Add suffix to columns in pandas dataframe [duplicate] - python

I want to add _x suffix to each column name like so:
featuresA = myPandasDataFrame.columns.values + '_x'
How do I do this? Additionally, if I wanted to add x_ as a suffix, how would the solution change?

The following is the nicest way to add suffix in my opinion.
df = df.add_suffix('_some_suffix')
As it is a function that is called on DataFrame and returns DataFrame - you can use it in chain of the calls.

You can use a list comprehension:
df.columns = [str(col) + '_x' for col in df.columns]
There are also built-in methods like .add_suffix() and .add_prefix() as mentioned in another answer.

Elegant In-place Concatenation
If you're trying to modify df in-place, then the cheapest (and simplest) option is in-place addition directly on df.columns (i.e., using Index.__iadd__).
df = pd.DataFrame({"A": [9, 4, 2, 1], "B": [12, 7, 5, 4]})
df
A B
0 9 12
1 4 7
2 2 5
3 1 4
df.columns += '_some_suffix'
df
A_some_suffix B_some_suffix
0 9 12
1 4 7
2 2 5
3 1 4
To add a prefix, you would similarly use
df.columns = 'some_prefix_' + df.columns
df
some_prefix_A some_prefix_B
0 9 12
1 4 7
2 2 5
3 1 4
Another cheap option is using a list comprehension with f-string formatting (available on python3.6+).
df.columns = [f'{c}_some_suffix' for c in df]
df
A_some_suffix B_some_suffix
0 9 12
1 4 7
2 2 5
3 1 4
And for prefix, similarly,
df.columns = [f'some_prefix{c}' for c in df]
Method Chaining
It is also possible to do add *fixes while method chaining. To add a suffix, use DataFrame.add_suffix
df.add_suffix('_some_suffix')
A_some_suffix B_some_suffix
0 9 12
1 4 7
2 2 5
3 1 4
This returns a copy of the data. IOW, df is not modified.
Adding prefixes is also done with DataFrame.add_prefix.
df.add_prefix('some_prefix_')
some_prefix_A some_prefix_B
0 9 12
1 4 7
2 2 5
3 1 4
Which also does not modify df.
Critique of add_*fix
These are good methods if you're trying to perform method chaining:
df.some_method1().some_method2().add_*fix(...)
However, add_prefix (and add_suffix) creates a copy of the entire dataframe, just to modify the headers. If you believe this is wasteful, but still want to chain, you can call pipe:
def add_suffix(df):
df.columns += '_some_suffix'
return df
df.some_method1().some_method2().pipe(add_suffix)

I Know 4 ways to add a suffix (or prefix) to your column's names:
1- df.columns = [str(col) + '_some_suffix' for col in df.columns]
or
2- df.rename(columns= lambda col: col+'_some_suffix')
or
3- df.columns += '_some_suffix' much easiar.
or, the nicest:
3- df.add_suffix('_some_suffix')

I haven't seen this solution proposed above so adding this to the list:
df.columns += '_x'
And you can easily adapt for the prefix scenario.

Using DataFrame.rename
df = pd.DataFrame({'A': range(3), 'B': range(4, 7)})
print(df)
A B
0 0 4
1 1 5
2 2 6
Using rename with axis=1 and string formatting:
df.rename('col_{}'.format, axis=1)
# or df.rename(columns='col_{}'.format)
col_A col_B
0 0 4
1 1 5
2 2 6
To actually overwrite your column names, we can assign the returned values to our df:
df = df.rename('col_{}'.format, axis=1)
or use inplace=True:
df.rename('col_{}'.format, axis=1, inplace=True)

I figured that this is what I would use quite often, for example:
df = pd.DataFrame({'silverfish': range(3), 'silverspoon': range(4, 7),
'goldfish': range(10, 13),'goldilocks':range(17,20)})
My way of dynamically renaming:
color_list = ['gold','silver']
for i in color_list:
df[f'color_{i}']=df.filter(like=i).sum(axis=1)
OUTPUT:
{'silverfish': {0: 0, 1: 1, 2: 2},
'silverspoon': {0: 4, 1: 5, 2: 6},
'goldfish': {0: 10, 1: 11, 2: 12},
'goldilocks': {0: 17, 1: 18, 2: 19},
'color_gold': {0: 135, 1: 145, 2: 155},
'color_silver': {0: 20, 1: 30, 2: 40}}

Pandas also has a add_prefix method and a add_suffix method to do this.

Related

Fill NA values in dataframe by mapping a double indexed groupby object [duplicate]

This should be straightforward, but the closest thing I've found is this post:
pandas: Filling missing values within a group, and I still can't solve my problem....
Suppose I have the following dataframe
df = pd.DataFrame({'value': [1, np.nan, np.nan, 2, 3, 1, 3, np.nan, 3], 'name': ['A','A', 'B','B','B','B', 'C','C','C']})
name value
0 A 1
1 A NaN
2 B NaN
3 B 2
4 B 3
5 B 1
6 C 3
7 C NaN
8 C 3
and I'd like to fill in "NaN" with mean value in each "name" group, i.e.
name value
0 A 1
1 A 1
2 B 2
3 B 2
4 B 3
5 B 1
6 C 3
7 C 3
8 C 3
I'm not sure where to go after:
grouped = df.groupby('name').mean()
Thanks a bunch.
One way would be to use transform:
>>> df
name value
0 A 1
1 A NaN
2 B NaN
3 B 2
4 B 3
5 B 1
6 C 3
7 C NaN
8 C 3
>>> df["value"] = df.groupby("name").transform(lambda x: x.fillna(x.mean()))
>>> df
name value
0 A 1
1 A 1
2 B 2
3 B 2
4 B 3
5 B 1
6 C 3
7 C 3
8 C 3
fillna + groupby + transform + mean
This seems intuitive:
df['value'] = df['value'].fillna(df.groupby('name')['value'].transform('mean'))
The groupby + transform syntax maps the groupwise mean to the index of the original dataframe. This is roughly equivalent to #DSM's solution, but avoids the need to define an anonymous lambda function.
#DSM has IMO the right answer, but I'd like to share my generalization and optimization of the question: Multiple columns to group-by and having multiple value columns:
df = pd.DataFrame(
{
'category': ['X', 'X', 'X', 'X', 'X', 'X', 'Y', 'Y', 'Y'],
'name': ['A','A', 'B','B','B','B', 'C','C','C'],
'other_value': [10, np.nan, np.nan, 20, 30, 10, 30, np.nan, 30],
'value': [1, np.nan, np.nan, 2, 3, 1, 3, np.nan, 3],
}
)
... gives ...
category name other_value value
0 X A 10.0 1.0
1 X A NaN NaN
2 X B NaN NaN
3 X B 20.0 2.0
4 X B 30.0 3.0
5 X B 10.0 1.0
6 Y C 30.0 3.0
7 Y C NaN NaN
8 Y C 30.0 3.0
In this generalized case we would like to group by category and name, and impute only on value.
This can be solved as follows:
df['value'] = df.groupby(['category', 'name'])['value']\
.transform(lambda x: x.fillna(x.mean()))
Notice the column list in the group-by clause, and that we select the value column right after the group-by. This makes the transformation only be run on that particular column. You could add it to the end, but then you will run it for all columns only to throw out all but one measure column at the end. A standard SQL query planner might have been able to optimize this, but pandas (0.19.2) doesn't seem to do this.
Performance test by increasing the dataset by doing ...
big_df = None
for _ in range(10000):
if big_df is None:
big_df = df.copy()
else:
big_df = pd.concat([big_df, df])
df = big_df
... confirms that this increases the speed proportional to how many columns you don't have to impute:
import pandas as pd
from datetime import datetime
def generate_data():
...
t = datetime.now()
df = generate_data()
df['value'] = df.groupby(['category', 'name'])['value']\
.transform(lambda x: x.fillna(x.mean()))
print(datetime.now()-t)
# 0:00:00.016012
t = datetime.now()
df = generate_data()
df["value"] = df.groupby(['category', 'name'])\
.transform(lambda x: x.fillna(x.mean()))['value']
print(datetime.now()-t)
# 0:00:00.030022
On a final note you can generalize even further if you want to impute more than one column, but not all:
df[['value', 'other_value']] = df.groupby(['category', 'name'])['value', 'other_value']\
.transform(lambda x: x.fillna(x.mean()))
Shortcut:
Groupby + Apply + Lambda + Fillna + Mean
>>> df['value1']=df.groupby('name')['value'].apply(lambda x:x.fillna(x.mean()))
>>> df.isnull().sum().sum()
0
This solution still works if you want to group by multiple columns to replace missing values.
>>> df = pd.DataFrame({'value': [1, np.nan, np.nan, 2, 3, np.nan,np.nan, 4, 3],
'name': ['A','A', 'B','B','B','B', 'C','C','C'],'class':list('ppqqrrsss')})
>>> df['value']=df.groupby(['name','class'])['value'].apply(lambda x:x.fillna(x.mean()))
>>> df
value name class
0 1.0 A p
1 1.0 A p
2 2.0 B q
3 2.0 B q
4 3.0 B r
5 3.0 B r
6 3.5 C s
7 4.0 C s
8 3.0 C s
I'd do it this way
df.loc[df.value.isnull(), 'value'] = df.groupby('group').value.transform('mean')
The featured high ranked answer only works for a pandas Dataframe with only two columns. If you have a more columns case use instead:
df['Crude_Birth_rate'] = df.groupby("continent").Crude_Birth_rate.transform(
lambda x: x.fillna(x.mean()))
To summarize all above concerning the efficiency of the possible solution
I have a dataset with 97 906 rows and 48 columns.
I want to fill in 4 columns with the median of each group.
The column I want to group has 26 200 groups.
The first solution
start = time.time()
x = df_merged[continuous_variables].fillna(df_merged.groupby('domain_userid')[continuous_variables].transform('median'))
print(time.time() - start)
0.10429811477661133 seconds
The second solution
start = time.time()
for col in continuous_variables:
df_merged.loc[df_merged[col].isnull(), col] = df_merged.groupby('domain_userid')[col].transform('median')
print(time.time() - start)
0.5098445415496826 seconds
The next solution I only performed on a subset since it was running too long.
start = time.time()
for col in continuous_variables:
x = df_merged.head(10000).groupby('domain_userid')[col].transform(lambda x: x.fillna(x.median()))
print(time.time() - start)
11.685635566711426 seconds
The following solution follows the same logic as above.
start = time.time()
x = df_merged.head(10000).groupby('domain_userid')[continuous_variables].transform(lambda x: x.fillna(x.median()))
print(time.time() - start)
42.630549907684326 seconds
So it's quite important to choose the right method.
Bear in mind that I noticed once a column was not a numeric the times were going up exponentially (makes sense as I was computing the median).
def groupMeanValue(group):
group['value'] = group['value'].fillna(group['value'].mean())
return group
dft = df.groupby("name").transform(groupMeanValue)
I know that is an old question. But I am quite surprised by the unanimity of apply/lambda answers here.
Generally speaking, that is the second worst thing to do after iterating rows, from timing point of view.
What I would do here is
df.loc[df['value'].isna(), 'value'] = df.groupby('name')['value'].transform('mean')
Or using fillna
df['value'] = df['value'].fillna(df.groupby('name')['value'].transform('mean'))
I've checked with timeit (because, again, unanimity for apply/lambda based solution made me doubt my instinct). And that is indeed 2.5 faster than the most upvoted solutions.
To fill all the numeric null values with the mean grouped by "name"
num_cols = df.select_dtypes(exclude='object').columns
df[num_cols] = df.groupby("name").transform(lambda x: x.fillna(x.mean()))
df.fillna(df.groupby(['name'], as_index=False).mean(), inplace=True)
You can also use "dataframe or table_name".apply(lambda x: x.fillna(x.mean())).

Element-wise Comparison of Two Pandas Dataframes

I am trying to compare two columns in pandas. I know I can do:
# either using Pandas' equals()
df1[col].equals(df2[col])
# or this
df1[col] == df2[col]
However, what I am looking for is to compare these columns elment-wise and when they are not matching print out both values. I have tried:
if df1[col] != df2[col]:
print(df1[col])
print(df2[col])
where I get the error for 'The truth value of a Series is ambiguous'
I believe this is because the column is treated as a series of boolean values for the comparison which causes the ambiguity. I also tried various forms of for loops which did not resolve the issue.
Can anyone point me to how I should go about doing what I described?
This might work for you:
import pandas as pd
df1 = pd.DataFrame({'col1': [1, 2, 3, 4, 5]})
df2 = pd.DataFrame({'col1': [1, 2, 9, 4, 7]})
if not df2[df2['col1'] != df1['col1']].empty:
print(df1[df1['col1'] != df2['col1']])
print(df2[df2['col1'] != df1['col1']])
Output:
col1
2 3
4 5
col1
2 9
4 7
You need to get hold of the index where the column values are not matching. Once you have that index then you can query the individual DFs to get the values.
Please try the fallowing and is if this helps:
for ind in (df1.loc[df1['col1'] != df2['col1']].index):
x = df1.loc[df1.index == ind, 'col1'].values[0]
y = df2.loc[df2.index == ind, 'col1'].values[0]
print(x, y )
Solution
Try this. You could use any of the following one-line solutions.
# Option-1
df.loc[df.apply(lambda row: row[col1] != row[col2], axis=1), [col1, col2]]
# Option-2
df.loc[df[col1]!=df[col2], [col1, col2]]
Logic:
Option-1: We use pandas.DataFrame.apply() to evaluate the target columns row by row and pass the returned indices to df.loc[indices, [col1, col2]] and that returns the required set of rows where col1 != col2.
Option-2: We get the indices with df[col1] != df[col2] and the rest of the logic is the same as Option-1.
Dummy Data
I made the dummy data such that for indices: 2,6,8 we will find column 'a' and 'c' to be different. Thus, we want only those rows returned by the solution.
import numpy as np
import pandas as pd
a = np.arange(10)
c = a.copy()
c[[2,6,8]] = [0,20,40]
df = pd.DataFrame({'a': a, 'b': a**2, 'c': c})
print(df)
Output:
a b c
0 0 0 0
1 1 1 1
2 2 4 0
3 3 9 3
4 4 16 4
5 5 25 5
6 6 36 20
7 7 49 7
8 8 64 40
9 9 81 9
Applying the solution to the dummy data
We see that the solution proposed returns the result as expected.
col1, col2 = 'a', 'c'
result = df.loc[df.apply(lambda row: row[col1] != row[col2], axis=1), [col1, col2]]
print(result)
Output:
a c
2 2 0
6 6 20
8 8 40

Fillna in pandas with respect to similar line [duplicate]

This should be straightforward, but the closest thing I've found is this post:
pandas: Filling missing values within a group, and I still can't solve my problem....
Suppose I have the following dataframe
df = pd.DataFrame({'value': [1, np.nan, np.nan, 2, 3, 1, 3, np.nan, 3], 'name': ['A','A', 'B','B','B','B', 'C','C','C']})
name value
0 A 1
1 A NaN
2 B NaN
3 B 2
4 B 3
5 B 1
6 C 3
7 C NaN
8 C 3
and I'd like to fill in "NaN" with mean value in each "name" group, i.e.
name value
0 A 1
1 A 1
2 B 2
3 B 2
4 B 3
5 B 1
6 C 3
7 C 3
8 C 3
I'm not sure where to go after:
grouped = df.groupby('name').mean()
Thanks a bunch.
One way would be to use transform:
>>> df
name value
0 A 1
1 A NaN
2 B NaN
3 B 2
4 B 3
5 B 1
6 C 3
7 C NaN
8 C 3
>>> df["value"] = df.groupby("name").transform(lambda x: x.fillna(x.mean()))
>>> df
name value
0 A 1
1 A 1
2 B 2
3 B 2
4 B 3
5 B 1
6 C 3
7 C 3
8 C 3
fillna + groupby + transform + mean
This seems intuitive:
df['value'] = df['value'].fillna(df.groupby('name')['value'].transform('mean'))
The groupby + transform syntax maps the groupwise mean to the index of the original dataframe. This is roughly equivalent to #DSM's solution, but avoids the need to define an anonymous lambda function.
#DSM has IMO the right answer, but I'd like to share my generalization and optimization of the question: Multiple columns to group-by and having multiple value columns:
df = pd.DataFrame(
{
'category': ['X', 'X', 'X', 'X', 'X', 'X', 'Y', 'Y', 'Y'],
'name': ['A','A', 'B','B','B','B', 'C','C','C'],
'other_value': [10, np.nan, np.nan, 20, 30, 10, 30, np.nan, 30],
'value': [1, np.nan, np.nan, 2, 3, 1, 3, np.nan, 3],
}
)
... gives ...
category name other_value value
0 X A 10.0 1.0
1 X A NaN NaN
2 X B NaN NaN
3 X B 20.0 2.0
4 X B 30.0 3.0
5 X B 10.0 1.0
6 Y C 30.0 3.0
7 Y C NaN NaN
8 Y C 30.0 3.0
In this generalized case we would like to group by category and name, and impute only on value.
This can be solved as follows:
df['value'] = df.groupby(['category', 'name'])['value']\
.transform(lambda x: x.fillna(x.mean()))
Notice the column list in the group-by clause, and that we select the value column right after the group-by. This makes the transformation only be run on that particular column. You could add it to the end, but then you will run it for all columns only to throw out all but one measure column at the end. A standard SQL query planner might have been able to optimize this, but pandas (0.19.2) doesn't seem to do this.
Performance test by increasing the dataset by doing ...
big_df = None
for _ in range(10000):
if big_df is None:
big_df = df.copy()
else:
big_df = pd.concat([big_df, df])
df = big_df
... confirms that this increases the speed proportional to how many columns you don't have to impute:
import pandas as pd
from datetime import datetime
def generate_data():
...
t = datetime.now()
df = generate_data()
df['value'] = df.groupby(['category', 'name'])['value']\
.transform(lambda x: x.fillna(x.mean()))
print(datetime.now()-t)
# 0:00:00.016012
t = datetime.now()
df = generate_data()
df["value"] = df.groupby(['category', 'name'])\
.transform(lambda x: x.fillna(x.mean()))['value']
print(datetime.now()-t)
# 0:00:00.030022
On a final note you can generalize even further if you want to impute more than one column, but not all:
df[['value', 'other_value']] = df.groupby(['category', 'name'])['value', 'other_value']\
.transform(lambda x: x.fillna(x.mean()))
Shortcut:
Groupby + Apply + Lambda + Fillna + Mean
>>> df['value1']=df.groupby('name')['value'].apply(lambda x:x.fillna(x.mean()))
>>> df.isnull().sum().sum()
0
This solution still works if you want to group by multiple columns to replace missing values.
>>> df = pd.DataFrame({'value': [1, np.nan, np.nan, 2, 3, np.nan,np.nan, 4, 3],
'name': ['A','A', 'B','B','B','B', 'C','C','C'],'class':list('ppqqrrsss')})
>>> df['value']=df.groupby(['name','class'])['value'].apply(lambda x:x.fillna(x.mean()))
>>> df
value name class
0 1.0 A p
1 1.0 A p
2 2.0 B q
3 2.0 B q
4 3.0 B r
5 3.0 B r
6 3.5 C s
7 4.0 C s
8 3.0 C s
I'd do it this way
df.loc[df.value.isnull(), 'value'] = df.groupby('group').value.transform('mean')
The featured high ranked answer only works for a pandas Dataframe with only two columns. If you have a more columns case use instead:
df['Crude_Birth_rate'] = df.groupby("continent").Crude_Birth_rate.transform(
lambda x: x.fillna(x.mean()))
To summarize all above concerning the efficiency of the possible solution
I have a dataset with 97 906 rows and 48 columns.
I want to fill in 4 columns with the median of each group.
The column I want to group has 26 200 groups.
The first solution
start = time.time()
x = df_merged[continuous_variables].fillna(df_merged.groupby('domain_userid')[continuous_variables].transform('median'))
print(time.time() - start)
0.10429811477661133 seconds
The second solution
start = time.time()
for col in continuous_variables:
df_merged.loc[df_merged[col].isnull(), col] = df_merged.groupby('domain_userid')[col].transform('median')
print(time.time() - start)
0.5098445415496826 seconds
The next solution I only performed on a subset since it was running too long.
start = time.time()
for col in continuous_variables:
x = df_merged.head(10000).groupby('domain_userid')[col].transform(lambda x: x.fillna(x.median()))
print(time.time() - start)
11.685635566711426 seconds
The following solution follows the same logic as above.
start = time.time()
x = df_merged.head(10000).groupby('domain_userid')[continuous_variables].transform(lambda x: x.fillna(x.median()))
print(time.time() - start)
42.630549907684326 seconds
So it's quite important to choose the right method.
Bear in mind that I noticed once a column was not a numeric the times were going up exponentially (makes sense as I was computing the median).
def groupMeanValue(group):
group['value'] = group['value'].fillna(group['value'].mean())
return group
dft = df.groupby("name").transform(groupMeanValue)
I know that is an old question. But I am quite surprised by the unanimity of apply/lambda answers here.
Generally speaking, that is the second worst thing to do after iterating rows, from timing point of view.
What I would do here is
df.loc[df['value'].isna(), 'value'] = df.groupby('name')['value'].transform('mean')
Or using fillna
df['value'] = df['value'].fillna(df.groupby('name')['value'].transform('mean'))
I've checked with timeit (because, again, unanimity for apply/lambda based solution made me doubt my instinct). And that is indeed 2.5 faster than the most upvoted solutions.
To fill all the numeric null values with the mean grouped by "name"
num_cols = df.select_dtypes(exclude='object').columns
df[num_cols] = df.groupby("name").transform(lambda x: x.fillna(x.mean()))
df.fillna(df.groupby(['name'], as_index=False).mean(), inplace=True)
You can also use "dataframe or table_name".apply(lambda x: x.fillna(x.mean())).

Pandas - Sorting By Column

I have a pandas data frame known as "df":
x y
0 1 2
1 2 4
2 3 8
I am splitting it up into two frames, and then trying to merge back together:
df_1 = df[df['x']==1]
df_2 = df[df['x']!=1]
My goal is to get it back in the same order, but when I concat, I am getting the following:
frames = [df_1, df_2]
solution = pd.concat(frames)
solution.sort_values(by='x', inplace=False)
x y
1 2 4
2 3 8
0 1 2
The problem is I need the 'x' values to go back into the new dataframe in the same order that I extracted. Is there a solution?
use .loc to specify the order you want. Choose the original index.
solution.loc[df.index]
Or, if you trust the index values in each component, then
solution.sort_index()
setup
df = pd.DataFrame([[1, 2], [2, 4], [3, 8]], columns=['x', 'y'])
df_1 = df[df['x']==1]
df_2 = df[df['x']!=1]
frames = [df_1, df_2]
solution = pd.concat(frames)
Try this:
In [14]: pd.concat([df_1, df_2.sort_values('y')])
Out[14]:
x y
0 1 2
1 2 4
2 3 8
When you are sorting the solution using
solution.sort_values(by='x', inplace=False)
you need to specify inplace = True. That would take care of it.
Based on these assumptions on df:
Columns x and y are note necessarily ordered.
The index is ordered.
Just order your result by index:
df = pd.DataFrame({'x': [1, 2, 3], 'y': [2, 4, 8]})
df_1 = df[df['x']==1]
df_2 = df[df['x']!=1]
frames = [df_2, df_1]
solution = pd.concat(frames).sort_index()
Now, solution looks like this:
x y
0 1 2
1 2 4
2 3 8

Delete a column in a pandas' DataFrame if its sum is less than x

I am trying to create a program that will delete a column in a Panda's dataFrame if the column's sum is less than 10.
I currently have the following solution, but I was curious if there is a more pythonic way to do this.
df = pandas.DataFrame(AllData)
sum = df.sum(axis=1)
badCols = list()
for index in range(len(sum)):
if sum[index] < 10:
badCols.append(index)
df = df.drop(df.columns[badCols], axis=1)
In my approach, I create a list of column indexes that have sums less than 10, then I delete this list. Is there a better approach for doing this?
You can call sum to generate a Series that gives the sum of each column, then use this to generate a boolean mask against your column array and use this to filter the df. DF generation code borrowed from #Alexander:
In [2]:
df = pd.DataFrame({'a': [1, 10], 'b': [1, 1], 'c': [20, 30]})
df
Out[2]:
a b c
0 1 1 20
1 10 1 30
In [3]:
df.sum()
Out[3]:
a 11
b 2
c 50
dtype: int64
In [6]:
df[df.columns[df.sum()>10]]
Out[6]:
a c
0 1 20
1 10 30
You can accomplish your objective using a one-liner by using a list comprehension and iteritems to identify all columns that meet your criteria.
df = pd.DataFrame({'a': [1, 10], 'b': [1, 1], 'c': [20, 30]})
>>> df
a b c
0 1 1 20
1 10 1 30
df.drop([col for col, val in df.sum().iteritems() if val < 10], axis=1, inplace=True)
>>> df
a c
0 1 20
1 10 30

Categories