Storing and querying a large amount of data - python

I have a large amount of data around 50GB worth in a csv which i want to analyse purposes of ML. It is however way to large to fit in Python. I ideally want to use mySQL because querying is easier. Can anyone offer a host of tips for me to look into. This can be anything from:
How to store it in the first place, i realise i probably can't load it in all at once, would i do it iteratively? If so what things can i look into for this? In addition i've heard about indexing, would that really speed up queries on such a massive data set?
Are there better technologies out there to handle this amount of data and still be able to query and do feature engineering quickly. What i eventually feed into my algorithm should be able to be done in Python but i need query and do some feature engineering before i get my data set that is ready to be analysed.
I'd really appreciate any advice this all needs to be done on personal computer! Thanks!!

Can anyone offer a host of tips for me to look into
Gladly!
Look at the CSV file first line to see if there is a header. You'd need to create a table with the same fields (and type of data)
One of the fields might seem unique per line and can be used later to find the line. That's your candidate for PRIMARY KEY. Otherwise add an AUTO-INCREMENT field as PRIMARY KEY
INDEXes are used to later search for data. Whatever fields you feel you will be searching/filtering on later should have some sort of INDEX. You can always add them later.
INDEXes can combine multiple fields if they are often searched together
In order to read in the data, you have 2 ways:
Use LOAD DATA INFILE Load Data Infile Documentation
Write your own script: The best technique is to create a prepared statement for the
INSERT command. Then read your CSV line by line (in a loop), split the fields
into variables and execute the prepared statement with this line's
values
You will benefit from a web page designed to search the data. Depends on who needs to use it.
Hope this gives you some ideas

That's depend on what you have, you can use Apache spark and then use their SQL feature, spark SQL gives you the possibility to write SQL queries in your dataset, but for best performance you need a distributed mode(you can use it in a local machine but the result is limited) and high machine performance. you can use python, scala, java to write your code.

Related

How to create a SQL table from several SQL files?

All explained above is in the context of an ETL process. I have a git repository full of sql files. I need to put all those sql files (once pulled) into a sql table with 2 columns: name and query, so that I can access each file later on using a SQL query instead of loading them from the file path. How can I make this? I am free to use the tool I want to, but I just know python and Pentaho.
Maybe the assumption that this method would require less computation time than simply accessing to the pull file located in the hard drive is wrong. In that case let me know.
You can first define the table you're interested in using something along the lines of (you did not mention the database you are using):
CREATE TABLE queries (
name TEXT PRIMARY KEY,
query TEXT
);
After creating the table, you can use perhaps os.walk to iterate through the files in your repository, and insert both the contents (e.g. file.read()) and the name of the file into the table you created previously.
It sounds like you're trying to solve a different problem though. It seems like you're interested in speeding up some process, because you asked about whether accessing queries using a table would be faster than opening a file on disk. To investigate that (separate!) question further, see this.
I would recommend that you profile the existing process you are trying to speed up using profiling tools. After that, you can see whether IO is your bottleneck. Otherwise, you may do all of this work without any benefit.
As a side note, if you are looking up queries in this way, it may indicate that you need to rearchitect your application. Please consider that possibility as well.

python unusual textfile to database: strategy

I am pretty new to Python, so I like to ask you for some advice about the right strategy.
I've a textfile with fixed positions for the data, like this.
It can have more than 10000 rows. At the end the database (SQL) table should look like this. File & Table
The important col is nr. 42. It defines the kind of data in this row.
(2-> Titel, 3->Text 6->Amount and Price). So the data comes from different rows.
QUESTIONS:
Reading the Data: Since there are always more than 4 rows
containing the data, process them line by line, as soon as one sql
statement is complete, send it OR:read all the lines into a list of
lists, and then iterate over these lists? OR: read all the lines in
one list and iterate?
Would it be better to convert the data into a csv or json instead of preparing sql statements, and then use the database software to import to db? (Or use NoSQL DB)
I hope I made my problems clear, if not, I will try.....
Every advice is really appreciated.
The problem is pretty simple, so perhaps you are overthinking it a bit. My suggestion is to use the simplest solution: read a line, parse it, prepare an SQL statement and execute it. If the database is around 10000 records, anything would work, e.g. SQLLite would do just fine. The problem is in the form of a table already so translation to a relational database like SQLLite or MySQL is a pretty obvious and straightforward choice. If you need a different type of organization in your data then you can look at other types of databases: don't do it only because it is "fashionable".

Somthing wrong with using CSV as database for a webapp?

I am using Flask to make a small webapp to manage a group project, in this website I need to manage attendances, and also meetings reports. I don't have the time to get into SQLAlchemy, so I need to know what might be the bad things about using CSV as a database.
Just don't do it.
The problem with CSV is …
a, concurrency is not possible: What this means is that when two people access your app at the same time, there is no way to make sure that they don't interfere with each other, making changes to each other's data. There is no way to solve this with when using a CSV file as a backend.
b, speed: Whenever you make changes to a CSV file, you need to reload more or less the whole file. Parsing the file is eating up both memory and time.
Databases were made to solve this issues.
I agree however, that you don't need to learn SQLAlchemy for a small app.
There are lightweight alternatives that you should consider.
What you are looking for are ORM - Object-relational mapping - who translate Python code into SQL and manage the SQL databases for you.
PeeweeORM and PonyORM. Both are easy to use and translate all SQL into Python and vice versa. Both are free for personal use, but Pony costs money if you use it for commercial purposes. I highly recommend PeeweeORM. You can start using SQLite as a backend with Peewee, or if your app grows larger, you can plug in MySQL or PostGreSQL easily.
Don't do it, CSV that is.
There are many other possibilities, for instance the sqlite database, python shelve, etc. The available options from the standard library are summarised here.
Given that your application is a webapp, you will need to consider the effect of concurrency on your solution to ensure data integrity. You could also consider a more powerful database such as postgres for which there are a number of python libraries.
I think there's nothing wrong with that as long as you abstract away from it. I.e. make sure you have a clean separation between what you write and how you implement i . That will bloat your code a bit, but it will make sure you can swap your CSV storage in a matter of days.
I.e. pretend that you can persist your data as if you're keeping it in memory. Don't write "openCSVFile" in you flask app. Use initPersistence(). Don't write "csvFile.appendRecord()". Use "persister.saveNewReport()". When and if you actually realise CSV to be a bottleneck, you can just write a new persister plugin.
There are added benefits like you don't have to use a mock library in tests to make them faster. You just provide another persister.
I am absolutely baffled by how many people discourage using CSV as an database storage back-end format.
Concurrency: There is NO reason why CSV can not be used with concurrency. Just like how a database thread can write to one area of a binary file at the same time that another thread writes to another area of the same binary file. Databases can do EXACTLY the same thing with CSV files. Just as a journal is used to maintain the atomic nature of individual transactions, the same exact thing can be done with CSV.
Speed: Why on earth would a database read and write a WHOLE file at a time, when the database can do what it does for ALL other database storage formats, look up the starting byte of a record in an index file and SEEK to it in constant time and overwrite the data and comment out anything left over and record the free space for latter use in a separate index file, just like a database could zero out the bytes of any unneeded areas of a binary "row" and record the free space in a separate index file... I just do not understand this hostility to non-binary formats, when everything that can be done with one format can be done with the other... everything, except perhaps raw binary data compression, depending on the particular CSV syntax in use (special binary comments... etc.).
Emergency access: The added benefit of CSV is that when the database dies, which inevitably happens, you are left with a CSV file that can still be accessed quickly in the case of an emergency... which is the primary reason I do not EVER use binary storage for essential data that should be quickly accessible even when the database breaks due to incompetent programming.
Yes, the CSV file would have to be re-indexed every time you made changes to it in a spread sheet program, but that is no different than having to re-index a binary database after the index/table gets corrupted/deleted/out-of-sync/etc./etc..

50 million+ Rows of Data - CSV or MySQL

I have a CSV file which is about 1GB big and contains about 50million rows of data, I am wondering is it better to keep it as a CSV file or store it as some form of a database. I don't know a great deal about MySQL to argue for why I should use it or another database framework over just keeping it as a CSV file. I am basically doing a Breadth-First Search with this dataset, so once I get the initial "seed" set the 50million I use this as the first values in my queue.
Thanks,
I would say that there are a wide variety of benefits to using a database over a CSV for such large structured data so I would suggest that you learn enough to do so. However, based on your description you might want to check out non-server/lighter weight databases. Such as SQLite, or something similar to JavaDB/Derby... or depending on the structure of your data a non-relational (Nosql) database- obviously you will need one with some type of python support though.
If you want to search on something graph-ish (since you mention Breadth-First Search) then a graph database might prove useful.
Are you just going to slurp in everything all at once? If so, then CSV is probably the way to go. It's simple and works.
If you need to do lookups, then something that lets you index the data, like MySQL, would be better.
From your previous questions, it looks like you are doing social-network searches against facebook friend data; so I presume your data is a set of 'A is-friend-of B' statements, and you are looking for a shortest connection between two individuals?
If you have enough memory, I would suggest parsing your csv file into a dictionary of lists. See Can this breadth-first search be made faster?
If you cannot hold all the data at once, a local-storage database like SQLite is probably your next-best alternative.
There are also some python modules which might help:
graph-tool http://projects.skewed.de/graph-tool/
python-graph http://pypi.python.org/pypi/python-graph/1.8.0
networkx http://networkx.lanl.gov/
igraph http://igraph.sourceforge.net/
How about some key-value storages like MongoDB

how to speed up the code?

in my program i have a method which requires about 4 files to be open each time it is called,as i require to take some data.all this data from the file i have been storing in list for manupalation.
I approximatily need to call this method about 10,000 times.which is making my program very slow?
any method for handling this files in a better ways and is storing the whole data in list time consuming what is better alternatives for list?
I can give some code,but my previous question was closed as that only confused everyone as it is a part of big program and need to be explained completely to understand,so i am not giving any code,please suggest ways thinking this as a general question...
thanks in advance
As a general strategy, it's best to keep this data in an in-memory cache if it's static, and relatively small. Then, the 10k calls will read an in-memory cache rather than a file. Much faster.
If you are modifying the data, the alternative might be a database like SQLite, or embedded MS SQL Server (and there are others, too!).
It's not clear what kind of data this is. Is it simple config/properties data? Sometimes you can find libraries to handle the loading/manipulation/storage of this data, and it usually has it's own internal in-memory cache, all you need to do is call one or two functions.
Without more information about the files (how big are they?) and the data (how is it formatted and structured?), it's hard to say more.
Opening, closing, and reading a file 10,000 times is always going to be slow. Can you open the file once, do 10,000 operations on the list, then close the file once?
It might be better to load your data into a database and put some indexes on the database. Then it will be very fast to make simple queries against your data. You don't need a lot of work to set up a database. You can create an SQLite database without requiring a separate process and it doesn't have a complicated installation process.
Call the open to the file from the calling method of the one you want to run. Pass the data as parameters to the method
If the files are structured, kinda configuration files, it might be good to use ConfigParser library, else if you have other structural format then I think it would be better to store all this data in JSON or XML and perform any necessary operations on your data

Categories