How do you use the Pyrfc Python library to query the number of entries in an SAP R/3 database table?
I know of three methods to do this using Pyrfc. Modify the following example with your SAP R/3 server connection settings and desired table name:
from pyrfc import Connection
params = dict(
ashost="1.1.1.1",
sysnr="1",
client="100",
user="username",
passwd="password",
)
table = "MKAL"
with Connection(**params) as conn:
# Method 1
result = conn.call("RFC_GET_TABLE_ENTRIES", TABLE_NAME=table, MAX_ENTRIES=1)
entries = result["NUMBER_OF_ENTRIES"]
# Method 2
result = conn.call("EM_GET_NUMBER_OF_ENTRIES", IT_TABLES=[{"TABNAME": table}])
entries = result["IT_TABLES"][0]["TABROWS"]
# Method 3
short_field = "MANDT" # table field with short data length
result = conn.call(
"RFC_READ_TABLE",
QUERY_TABLE=table,
ROWCOUNT=0,
FIELDS=short_field,
)
entries = len(result)
Related
I can fetch the data using this command:
connection = psg.connect( database = "Test" , host="localhost", user="postgres", password="password")
data_1 = psql.read_sql('SELECT * FROM table_1 WHERE id IN (101 , 102)', connection)
But when I run the command below, it gives me an error. A user will put the dynamic ID values and it'll show the data corresponding to the respected IDs. That's why a variable is created which will be on user interface.
connection = psg.connect( database = "Test" , host="localhost", user="postgres", password="password")
variable_p = (108 ) # 108 is the id column value.
data_1 = psql.read_sql('SELECT * FROM table_1 WHERE id IN (variable_p[0])', connection)
Error - Column variable_p does not exist.
you are not using your variable variable_p in your read sql string. You can use f-strings here:
connection = psg.connect( database = "Test" , host="localhost", user="postgres", password="password")
variable_p = 108 # don't need parentheses for single value
data_1 = psql.read_sql(f'SELECT * FROM table_1 WHERE id = {variable_p}', connection)
But here you are vulnerable to SQL injection. So try parametrising your query to make it safe.
Parametrising and using WHERE IN this might be something like (untested):
variable_p = (1, 2, 3)
data_1 = psql.read_sql('SELECT * FROM table_1 WHERE id IN %s', connection, params=variable_p)
I was trying to read some data from a text file and write it down in a Sql server table using Pandas Module and FOR LOOP. Below is my code..
import pandas as pd
import pyodbc
driver = '{SQL Server Native Client 11.0}'
conn = pyodbc.connect(
Trusted_Connection = 'Yes',
Driver = driver,
Server = '***********',
Database = 'Sullins_Data'
)
def createdata():
cursor = conn.cursor()
cursor.execute(
'insert into Sullins_Datasheet(Part_Number,Web_Link) values(?,?);',
(a,j))
conn.commit()
a = pd.read_csv('check9.txt',header=None, names=['Part_Number','Web_Links'] ) # 2 Columns, 8 rows
b = pd.DataFrame(a)
p_no = (b['Part_Number'])
w_link = (b['Web_Links'])
# print(p_no)
for i in p_no:
a = i
for l in w_link:
j = l
createdata()
As you can see from the code that I have created 2 variables a and j to hold the value of both the columns of the text file one by one and write it in the sql table.
But after running the code I have got only the last row value in the table out of 8 rows.
When I used createdate function inside w_link for loop, it write the duplicate value in the table.
Please suggest where I am doing wrong.
here is sample of how your code is working
a = 0
b = 0
ptr=['s','d','f','e']
pt=['a','b','c','d']
for i in ptr:
a=i
print(a,end='')
for j in pt:
b=j
print(b,end='')
I have a python script that loads , transform and calculates data. In sql-server there's a stored procedure that requires a table valued parameter, 2 required parameters and 2 optional parameters. In sql server I can call this SP:
USE [InstName]
GO
DECLARE #return_value int
DECLARE #MergeOnColumn core.MatchColumnTable
INSERT INTO #MergeOnColumn
SELECT 'foo.ExternalInput','bar.ExternalInput'
EXEC #return_value = [core].[_TableData]
#Target = N'[dbname].[tablename1]',
#Source = N'[dbname].[table2]',
#MergeOnColumn = #MergeOnColumn,
#Opt1Param = False,
#Opt2Param = False
SELECT 'Return Value' = #return_value
GO
after a comprehensive search I found the following post:
How to call stored procedure with SQLAlchemy that requires a user-defined-type Table parameter
it suggests to use PYTDS and the sql-alchemy 's dialect 'sql alchemy pytds' to call a SP with table valued parameters.
with this post and the documentation I created the following Python script:
import pandas as pd
import pytds
from pytds import login
import sqlalchemy as sa
from sqlalchemy import create_engine
import sqlalchemy_pytds
def connect():
return pytds.connect(dsn='ServerName',database='DBName', auth=login.SspiAuth())
engine = sa.create_engine('mssql+pytds://[ServerName]', creator=connect)
conn = engine.raw_connection()
with conn.cursor() as cur:
arg = ("foo.ExternalInput","bar.ExternalInput")
tvp = pytds.TableValuedParam(type_name="MergeOnColumn", rows=(arg))
cur.execute('EXEC test_proc %s', ("[dbname].[table2]", "[dbname].[table1]", tvp,))
cur.fetchall()
When I run this code I get the following error message:
TypeError: not all arguments converted during string formatting
Doe anyone know how to pass in the multiple arguments correctly or has a suggestion how I could handle this call SP directly?
On the basis of the comments to my question i've managed to get the stored procedure running with table valued parameters (and get the return values from the SP)
The final script is as follows:
import pandas as pd
import pytds
from pytds import login
import sqlalchemy as sa
from sqlalchemy import create_engine
import sqlalchemy_pytds
def connect():
return pytds.connect(dsn='ServerName',database='DBName',autocommit=True, auth=login.SspiAuth())
engine = sa.create_engine('mssql+pytds://[ServerName]', creator=connect)
conn = engine.raw_connection()
with conn.cursor() as cur:
arg = [["foo.ExternalInput","bar.ExternalInput"]]
tvp = pytds.TableValuedParam(type_name="core.MatchColumnTable", rows=arg)
cur.execute("EXEC test_proc #Target = N'[dbname].[tablename1]', #Source = N'[dbname].[table2]', #CleanTarget = 0, #UseColumnsFromTarget = 0, #MergeOnColumn = %s", (tvp,))
result = cur.fetchall()
print(result)
The autocommit is added in the connection (to commit the transaction in the cursor), the table valued parameter (marchcolumntable) expects 2 columns, so the arg is modified to fit 2 columns.
The parameters that are required besides the tvp are included in the exec string. The last param in the execute string is the name of the tvp parameter(mergeoncolumn) that is filled with the tvp.
optionally you can add the result status or row count as descripted in the pytds documentation:
https://python-tds.readthedocs.io/en/latest/index.html
Note!: in the stored procedure you have to make sure that the
SET NOCOUNT ON is added otherwise you wont get any results back to Python
pytds
Python DBAPI driver for MSSQL using pure Python TDS (Tabular Data Stream) protocol implementation
I used pytds for merge / upsert via a stored procedure targeting a SQL Server.
Example
Here are a example of the basic functions, a row data is represented by Tuple:
def get_connection(instance: str, database: str, user: str, password: str):
return pytds.connect(
dsn=instance, database=database, user=user, password=password, autocommit=True
)
def execute_with_tvp(connection: pytds.Connection, procedure_name: str, rows: list):
with connection.cursor() as cursor:
tvp = pytds.TableValuedParam(type_name=my_type, rows=rows)
cursor.callproc(procedure_name, tvp)
mssql+pyodbc://
pyodbc added support for table-valued parameters (TVPs) in version 4.0.25, released 2018-12-13. Simply supply the TVP value as a list of tuples:
proc_name = "so51930062"
type_name = proc_name + "Type"
# set up test environment
with engine.begin() as conn:
conn.exec_driver_sql(f"""\
DROP PROCEDURE IF EXISTS {proc_name}
""")
conn.exec_driver_sql(f"""\
DROP TYPE IF EXISTS {type_name}
""")
conn.exec_driver_sql(f"""\
CREATE TYPE {type_name} AS TABLE (
id int,
txt nvarchar(50)
)
""")
conn.exec_driver_sql(f"""\
CREATE PROCEDURE {proc_name}
#prefix nvarchar(10),
#tvp {type_name} READONLY
AS
BEGIN
SET NOCOUNT ON;
SELECT id, #prefix + txt AS new_txt FROM #tvp;
END
""")
#run test
with engine.begin() as conn:
data = {"prefix": "new_", "tvp": [(1, "foo"), (2, "bar")]}
sql = f"{{CALL {proc_name} (:prefix, :tvp)}}"
print(conn.execute(sa.text(sql), data).fetchall())
# [(1, 'new_foo'), (2, 'new_bar')]
I recently transitioned from using SQLite for most of my data storage and management needs to MySQL. I think I've finally gotten the correct libraries installed to work with Python 3.6, but now I am having trouble creating a new table from a dataframe in the MySQL database.
Here are the libraries I import:
import pandas as pd
import mysql.connector
from sqlalchemy import create_engine
In my code, I first create a dataframe from a CSV file (no issues here).
def csv_to_df(infile):
return pd.read_csv(infile)
Then I establish a connection to the MySQL database using this def function:
def mysql_connection():
user = 'root'
password = 'abc'
host = '127.0.0.1'
port = '3306'
database = 'a001_db'
engine = create_engine("mysql://{0}:{1}#{2}:{3}/{4}?charset=utf8".format(user, password, host, port, database))
return engine
Lastly, I use the pandas function "to_sql" to create the database table in the MySQL database:
def df_to_mysql(df, db_tbl_name, conn=mysql_connection(), index=False):
df.to_sql(con = conn, name = db_tbl_name, if_exists='replace', index = False)
I run the code using this line:
df_to_mysql(csv_to_df(r'path/to/file.csv'), 'new_database_table')
The yields the following error:
InvalidRequestError: Could not reflect: requested table(s) not available in Engine(mysql://root:***#127.0.0.1:3306/a001_db?charset=utf8): (new_database_table)
I think this is telling me that I must first create a table in the database before passing the data in the dataframe to this table, but I'm not 100% positive about that. Regardless, I'm looking for a way to create a table in a MySQL database without manually creating the table first (I have many CSVs, each with 50+ fields, that have to be uploaded as new tables in a MySQL database).
Any suggestions?
I took an approach suggested by aws_apprentice above which was to create the table first, then write data to the table.
The code below first auto-generates a mysql table from a df (auto defining table names and datatypes) then writes the df data to that table.
There were a couple of hiccups I had to overcome, such as: unnamed csv columns, determining the correct data type for each field in the mysql table.
I'm sure there are multiple other (better?) ways to do this, but this seems to work.
import pandas as pd
from sqlalchemy import create_engine
infile = r'path/to/file.csv'
db = 'a001_db'
db_tbl_name = 'a001_rd004_db004'
'''
Load a csv file into a dataframe; if csv does not have headers, use the headers arg to create a list of headers; rename unnamed columns to conform to mysql column requirements
'''
def csv_to_df(infile, headers = []):
if len(headers) == 0:
df = pd.read_csv(infile)
else:
df = pd.read_csv(infile, header = None)
df.columns = headers
for r in range(10):
try:
df.rename( columns={'Unnamed: {0}'.format(r):'Unnamed{0}'.format(r)}, inplace=True )
except:
pass
return df
'''
Create a mapping of df dtypes to mysql data types (not perfect, but close enough)
'''
def dtype_mapping():
return {'object' : 'TEXT',
'int64' : 'INT',
'float64' : 'FLOAT',
'datetime64' : 'DATETIME',
'bool' : 'TINYINT',
'category' : 'TEXT',
'timedelta[ns]' : 'TEXT'}
'''
Create a sqlalchemy engine
'''
def mysql_engine(user = 'root', password = 'abc', host = '127.0.0.1', port = '3306', database = 'a001_db'):
engine = create_engine("mysql://{0}:{1}#{2}:{3}/{4}?charset=utf8".format(user, password, host, port, database))
return engine
'''
Create a mysql connection from sqlalchemy engine
'''
def mysql_conn(engine):
conn = engine.raw_connection()
return conn
'''
Create sql input for table names and types
'''
def gen_tbl_cols_sql(df):
dmap = dtype_mapping()
sql = "pi_db_uid INT AUTO_INCREMENT PRIMARY KEY"
df1 = df.rename(columns = {"" : "nocolname"})
hdrs = df1.dtypes.index
hdrs_list = [(hdr, str(df1[hdr].dtype)) for hdr in hdrs]
for hl in hdrs_list:
sql += " ,{0} {1}".format(hl[0], dmap[hl[1]])
return sql
'''
Create a mysql table from a df
'''
def create_mysql_tbl_schema(df, conn, db, tbl_name):
tbl_cols_sql = gen_tbl_cols_sql(df)
sql = "USE {0}; CREATE TABLE {1} ({2})".format(db, tbl_name, tbl_cols_sql)
cur = conn.cursor()
cur.execute(sql)
cur.close()
conn.commit()
'''
Write df data to newly create mysql table
'''
def df_to_mysql(df, engine, tbl_name):
df.to_sql(tbl_name, engine, if_exists='replace')
df = csv_to_df(infile)
create_mysql_tbl_schema(df, mysql_conn(mysql_engine()), db, db_tbl_name)
df_to_mysql(df, mysql_engine(), db_tbl_name)
This
connection = engine.connect()
df.to_sql(con=connection, name='TBL_NAME', schema='SCHEMA', index=False, if_exists='replace')
works with oracle DB in specific schema wothout errors, but will not work if you have limited permissions. And note that table names is case sensative.
I have set up a database in Amazon RDS using Amazon Aurora and would like to interact with the database using Python - the obvious choice is to use Boto.
However, their documentation is awful and does nopt cover ways in which I can interact with the databse to:
Run queries with SQL statements
Interact with the tables in the database
etc
Does anyone have an links to some examples/tutorials, or know how to do these tasks?
When using Amazon RDS offerings (including Aurora), you don't connect to the database via any AWS API (including Boto). Instead you would use the native client of your chosen database. In the case of Aurora, you would connect using the MySQL Command Line client. From there, you can query it just like any other MySQL database.
There's a brief section of the "Getting Started" documentation that talks about connecting to your Aurora database:
Connecting to an Amazon Aurora DB Cluster
Here are a couple examples:
INSERT example:
import boto3
sql = """
INSERT INTO YOUR_TABLE_NAME_HERE
(
your_column_name_1
,your_column_name_2
,your_column_name_3)
VALUES(
:your_param_1_name
,:your_param_2_name)
,:your_param_3_name
"""
param1 = {'name':'your_param_1_name', 'value':{'longValue': 5}}
param2 = {'name':'your_param_2_name', 'value':{'longValue': 63}}
param3 = {'name':'your_param_3_name', 'value':{'stringValue': 'para bailar la bamba'}}
param_set = [param1, param2, param3]
db_clust_arn = 'your_db_cluster_arn_here'
db_secret_arn = 'your_db_secret_arn_here'
rds_data = boto3.client('rds-data')
response = rds_data.execute_statement(
resourceArn = db_clust_arn,
secretArn = db_secret_arn,
database = 'your_database_name_here',
sql = sql,
parameters = param_set)
print(str(response))
READ example:
import boto3
rds_data = boto3.client('rds-data')
db_clust_arn = 'your_db_cluster_arn_here'
db_secret_arn = 'your_db_secret_arn_here'
employee_id = 35853
get_vacation_days_sql = f"""
select vacation_days_remaining
from employees_tbl
where employee_id = {employee_id}
"""
response1 = rds_data.execute_statement(
resourceArn = db_clust_arn,
secretArn = db_secret_arn,
database = 'your_database_name_here',
sql = get_vacation_days_sql)
#recs is a list (of rows returned from Db)
recs = response1['records']
print(f"recs === {recs}")
#recs === [[{'longValue': 57}]]
#single_row is a list of dictionaries, where each dictionary represents a
#column from that single row
for single_row in recs:
print(f"single_row === {single_row}")
#single_row === [{'longValue': 57}]
#one_dict is a dictionary with one key value pair
#where the key is the data type of the column and the
#value is the value of the column
#each additional column is another dictionary
for single_column_dict in single_row:
print(f"one_dict === {single_column_dict}")
# one_dict === {'longValue': 57}
vacation_days_remaining = single_column_dict['longValue']
print(f'vacation days remaining === {vacation_days_remaining}')
Source Link:
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.calling.python