", "333"), c("111", "121", "131", "211", "221", "231",
"311", "321", "331", "112", "122", "132", "212", "222", "232",
"312", "322", "332", "113", "123", "133", "213", "223", "233",
"313", "323", "333")))
There's an edge when the Manhattan distance between the nodes is 1, so you can use dist() in R to create the adjacency matrix:
cube_mat = expand.grid(
x = 1:3,
y = 1:3,
z = 1:3
)
m_dist = as.matrix(dist(cube_mat[, 1:3], method = "manhattan", diag = TRUE))
# Zero out any distances != 1
m_dist[m_dist != 1] = 0
rownames(m_dist) = paste0(cube_mat$x, cube_mat$y, cube_mat$z)
colnames(m_dist) = paste0(cube_mat$x, cube_mat$y, cube_mat$z)
# Plot of the adjacency matrix (looks reversed because 111 is in the bottom left):
image(m_dist)
If you want to just use a package funtion from igraph:
#adj <- my.adjacency.matrix
as_edgelist(graph.adjacency(adj))
In general you can use the functions in the igraph package to go between edgelists, adjacency matrices, and also produce graphs using plot.igraph. Here's the default cube:
plot.igraph(graph.adjacency(adj))

How to solve 4 x 4 array with 16 unknown with Python (Update)

I need to solve a 2 by 2 array with 4 unknown
A B
C D
I know all horizontal sum A+B=11, C+D=7
I know all vertical sum A+C=10, B+D=8
I know all diagonal sum A+D=15, B+C=3
I then use Python to solve for A,B,C,D
import numpy as np
A = [[1, 1, 1, 1],
[1, 0, 0, 1],
[1, 0, 1, 0],
[0, 0, 1, 1]]
a = [18, 15, 10, 7]
answera = np.linalg.solve(A, a)
print(answera)
And the answer is [9. 2. 1. 6.] which is correct
Now I need to solve 4 by 4 array with 16 unknown
A B C D
E F G H
I J K L
M N O P
I know horizontal sum A+B+C+D=10, E+F+G+H=26, I+J+K+L=42, M+N+O+P=58
I know vertical sum A+E+I+M=28, B+F+J+N=32, C+G+K+O=36, D+H+L+P=40
I know diagonal sum M=13, I+N=23, E+J+O=30, A+F+K+P=34, B+G+L=21, C+H=11, D=4
The other diagonal sum A=1, B+E=7, C+F+I=18, D+G+J+M=34, H+K+N=33, L+O=27, P=16
Which mean I know the value of the 4 corners.
I tried the following code but did not work
C = [[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
[0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0],
[0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
c = [10, 26, 42, 58, 7, 21, 39, 33, 27, 11, 23, 35, 30, 23, 32, 136]
answerc = np.linalg.solve(C, c)
print(answerc)
The correct answer should be [1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.] but I got error message
Traceback (most recent call last):
answerc = np.linalg.solve(C, c)
r = gufunc(a, b, signature=signature, extobj=extobj)
raise LinAlgError("Singular matrix")
numpy.linalg.LinAlgError: Singular matrix
Am I in the right direction? I will need to solve 5X5 with 25 unknown, 6X6 with 36 unknown and so on. Is there an easier way?
-----------------------------------------------------------------------------
Following Mr. Rory Daulton solution, I can solve the above 1 to 16 4X4 array without problem, but when I use it in another array with negative number, it doesn't give answer as expected;
The negative 4X4 array as follow
-20 -10 -5 0
-10 -20 -10 -5
-5 0 -10 -20
-10 -20 -10 -5
My python code as follow
import numpy as np
G = [[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # horizontal rows
[0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
[1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0], # vertical columns
[0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0],
[0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], # forward diagonals
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0],
[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1],
[0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # back diagonals
[0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
]
g = [-35, -45, -35, -45, # horizontal rows
-45, -50, -35, -30, # vertical columns
-10, -25, -20, -55, -40, -10, 0, # forward diagonals
-20, -20, -30, -20, -35, -30, -5, # back diagonals
]
answerg = np.linalg.lstsq(G, g, rcond=None)
print(answerg[0])
The output is not exactly the original array
[-2.00000000e+01 -1.31250000e+01 -1.87500000e+00 8.88178420e-15
-6.87500000e+00 -2.00000000e+01 -1.00000000e+01 -8.12500000e+00
-8.12500000e+00 2.13162821e-14 -1.00000000e+01 -1.68750000e+01
-1.00000000e+01 -1.68750000e+01 -1.31250000e+01 -5.00000000e+00]
What should I try? Thank you in advance.
SHORT ANSWER: There are infinitely many solutions to your problem. So this takes a more complex analysis of the equations.
LONG ANSWER: You have multiple problems with your code.
First, you make it easy to make mistakes, since the lines of your matrix do not correspond to the data that you present. Worse, you have no comments to explain things. This mis-match will probably cause errors. You have 22 pieces of data in your sums, so use them. You tried to combine some of the sums and ignore others (the four corners) but you did not do it properly and you ended up with a singular matrix.
Next, you use linalg.solve. In your problem you have more data items (22) than unknowns (16), so solve is inappropriate. The numpy documentation for solve states
a must be square and of full-rank, i.e., all rows (or, equivalently,
columns) must be linearly independent; if either is not true, use
lstsq for the least-squares best “solution” of the system/equation.
The matrix resulting from your data is not square, therefore the rows are not linearly independent, so you should use lstsq rather than solve. The lstsq routine gives more information than you need for your problem, so just print the first item in the resulting list.
Combining those ideas and adding a few comments gives this code:
import numpy as np
C = [[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # horizontal rows
[0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
[1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0], # vertical columns
[0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0],
[0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], # forward diagonals
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0],
[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1],
[0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # back diagonals
[0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
]
c = [10, 26, 42, 58, # horizontal rows
28, 32, 36, 40, # vertical columns
13, 23, 30, 34, 21, 11, 4, # forward diagonals
1, 7, 18, 34, 33, 27, 16, # back diagonals
]
answerc = np.linalg.lstsq(C, c, rcond=None)
print(answerc[0])
The printout is what you want:
[ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.]
However, to be honest, there is no guarantee that this is an answer--just that it is a "closest" answer. Also, if it is an answer, there may be other answers. And, in fact, further analysis shows that there are other answers that satisfy all your conditions.
The sympy module can generate a row reduced echelon form of the matrix, which can be used to do more in-depth analysis of all the answers. However, the constants are then to be part of the matrix, rather than used as a separate array. Here is code for sympy to attempt to solve your problem:
import sympy
C = [[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10], # horizontal rows
[0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 26],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 42],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 58],
[1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 28], # vertical columns
[0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 32],
[0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 36],
[0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 40],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 13], # forward diagonals
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 23],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 30],
[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 34],
[0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 21],
[0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 11],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], # back diagonals
[0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7],
[0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 18],
[0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 34],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 33],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 27],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 16],
]
print(sympy.Matrix(C).rref())
The printout is
(Matrix([
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -13],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 18],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 20],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, -7],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, -6],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 10],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 11],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 27],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 13],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 29],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 16],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15))
If you know how to analyze this you will see that there are infinitely many answers to your problem. If you set the number in the 15th cell to 15+x then the above matrix shows that the answer to all your restrictions is
1 2+x 3-x 4
5-x 6 7 8+x
9+x 10 11 12-x
13 14-x 15+x 16
The solve function of numpy only works if there is just one solution, so even if you had adjusted your matrix differently it would not have worked for you.
ANSWER TO YOUR UPDATE:
It seems that you missed the point of my answer. Your 4x4 problem has infinitely many answers, so there is no procedure that can choose the particular answer that you have in mind. The np.linalg.lstsq routine can find one of the answers to your problem but probably will not find your desired answer. You should consider it to be a coincidence that using that routine in your first problem gave your desired answer--that will probably not work in other problems.
It is a little hard to interpret the given answer to your new problem, since the scientific notation is hard to read. But all those matrix values are exact, and here they are as rational numbers in a particular format that should be obvious:
-20 -10-(3+1/8) - 5+(3+1/8) 0
-10+(3+1/8) -20 -10 - 5-(3+1/8)
- 5-(3+1/8) 0 -10 -20+(3+1/8)
-10 -20+(3+1/8) -10-(3+1/8) - 5
You see that the numpy's answer is the one that you expected, with the value 3+1/8 added to or subtracted from half the array values. This makes x=3+1/8 in the general answer that I gave you for your first problem.
This is as good as you can expect. Numpy gave you a correct answer--it has no idea how to choose the answer that you had in your head from the infinitely many correct answers to your problem. The only way to get just one answer is to change your problem--perhaps state the value in the first row and second column, or the sum of the first and third values in any one of the rows, or something similar.

Categories