I have a query:
s = Search(using=client, index='myindex', doc_type='mytype')
s.query = Q('bool', must=[Q('match', BusinessUnit=bunit),
Q('range', **dicdate)])
res = s.execute()
return me 627033 lines, I want to convert this dictionary in a dataframe with 627033 lines
Based on your comment I think what you're looking for is size:
es.search(index="my-index", doc_type="mydocs", body="your search", size="1000")
I'm not sure if this will work for 627,033 lines -- you might need scroll for that.
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-scroll.html
If your request is likely to return more than 10,000 documents from Elasticsearch, you will need to use the scrolling function of Elasticsearch. Documentation and examples for this function are rather difficult to find, so I will provide you with a full, working example:
import pandas as pd
from elasticsearch import Elasticsearch
import elasticsearch.helpers
es = Elasticsearch('127.0.0.1',
http_auth=('my_username', 'my_password'),
port=9200)
body={"query": {"match_all": {}}}
results = elasticsearch.helpers.scan(es, query=body, index="my_index")
df = pd.DataFrame.from_dict([document['_source'] for document in results])
Simply edit the fields that start with "my_" to correspond to your own values
I found the solution by Phil B a good template for my situation. However, all results are returned as lists, rather than atomic data types. To get around this, I added the following helper function and code:
def flat_data(val):
if isinstance(val):
return val[0]
else:
return val
df = pd.DataFrame.from_dict([{k:flat_data(v) for (k,v) in document(['fields'].items()}
for document in results])
Related
first of all, thanks for this community and all advice we can retrieve, it's really appreciate!
This is my first venture into parallel processing and I have been looking into Dask by my own but I am having trouble actually coding it... to be honest I am really lost
In on of my project, I want to trigger URL and retrieve observations data (meteorological station) from xml files.
For each URL, I run some different process in order to: retreive data from URL, parsing XML information to dataframe, apply a filter and store data in MySQL database.
So i need to loop these process over thousands of URL (station)...
I wrote a sequential code , and it take 300s to finish computation which is really to long and not efficient.
As we are applying the same process for each station, I think I can speed-up all the computations, but I don't know where to start. I used delayed from dask but I don't think it's the best approach.
This is my code so far:
First I have some functions.
def xml_to_dataframe(ood_xml):
tmp_file = wget.download(ood_xml)
prstree = ETree.parse(tmp_file)
root = prstree.getroot()
################ Section to retrieve data for one station and apply parameter
all_obs = []
for obs in root.iter('observations'):
ood_observation = []
for n, param in enumerate(list_parameters):
x=obs.find(variable_to_check).text
ood_observation.append(x)
all_obs.append(ood_observation)
return(pd.DataFrame(all_obs, columns=list_parameters))
def filter_criteria(df,threshold,criteria):
if criteria in df.columns:
result = []
for index, row in df.iterrows():
if pd.to_numeric(row[criteria],errors='coerce') >= threshold:
result.append(index)
return result
else:
#print(criteria + ' parameter does not exist for this station !!! ')
return([])
def get_and_filter_data(filename,criteria,threshold):
try:
xmlToDf = xml_to_dataframe(filename)
final_df = xmlToDf.loc[filter_criteria(xmlToDf,threshold,criteria)]
some msql connection and instructions....
except:
pass
and then the main code I want to parallelise:
criteria = 'temperature'
threshold = 22
filenames =[url1.html, url2.html, url3.html]
for file in filenames:
get_and_filter_data(file,criteria,threshold)
Do you have any advice to do it ?
Many thanks for your help !
Guillaume
Not 100% sure this is what you are after, but one way is via delayed:
from dask import delayed, compute
delayeds = [delayed(get_and_filter_data)(file,criteria,threshold) for file in filenames]
results = compute(delayeds)
I have a pandas dataframe with strings that I'm using to query an API and return the results.
I'm trying to call the API using a function and .apply and then save the results from the api call into a csv file. The problem is that I'm trying to do 10000+ requests and my kernel/notebook crashes. Basically I'm trying to do a big operation and I'm guessing I'm running out of memory. So I'm trying to think of a way I can do these api calls and save the results and not have it all crash. My version with .apply works with a small amount of data but not once it gets larger.
So my notebook code currently looks something like this.
df = pd.read_csv('bigstringlist.csv')
df = df.loc[0:3000]
My function looks something like this.
def api_fetch_func(address):
sleep(.2)
API_PRIVATE = 'awewaefawefawef'
encoded = urllib.parse.quote(address)
query ='https://apitocall' + str(encoded) + \
'.json?limit=1&key=' \
+ API_PRIVATE
response = requests.get(query)
while True:
try:
jsonResponse = response.json()
break
except:
response = requests.get(query)
try:
return jsonResponse['results']
except:
return
else:
return
Then I'm calling the function like so
df['response_col'] = df['string_col'].apply(api_fetch_func)
Something tells me that .apply isn't the right thing to do here. Would be better if I just push the api responses into an array or another dataframe?
Should I just use .iterrows to loop over the list of strings and call the function? Something tells me .apply tries to jam too much into memory and that's why this doesn't work.
So I was going to try
results = []
for index, row in df.iterrows():
# call API
# push results to array
Or is there another way to do this?
If it's a memory issue, what I'd do is write the API calling function as a generator with the yield statement. Then, you can loop through the api_fetch_function generator and save smaller data frames for the csv files rather than holding everything in memory in one go.
for idx, response in api_fetch_generator():
if idx % 500 == 0:
df = create_df() # create a fresh df as you did above with 'string_col'.
df['response_col'] = df['string_col'].apply(response)
if (idx % 500 == 0) and idx != 0:
# Save the df using idx to control the file name
df.to_csv(f"response_batch_{idx / 500}.csv")
# Combine the csv's after everything is saved.
I need to convert a Google Cloud Datastore query result to a dataframe, to create a chart from the retrieved data. The query:
def fetch_times(limit):
start_date = '2019-10-08'
end_date = '2019-10-19'
query = datastore_client.query(kind='ParticleEvent')
query.add_filter(
'published_at', '>', start_date)
query.add_filter(
'published_at', '<', end_date)
query.order = ['-published_at']
times = query.fetch(limit=limit)
return times
creates a json like string of the results for each entity returned by the query:
Entity('ParticleEvent', 5942717456580608) {'gc_pub_sub_id': '438169950283983', 'data': '605', 'event': 'light intensity', 'published_at': '2019-10-11T14:37:45.407Z', 'device_id': 'e00fce6847be7713698287a1'}>
Thought I found something that would translate to json which I could convert to dataframe, but get an error that the properties attribute does not exist:
def to_json(gql_object):
result = []
for item in gql_object:
result.append(dict([(p, getattr(item, p)) for p in item.properties()]))
return json.dumps(result, cls=JSONEncoder)
Is there a way to iterate through the query results to get them into a dataframe either directly to a dataframe or by converting to json then to dataframe?
Datastore entities can be treated as Python base dictionaries! So you should be able to do something as simple as...
df = pd.DataFrame(datastore_entities)
...and pandas will do all the rest.
If you needed to convert the entity key, or any of its attributes to a column as well, you can pack them into the dictionary separately:
for e in entities:
e['entity_key'] = e.key
e['entity_key_name'] = e.key.name # for example
df = pd.DataFrame(entities)
You can use pd.read_json to read your json query output into a dataframe.
Assuming the output is the string that you have shared above, then the following approach can work.
#Extracting the beginning of the dictionary
startPos = line.find("{")
df = pd.DataFrame([eval(line[startPos:-1])])
Output looks like :
gc_pub_sub_id data event published_at \
0 438169950283983 605 light intensity 2019-10-11T14:37:45.407Z
device_id
0 e00fce6847be7713698287a1
Here, line[startPos:-1] is essentially the entire dictionary in that sthe string input. Using eval, we can convert it into an actual dictionary. Once we have that, it can be easily converted into a dataframe object
Original poster found a workaround, which is to convert each item in the query result object to string, and then manually parse the string to extract the needed data into a list.
The return value of the fetch function is google.cloud.datastore.query.Iterator which behaves like a List[dict] so the output of fetch can be passed directly into pd.DataFrame.
import pandas as pd
df = pd.DataFrame(fetch_times(10))
This is similar to #bkitej, but I added the use of the original poster's function.
I have a code column which I would like to pass to a web service and update two fields in the dataframe (dfMRD1['Cache_Ticker']and dfMRD1['Cache_Product'] with two values from the returned JSON (RbcSecurityDescription and RbcSecurityType1). I have achieved this by iteration but I'd like to know if there is a more efficient way to do it?
# http://postgre01:5002/bond/912828XU9
import requests
url = 'http://postgre01:5002/bond/'
def fastquery(code):
response = requests.get(url + code)
return response.json()
Here is the sample return call:
Here is the update of dfMRD1['Cache_Ticker']anddfMRD1['Cache_Product']
dfMRD1 = df[['code']].drop_duplicates()
dfMRD1['Cache_Ticker'] = ""
dfMRD1['Cache_Product'] = ""
for index, row in dfMRD1.iterrows():
result = fastquery(row['code'])
row['Cache_Ticker'] = result['RbcSecurityDescription']
row['Cache_Product'] = result['RbcSecurityType1']
display(dfMRD1.head(5))
Would it be best to just return the json array, unest it and dump all fields in its contents to another df which I can be join with dfMRD1? Best way to achieve this?
The most time-consuming part of your code is likely to be in making synchronous requests. Instead, you could leverage requests-futures to make asynchronous requests, construct the columns as lists of results and assign back to the DF. We have nothing to test with but the approach would look like this:
from requests_futures.sessions import FuturesSession
session = FuturesSession(max_workers = 10)
codes = df[['code']].drop_duplicates().values.tolist() # Take out of DF
url = 'http://postgre01:5002/bond/'
fire_requests = [session.get(url + code) for code in codes] # Async requests
responses = [item.result() for item in fire_requests] # Grab the results
dfMRD1['Cache_Ticker'] = [result['RbcSecurityDescription']
for result in responses]
dfMRD1['Cache_Product'] = [result['RbcSecurityType1']
for result in responses]
Depending on the size of the DF, you may get a lot of data in memory. If that becomes an issue, you'll want a background callback trimming your JSON responses as they come back.
I've asked this question differently before but there are some changes so I thought asking it again as a new question.
I have a structured data which only part of it is in json format but I need to map the entire data to an schemaRDD. The data looks like this:
03052015 04:13:20
{"recordType":"NEW","data":{"keycol":"val1","col2":"val2","col3":"val3"}
Each line starts with date followed by time and a json formatted text.
I need to map not only the text in json but also the date and time into the same structure.
I tried it in Python but obviously it doesn't work because Row does not take an RDD (jsonRDD in this case).
from pyspark.sql import SQLContext, Row
sqlContext = SQLContext(sc)
orderFile = sc.textFile(myfile)
orderLine = orderFile.map(lambda line: line.split(" ", 2))
anotherOrderLine = orderLine.map(lambda p: Row(date=p[0], time=p[1], content=sqlContext.jsonRDD(p[3])))
schemaOrder = sqlContext.inferSchema(anotherOrderLine)
schemaOrder.printSchema()
for x in schemaOrder.collect():
print x
The goal is to be able to run a query like this against the schemaRDD:
select date, time, data.keycol, data.val1, data.val2, data.val3 from myOrder
How can I map the entire line to a schemaRDD?
Any help is appreciated?
The simplest option would be to add this field to JSON and use jsonRDD
My data:
03052015 04:13:20 {"recordType":"NEW","data":{"keycol":"val1","col1":"val5","col2":"val3"}}
03062015 04:13:20 {"recordType":"NEW1","data":{"keycol":"val2","col1":"val6","col2":"val3"}}
03072015 04:13:20 {"recordType":"NEW2","data":{"keycol":"val3","col1":"val7","col2":"val3"}}
03082015 04:13:20 {"recordType":"NEW3","data":{"keycol":"val4","col1":"val8","col2":"val3"}}
Code:
import json
def transform(data):
ts = data[:18].strip()
jss = data[18:].strip()
jsj = json.loads(jss)
jsj['ts'] = ts
return json.dumps(jsj)
from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)
rdd = sc.textFile('/sparkdemo/sample.data')
tbl = sqlContext.jsonRDD(rdd.map(transform))
tbl.registerTempTable("myOrder")
sqlContext.sql("select ts, recordType, data.keycol, data.col1, data.col2 data from myOrder").collect()
Result:
[Row(ts=u'03052015 04:13:20', recordType=u'NEW', keycol=u'val1', col1=u'val5', data=u'val3'), Row(ts=u'03062015 04:13:20', recordType=u'NEW1', keycol=u'val2', col1=u'val6', data=u'val3'), Row(ts=u'03072015 04:13:20', recordType=u'NEW2', keycol=u'val3', col1=u'val7', data=u'val3'), Row(ts=u'03082015 04:13:20', recordType=u'NEW3', keycol=u'val4', col1=u'val8', data=u'val3')]
In your code there is a problem that you are calling jsonRDD for each of the rows, this is not correct - it accepts an RDD and returns SchemaRDD.
The sqlContext.jsonRDD creates a schema rdd from an RDD containing strings where each string contains a JSON representation. This code sample is from the SparkSQL documentation (https://spark.apache.org/docs/1.2.0/sql-programming-guide.html):
val anotherPeopleRDD = sc.parallelize("""{"name":"Yin","address":{"city":"Columbus","state":"Ohio"}}""" :: Nil)
val anotherPeople = sqlContext.jsonRDD(anotherPeopleRDD)
One of the cool things about jsonRDD is the fact that you can provide and additional parameter stating the JSONs schema, which should improve performance your performance. This can be don by creating an schemaRDD (just load a sample document) and then call the schemaRDD.schema method to get the schema.