I'm having a dataframe df_N with n observations. I'd want to write a code that would create new dataframe df_M with records from df_N. The number of observations in df_M ( ie m observations ) is several orders greater that the number of observations on df_N.
The number of observations on df_M can be represented in by the following formula.
m = (n*(2^x)) + n^y + z
Note that the first part of the equation is the series n, n2, n4, n*8. ie n times 2^x
Note that all values are integers.
For example if n = 8 and m = 82
the values of the formula would be
82= (8*(2^3) + 8^2 + 2 = 8*8 + 16 + 2 = 64 + 16 + 2 = 82
values of x = 3 , y = 2 and z = 2
Also note that always (n*(2^x)) > n^y > z . This constraint will restrict the number of solutions for the equation.
Is there a way of solving this equation on python and finding the values of x y and z, given n and m?
Once the value of x y and z are determined, I'd be able to write a code to create additional records for each of the segment of the equation and combiming them to a single dataframe df_M
Assuming that you also want to maximize n*y over z, m and n are positive and other numbers should be non-negative:
x = m.bit_length() - 1
m -= 2**x
y = m//n
z = m - y*n
I have tried to no avail for a week while trying to solve a system of coupled differential equations and reproduce the results shown in the attached image. I seem to be getting weird results as shown also. I don't seem to know what I might be doing wrong.The set of coupled differential equations were solved using Newman's BAND. Here's a link to the python implementation: python solution using BAND . And another link to the original image of the problem in case the attached is not clear enough: here you find a clearer image of the problem. Now what I am trying to do is to solve the same problem by creating a sparse array directly from the discretized equations using a combination of sympy and numpy and then solving using scipy's spsolve. Here is my code below. I need some help to figure out what I am doing wrong.
I have represented the variables as c1 = cA, c2 = cB, c3 = cC, c4 = cD in my code. Equation 2 has been linearized and phi10 and phi20 are the trial values of the variables cC and cD.
# import modules
import numpy as np
import sympy
from sympy.core.function import _mexpand
import scipy as sp
import scipy.sparse as ss
import scipy.sparse.linalg as ssl
import matplotlib.pyplot as plt
# define functions
def flatten(t):
"""
function to flatten lists
"""
return [item for sublist in t for item in sublist]
def get_coeffs(coeff_dict, func_vars):
"""
function to extract coefficients from variables
and form the sparse symbolic array
"""
c = coeff_dict
for i in list(c.keys()):
b, _ = i.as_base_exp()
if b == i:
continue
if b in c:
c[i] = 0
if any(k.has(b) for k in c):
c[i] = 0
return [coeff_dict[val] for val in func_vars]
# Constants for the problem
I = 0.1 # A/cm2
L = 1.0 # distance (x) in cm
m = 100 # grid spacing
h = L / (m-1)
a = 23300 # 1/cm
io = 2e-7 # A/cm2
n = 1
F = 96500 # C/mol
R = 8.314 # J/mol-K
T = 298 # K
sigma = 20 # S/cm
kappa = 0.06 # S/cm
alpha = 0.5
beta = -(1-alpha)*n*F/R/T
phi10 , phi20 = 5, 0.5 # these are just guesses
P = a*io*np.exp(beta*(phi10-phi20))
j = sympy.symbols('j',integer = True)
cA = sympy.IndexedBase('cA')
cB = sympy.IndexedBase('cB')
cC = sympy.IndexedBase('cC')
cD = sympy.IndexedBase('cD')
# write the boundary conditions at x = 0
bc=[cA[1], cB[1],
(4/3) * cC[2] - (1/3)*cC[3], # use a three point approximation for cC_prime
cD[1]
]
# form a list of expressions from the boundary conditions and equations
expr=flatten([bc,flatten([[
-cA[j-1] - cB[j-1] + cA[j+1] + cB[j+1],
cB[j-1] - 2*h*P*beta*cC[j] + 2*h*P*beta*cD[j] - cB[j+1],
-sigma*cC[j-1] + 2*h*cA[j] + sigma * cC[j+1],
-kappa * cD[j-1] + 2*h * cB[j] + kappa * cD[j+1]] for j in range(2, m)])])
vars = [cA[j], cB[j], cC[j], cD[j]]
# flatten the list of variables
unknowns = flatten([[cA[j], cB[j], cC[j], cD[j]] for j in range(1,m)])
var_len = len(unknowns)
# # # substitute in the boundary conditions at x = L while getting the coefficients
A = sympy.SparseMatrix([get_coeffs(_mexpand(i.subs({cA[m]:I}))\
.as_coefficients_dict(), unknowns) for i in expr])
# convert to a numpy array
mat_temp = np.array(A).astype(np.float64)
# you can view the sparse array with this
fig = plt.figure(figsize=(6,6))
ax = fig.add_axes([0,0, 1,1])
cmap = plt.cm.binary
plt.spy(mat_temp, cmap = cmap, alpha = 0.8)
def solve_sparse(b0, error):
# create the b column vector
b = np.copy(b0)
b[0:4] = np.array([0.0, I, 0.0, 0.0])
b[var_len-4] = I
b[var_len-3] = 0
b[var_len-2] = 0
b[var_len-1] = 0
print(b.shape)
old = np.copy(b0)
mat = np.copy(mat_temp)
b_2 = np.copy(b)
resid = 10
lss = 0
while lss < 100:
mat_2 = np.copy(mat)
for j in range(3, var_len - 3, 4):
# update the forcing term of equation 2
b_2[j+2] = 2*h*(1-beta*old[j+3]+beta*old[j+4])*a*io*np.exp(beta*(old[j+3]-old[j+4]))
# update the sparse array at every iteration for variables cC and cD in equation2
mat_2[j+2, j+3] += 2*h*beta*a*io*np.exp(beta*(old[j+3]-old[j+4]))
mat_2[j+2, j+4] += 2*h*beta*a*io*np.exp(beta*(old[j+3]-old[j+4]))
# form the column sparse matrix
A_s = ss.csc_matrix(mat_2)
new = ssl.spsolve(A_s, b_2).flatten()
resid = np.sum((new - old)**2)/var_len
lss += 1
old = np.copy(new)
return new
val0 = np.array([[0.0, 0.0, 0.0, 0.0] for _ in range(m-1)]).flatten() # form an array of initial values
error = 1e-7
## Run the code
conc = solve_sparse(val0, error).reshape(m-1, len(vars))
conc.shape # gives (99, 4)
# Plot result for cA:
plt.plot(conc[:,0], marker = 'o', linestyle = '')
What happens seems pretty clear now, after having seen that the plotted solution indeed oscillates between the upper and lower values. You are using the central Euler method as discretization, for u'=F(u) this reads as
u[j+1]-u[j-1] = 2*h*F(u[j])
This method is only weakly stable and allows the sub-sequences of odd and even indices to evolve rather independently. As equation this would mean that the solution might approximate the system ue'=F(uo), uo'=F(ue) with independent functions ue, uo that follow the path of the even or odd sub-sequence.
These even and odd parts are only tied together by the treatment of the boundary points, two or three points deep. So to avoid or reduce the oscillation requires a very careful handling of boundary conditions and also the differential equations for the boundary points.
But one can avoid all this unpleasantness by using the trapezoidal method
u[j+1]-u[j] = 0.5*h*(F(u[j+1])+F(u[j]))
This also reduces the band-width of the system matrix.
To properly implement the implied Newton method correctly (linearizing via Taylor and solving the linearized equation is what the Newton-Kantorovich method does) you need to replace F(u[j]) with F(u_old[j])+F'(u_old[j])*(u[j]-u_old[j]). This then gives a linear system of equations in u for the iteration step.
For the trapezoidal method this gives
(I-0.5*h*F'(u_old[j+1]))*u[j+1] - (I+0.5*h*F'(u_old[j]))*u[j]
= 0.5*h*(F(u_old[j+1])-F'(u_old[j+1])*u_old[j+1] + F(u_old[j])-F'(u_old[j])*u_old[j])
In general, the derivatives values and thus the system matrix need not be updated every step, only the function value (else the iteration does not move forward).
ORIGINAL PROBLEM:
Given a set A={a1, . . . , an} and the matrix D of distances between the elements of A, we want to select the subset A*⊂ A of cardinal p with minimum diameter δ(A∗
) with δ(A∗) =max{d(a, a0) : a, a0 ∈ A∗}.
Write a python code that solve heuristically the particular case of n=8, p=4.
WHAT I HAVE UNDERSTOOD:
Given a matrix mxn (in this case 8x8) I am trying to look through a heuristic algorithm the max value of each sub-array of size 4x4, and store these values in a final matrix
For example:
Given the C matrix of euclidean distances 8x8:
What is the max value of a each possible sub-array 4x4?
and then store this max value in the final matrix mxn..
I have tried this but only returns one max value in the matrix.
# Python 3 Program to find the maximum
# value in a matrix which contain
# intersecting concentric submatrix
MAXN = 64
# Return the maximum value in intersecting
# concentric submatrix.
def maxValue( n, m, x, y, a):
c = [[0 for x in range(MAXN)]
for y in range(MAXN)]
# For each center of concentric sub-matrix.
for i in range( m):
# for each row
for p in range(n) :
# for each column
for q in range( n) :
# finding x distance.
dx = abs(p - x[i])
# finding y distance.
dy = abs(q - y[i])
# maximum of x distance and y distance
d = max(dx, dy)
# assigning the value.
c[p][q] += max(0, a[i] - d)
# Finding the maximum value in
# the formed matrix.
res = 0
for i in range(n) :
for j in range(n) :
res = max(res, c[i][j])
return res
# Driver Code
if __name__ == "__main__":
n = 10
m = 2
x = [ 3, 7 ]
y = [ 3, 7 ]
a = [ 4, 3 ]
print(maxValue(n, m, x, y, a))
Thank you for all of your constructive criticisim on my last post. I have made some changes, but alas my code is still not working and I can't figure out why. What happens when I run this version is that I get a runtime warning about invalid errors encountered in matmul.
My code is given as
from __future__ import division
import numpy as np
from scipy.linalg import eig
from scipy.linalg import toeplitz
def poldif(*arg):
"""
Calculate differentiation matrices on arbitrary nodes.
Returns the differentiation matrices D1, D2, .. DM corresponding to the
M-th derivative of the function f at arbitrarily specified nodes. The
differentiation matrices can be computed with unit weights or
with specified weights.
Parameters
----------
x : ndarray
vector of N distinct nodes
M : int
maximum order of the derivative, 0 < M <= N - 1
OR (when computing with specified weights)
x : ndarray
vector of N distinct nodes
alpha : ndarray
vector of weight values alpha(x), evaluated at x = x_j.
B : int
matrix of size M x N, where M is the highest derivative required.
It should contain the quantities B[l,j] = beta_{l,j} =
l-th derivative of log(alpha(x)), evaluated at x = x_j.
Returns
-------
DM : ndarray
M x N x N array of differentiation matrices
Notes
-----
This function returns M differentiation matrices corresponding to the
1st, 2nd, ... M-th derivates on arbitrary nodes specified in the array
x. The nodes must be distinct but are, otherwise, arbitrary. The
matrices are constructed by differentiating N-th order Lagrange
interpolating polynomial that passes through the speficied points.
The M-th derivative of the grid function f is obtained by the matrix-
vector multiplication
.. math::
f^{(m)}_i = D^{(m)}_{ij}f_j
This function is based on code by Rex Fuzzle
https://github.com/RexFuzzle/Python-Library
References
----------
..[1] B. Fornberg, Generation of Finite Difference Formulas on Arbitrarily
Spaced Grids, Mathematics of Computation 51, no. 184 (1988): 699-706.
..[2] J. A. C. Weidemann and S. C. Reddy, A MATLAB Differentiation Matrix
Suite, ACM Transactions on Mathematical Software, 26, (2000) : 465-519
"""
if len(arg) > 3:
raise Exception('number of arguments is either two OR three')
if len(arg) == 2:
# unit weight function : arguments are nodes and derivative order
x, M = arg[0], arg[1]
N = np.size(x)
# assert M<N, "Derivative order cannot be larger or equal to number of points"
if M >= N:
raise Exception("Derivative order cannot be larger or equal to number of points")
alpha = np.ones(N)
B = np.zeros((M, N))
elif len(arg) == 3:
# specified weight function : arguments are nodes, weights and B matrix
x, alpha, B = arg[0], arg[1], arg[2]
N = np.size(x)
M = B.shape[0]
I = np.eye(N) # identity matrix
L = np.logical_or(I, np.zeros(N)) # logical identity matrix
XX = np.transpose(np.array([x, ] * N))
DX = XX - np.transpose(XX) # DX contains entries x(k)-x(j)
DX[L] = np.ones(N) # put 1's one the main diagonal
c = alpha * np.prod(DX, 1) # quantities c(j)
C = np.transpose(np.array([c, ] * N))
C = C / np.transpose(C) # matrix with entries c(k)/c(j).
Z = 1 / DX # Z contains entries 1/(x(k)-x(j)
Z[L] = 0 # eye(N)*ZZ; # with zeros on the diagonal.
X = np.transpose(np.copy(Z)) # X is same as Z', but with ...
Xnew = X
for i in range(0, N):
Xnew[i:N - 1, i] = X[i + 1:N, i]
X = Xnew[0:N - 1, :] # ... diagonal entries removed
Y = np.ones([N - 1, N]) # initialize Y and D matrices.
D = np.eye(N) # Y is matrix of cumulative sums
DM = np.empty((M, N, N)) # differentiation matrices
for ell in range(1, M + 1):
Y = np.cumsum(np.vstack((B[ell - 1, :], ell * (Y[0:N - 1, :]) * X)), 0) # diags
D = ell * Z * (C * np.transpose(np.tile(np.diag(D), (N, 1))) - D) # off-diags
D[L] = Y[N - 1, :]
DM[ell - 1, :, :] = D
return DM
def herdif(N, M, b=1):
"""
Calculate differentiation matrices using Hermite collocation.
Returns the differentiation matrices D1, D2, .. DM corresponding to the
M-th derivative of the function f, at the N Chebyshev nodes in the
interval [-1,1].
Parameters
----------
N : int
number of grid points
M : int
maximum order of the derivative, 0 < M < N
b : float, optional
scale parameter, real and positive
Returns
-------
x : ndarray
N x 1 array of Hermite nodes which are zeros of the N-th degree
Hermite polynomial, scaled by b
DM : ndarray
M x N x N array of differentiation matrices
Notes
-----
This function returns M differentiation matrices corresponding to the
1st, 2nd, ... M-th derivates on a Hermite grid of N points. The
matrices are constructed by differentiating N-th order Hermite
interpolants.
The M-th derivative of the grid function f is obtained by the matrix-
vector multiplication
.. math::
f^{(m)}_i = D^{(m)}_{ij}f_j
References
----------
..[1] B. Fornberg, Generation of Finite Difference Formulas on Arbitrarily
Spaced Grids, Mathematics of Computation 51, no. 184 (1988): 699-706.
..[2] J. A. C. Weidemann and S. C. Reddy, A MATLAB Differentiation Matrix
Suite, ACM Transactions on Mathematical Software, 26, (2000) : 465-519
..[3] R. Baltensperger and M. R. Trummer, Spectral Differencing With A
Twist, SIAM Journal on Scientific Computing 24, (2002) : 1465-1487
"""
if M >= N - 1:
raise Exception('number of nodes must be greater than M - 1')
if M <= 0:
raise Exception('derivative order must be at least 1')
x = herroots(N) # compute Hermite nodes
alpha = np.exp(-x * x / 2) # compute Hermite weights.
beta = np.zeros([M + 1, N])
# construct beta(l,j) = d^l/dx^l (alpha(x)/alpha'(x))|x=x_j recursively
beta[0, :] = np.ones(N)
beta[1, :] = -x
for ell in range(2, M + 1):
beta[ell, :] = -x * beta[ell - 1, :] - (ell - 1) * beta[ell - 2, :]
# remove initialising row from beta
beta = np.delete(beta, 0, 0)
# compute differentiation matrix (b=1)
DM = poldif(x, alpha, beta)
# scale nodes by the factor b
x = x / b
# scale the matrix by the factor b
for ell in range(M):
DM[ell, :, :] = (b ** (ell + 1)) * DM[ell, :, :]
return x, DM
def herroots(N):
"""
Compute roots of the Hermite polynomial of degree N
Parameters
----------
N : int
degree of the Hermite polynomial
Returns
-------
x : ndarray
N x 1 array of Hermite roots
"""
# Jacobi matrix
d = np.sqrt(np.arange(1, N))
J = np.diag(d, 1) + np.diag(d, -1)
# compute eigenvalues
mu = eig(J)[0]
# return sorted, normalised eigenvalues
# real part only since all roots must be real.
return np.real(np.sort(mu) / np.sqrt(2))
a = 1-1j
b = 2+0.2j
c1 = 0.34
c2 = 0.005
alpha1 = (4*c2/a)**0.25
alpha2 = b/2*a
Nx = 220;
# hermite differentiation matrices
[x,D] = herdif(Nx, 2, np.real(alpha1))
D1 = D[0,:]
D2 = D[1,:]
# integration weights
diff = np.diff(x)
#print(len(diff))
p = np.concatenate([np.zeros(1), diff])
q = np.concatenate([diff, np.zeros(1)])
w = (p + q)/2
Q = np.diag(w)
#Discretised operator
const = c1*np.diag(np.ones(len(x)))-c2*(np.diag(x)*np.diag(x))
#print(const)
A = a*D2 - b*D1 + const
##### Timestepping
tmax = 200
tmin = 0
dt = 1
n = (tmax - tmin)/dt
tvec = np.linspace(0,tmax,n, endpoint = True)
#(len(tvec))
q = np.zeros((Nx, len(tvec)),dtype=complex)
f = np.zeros((Nx, len(tvec)),dtype=complex)
q0 = np.ones(Nx)*10**4
q[:,0] = q0
#print(q[:,0])
#print(q0)
# qnew - qold = dt*Aqold + dt*N(qold,qold,qold)
# qnew - qold = dt*Aqnew - dt*N(qold,qold,qold)
# therefore qnew - qold = 0.5*dtAqold + 0.5*dt*Aqnew + dtN(qold,qold,qold)
# rearranging to give qnew( 1- 0.5Adt) = (1 + 0.5Adt) + dt N(qold,qold,qold)
from numpy.linalg import inv
inverted = inv(np.eye(Nx)-0.5*A*dt)
forqold = (np.eye(Nx) + 0.5*A*dt)
firstterm = np.matmul(inverted,forqold)
for t in range(0, len(tvec)-1):
nl = abs(np.square(q[:,t]))*q[:,t]
q[:,t+1] = np.matmul(firstterm,q[:,t]) - dt*np.matmul(inverted,nl)
where the hermitedifferentiation matrices can be found online and are in a different file. This code blows up after five interations, which I cannot understand as I don't see how it differs in the matlab found here https://www.bagherigroup.com/research/open-source-codes/
I would really appreciate any help.
Error in:
q[:,t+1] = inverted*forgold*np.array(q[:,t]) + inverted*dt*np.array(nl)
q[:, t+1] indexes a 2d array (probably not a np.matrix which is more MATLAB like). This indexing reduces the number of dimensions by 1, hence the (220,) shape in the error message.
The error message says the RHS is (220,220). That shape probably comes from inverted and forgold. np.array(q[:,t]) is 1d. Multiplying a (220,220) by a (220,) is ok, but you can't put that square array into a 1d slot.
Both uses of np.array in the error line are superfluous. Their arguments are already ndarray.
As for the loop, it may be necessary. It looks like q[:,t+1] is a function of q[:,t], a serial, rather than parallel operation. Those are harder to render as 'vectorized' (unless you can usecumsum` like operations).
Note that in numpy * is elementwise multiplication, the .* of MATLAB. np.dot and # are used for matrix multiplication.
q[:,t+1]= invert#q[:,t]
would work
I'm using CVXPY in Python 3 to try to model the following linear program in X (N by T matrix). Let
R be an N by 1 matrix where each row is the sum of the entire row of values in X.
P be a 1 by N matrix defined in terms of X such as P_t = 1/(G-d-x_t).
I want to solve for an ideal such that:
minimize (X x P)
subject to:
The sum of reach row i in X has to be at least the value in R_i
Each value in X has to be at least 0
Any thoughts? I have the following code and not getting any luck:
from cvxpy import *
X = Variable(N,T)
P = np.random.randn(T, 1)
R = cumsum(X,axis=0) # using cumsum because
http://www.cvxpy.org/en/latest/tutorial/functions/index.html#vector-matrix-functions
objective = Minimize(sum_entries(square(X*P))) #think this is good
constraints = [0 <= X, cumsum(X,axis=0) >= R]
prob = Problem(objective, constraints)