I am trying to read a 4GB CSV file using pandas using the code below:
tp = pd.read_csv('train.csv', sep='\t', iterator=True, chunksize=10000)
train = pd.concat(tp, ignore_index=True)
After using this I am able to read the csv but when I used :
(train.shape) it shows number of columns to be "1" but there are 24 columns.
I also tried to use sep as ',' but doing that returns me the optput on console as killed. I am using GC instance with 8GB RAM so no issues from that side. Also, if I try reading the CSV using :
pandas.read_csv("train.csv")
this fails for that I have recommended various other questions on stackoverflow which recommended me to read data in chunks.
Related
I am trying to process a huge csv file with panda
Firstly, i come across a memory error when loading the file. I am able to fix to by this:
df = pd.read_csv('data.csv', chunksize=1000, low_memory=False)
device_data = pd.concat(df, ignore_index=True)
However, I still get memory errors when processing the "device_data" with multiple filters
Here are my questions:
1- Is there any way to get rid of memory errors when processing the dataframe loaded from that huge csv?
2- I have also tried adding conditions to concatenate dataframe with the iterators. Referring to this link
[How can I filter lines on load in Pandas read_csv function?
iter_csv = pd.read_csv('data.csv', iterator=True, chunksize=1000)
df = pd.concat([chunk[chunk['ID'] == 1234567] for chunk in iter_csv])
However, the number of results seems much less than what it should be. Is there any advice from anyone?
Thanks.
update on 2019/02/19
I have managed to load the csv via this. However, it is noticed that the unmber of results (shown in df.shape) vary with different chunksize.....
iter_csv = pd.read_csv('data.csv', iterator=True, chunksize=1000)
df = pd.concat([chunk[chunk['ID'] == 1234567] for chunk in iter_csv])
df.shape
Just was wondering if there is a way to improve the performance of reading large csv files into a pandas dataframe. I have 3 large (3.5MM records each) pipe delimited file which I want to load into dataframe and perform some task on it. Currently I am using pandas.read_csv() defining the cols and there datatypes in the parameter like below. I did see some improvement by defining the datatype of the columns but it still takes more than 3 minutes to load.
import pandas as pd
df = pd.read_csv(file_, index_col=None, usecols = sourceFields, sep='|', header=0, dtype={'date':'str', 'gwTimeUtc':'str', 'asset':'|str',
'instrumentId':'|str', 'askPrice':'float64', 'bidPrice':'float64',
'askQuantity':'float64', 'bidQuantity':'float64', 'currency':'|str',
'venue':'|str', 'owner':'|str', 'status':'|str', 'priceNotation':'|str', 'nominalQuantity':'float64'})
Depending on what you wish to do with the data, a good option is dask.dataframe. This library works out-of-memory, and allows you to perform a subset of pandas operations lazily. You can then bring the results in memory as a pandas dataframe. Below is example code you can try:
import dask.dataframe as dd, pandas as pd
# point to all files beginning with "file"
dask_df = dd.read_csv('file*.csv')
# define your calculations as you would in pandas
dask_df['col2'] = dask_df['col1'] * 2
# compute results & return to pandas
df = dask_df.compute()
Crucially, nothing significant is computed until the very last line.
The .feather file is significantly faster than .csv. Pandas has built-in support for feather files.
Read the csv in using pd.read_csv(path) and then export it to a feather file: pd.to_feather(path). Now, read the feather file instead of csv.
In my case, a 950 MB csv file was compressed to a 180 MB feather file. Instead of taking 30 seconds to read, it takes about 1 second. I know I am a bit late to the party, but feather files are seriously underrated.
I have 30 csv files. I want to give it as input in for loop, in pandas?
Each file has names such as fileaa, fileab,fileac,filead,....
I have multiple input files and And i would like to receive one output.
Usually i use read_csv but due to memory error, 'read_csv' doesn't work.
f = "./file.csv"
df = pd.read_csv(f, sep="/", header=0, dtype=str)
So i would like to try parallel processing in python 2.7
You might want to have a look at dask.
Dask docs show a demo on how to read in many csv files and output a single dask dataframe:
import dask.dataframe as dd
df = dd.read_csv('*.csv')
And then MANY (but not all) of the pandas methods are available, i.e.:
df.head()
It would be useful to read more on dask dataframe to understand difference with pandas dataframe
I am working with a Stata .dta file that is around 3.3 gigabytes, so it is large but not excessively large. I am interested in using IPython and tried to import the .dta file using Pandas but something wonky is going on. My box has 32 gigabytes of RAM and attempting to load the .dta file results in all the RAM being used (after ~30 minutes) and my computer to stall out. This doesn't 'feel' right in that I am able to open the file in R using read.dta() from the foreign package no problem, and working with the file in Stata is fine. The code I am using is:
%time myfile = pd.read_stata(data_dir + 'my_dta_file.dta')
and I am using IPython in Enthought's Canopy program. The reason for the '%time' is because I am interested in benchmarking this against R's read.dta().
My questions are:
Is there something I am doing wrong that is resulting in Pandas having issues?
Is there a workaround to get the data into a Pandas dataframe?
Here is a little function that has been handy for me, using some pandas features that might not have been available when the question was originally posed:
def load_large_dta(fname):
import sys
reader = pd.read_stata(fname, iterator=True)
df = pd.DataFrame()
try:
chunk = reader.get_chunk(100*1000)
while len(chunk) > 0:
df = df.append(chunk, ignore_index=True)
chunk = reader.get_chunk(100*1000)
print '.',
sys.stdout.flush()
except (StopIteration, KeyboardInterrupt):
pass
print '\nloaded {} rows'.format(len(df))
return df
I loaded an 11G Stata file in 100 minutes with this, and it's nice to have something to play with if I get tired of waiting and hit cntl-c.
This notebook shows it in action.
For all the people who end on this page, please upgrade Pandas to the latest version. I had this exact problem with a stalled computer during load (300 MB Stata file but only 8 GB system ram), and upgrading from v0.14 to v0.16.2 solved the issue in a snap.
Currently, it's v 0.16.2. There have been significant improvements to speed though I don't know the specifics. See: most efficient I/O setup between Stata and Python (Pandas)
There is a simpler way to solve it using Pandas' built-in function read_stata.
Assume your large file is named as large.dta.
import pandas as pd
reader=pd.read_stata("large.dta",chunksize=100000)
df = pd.DataFrame()
for itm in reader:
df=df.append(itm)
df.to_csv("large.csv")
Question 1.
There's not much I can say about this.
Question 2.
Consider exporting your .dta file to .csv using Stata command outsheet or export delimited and then using read_csv() in pandas. In fact, you could take the newly created .csv file, use it as input for R and compare with pandas (if that's of interest). read_csv is likely to have had more testing than read_stata.
Run help outsheet for details of the exporting.
You should not be reading a 3GB+ file into an in-memory data object, that's a recipe for disaster (and has nothing to do with pandas).
The right way to do this is to mem-map the file and access the data as needed.
You should consider converting your file to a more appropriate format (csv or hdf) and then you can use the Dask wrapper around pandas DataFrame for chunk-loading the data as needed:
from dask import dataframe as dd
# If you don't want to use all the columns, make a selection
columns = ['column1', 'column2']
data = dd.read_csv('your_file.csv', use_columns=columns)
This will transparently take care of chunk-loading, multicore data handling and all that stuff.
I am exploring switching to python and pandas as a long-time SAS user.
However, when running some tests today, I was surprised that python ran out of memory when trying to pandas.read_csv() a 128mb csv file. It had about 200,000 rows and 200 columns of mostly numeric data.
With SAS, I can import a csv file into a SAS dataset and it can be as large as my hard drive.
Is there something analogous in pandas?
I regularly work with large files and do not have access to a distributed computing network.
Wes is of course right! I'm just chiming in to provide a little more complete example code. I had the same issue with a 129 Mb file, which was solved by:
import pandas as pd
tp = pd.read_csv('large_dataset.csv', iterator=True, chunksize=1000) # gives TextFileReader, which is iterable with chunks of 1000 rows.
df = pd.concat(tp, ignore_index=True) # df is DataFrame. If errors, do `list(tp)` instead of `tp`
In principle it shouldn't run out of memory, but there are currently memory problems with read_csv on large files caused by some complex Python internal issues (this is vague but it's been known for a long time: http://github.com/pydata/pandas/issues/407).
At the moment there isn't a perfect solution (here's a tedious one: you could transcribe the file row-by-row into a pre-allocated NumPy array or memory-mapped file--np.mmap), but it's one I'll be working on in the near future. Another solution is to read the file in smaller pieces (use iterator=True, chunksize=1000) then concatenate then with pd.concat. The problem comes in when you pull the entire text file into memory in one big slurp.
This is an older thread, but I just wanted to dump my workaround solution here. I initially tried the chunksize parameter (even with quite small values like 10000), but it didn't help much; had still technical issues with the memory size (my CSV was ~ 7.5 Gb).
Right now, I just read chunks of the CSV files in a for-loop approach and add them e.g., to an SQLite database step by step:
import pandas as pd
import sqlite3
from pandas.io import sql
import subprocess
# In and output file paths
in_csv = '../data/my_large.csv'
out_sqlite = '../data/my.sqlite'
table_name = 'my_table' # name for the SQLite database table
chunksize = 100000 # number of lines to process at each iteration
# columns that should be read from the CSV file
columns = ['molecule_id','charge','db','drugsnow','hba','hbd','loc','nrb','smiles']
# Get number of lines in the CSV file
nlines = subprocess.check_output('wc -l %s' % in_csv, shell=True)
nlines = int(nlines.split()[0])
# connect to database
cnx = sqlite3.connect(out_sqlite)
# Iteratively read CSV and dump lines into the SQLite table
for i in range(0, nlines, chunksize):
df = pd.read_csv(in_csv,
header=None, # no header, define column header manually later
nrows=chunksize, # number of rows to read at each iteration
skiprows=i) # skip rows that were already read
# columns to read
df.columns = columns
sql.to_sql(df,
name=table_name,
con=cnx,
index=False, # don't use CSV file index
index_label='molecule_id', # use a unique column from DataFrame as index
if_exists='append')
cnx.close()
Below is my working flow.
import sqlalchemy as sa
import pandas as pd
import psycopg2
count = 0
con = sa.create_engine('postgresql://postgres:pwd#localhost:00001/r')
#con = sa.create_engine('sqlite:///XXXXX.db') SQLite
chunks = pd.read_csv('..file', chunksize=10000, encoding="ISO-8859-1",
sep=',', error_bad_lines=False, index_col=False, dtype='unicode')
Base on your file size, you'd better optimized the chunksize.
for chunk in chunks:
chunk.to_sql(name='Table', if_exists='append', con=con)
count += 1
print(count)
After have all data in Database, You can query out those you need from database.
If you want to load huge csv files, dask might be a good option. It mimics the pandas api, so it feels quite similar to pandas
link to dask on github
You can use Pytable rather than pandas df.
It is designed for large data sets and the file format is in hdf5.
So the processing time is relatively fast.