I'm very new to Spark and Hadoop world. I've started learning these topics on my own from Internet. I wanted to know how we can perform outlier detection in Spark DataFrame given that a DataFrame in Spark is immutable? Is there any Spark package or module which can perform this? I'm using PySpark API for Spark, so I will be highly grateful if someone reply on how this can be done in PySpark. Will highly appreciate if I get a small code for performing outlier detection in Spark DataFrame in PySPark(Pyhton). Thanks a lot in advance!
To my knowledge, there is no a API neither a package that dedicated to detecting outliers as the data itself varies depending on the application. However, there are couple of known methods that all help to identify the outliers.
Let's first look at what the term outliers means, it simply refers to the extreme values that fall outside the scope/range of the observations. A good example of how these outliers can be seen is when visualizing the data in a histogram fashion or scatter plot, they can strongly influence the statics and much compress the meaningful data. Or they can be seen as a strong influence on the statistical summary of the data. such as after using the mean or the standard deviations.
This certainly will be misleading, the danger will be when we use training data that contain outliers, training will take longer time as the model will be struggling with the out-of-range values, hence we land in a less accurate model and poor result or 'never converging objective measure', i.e., comparing the output/scoring of the test and training with respect to training time or some accuracy value range.
Although, it is common to have outliers as an undesirable entities in your data, they still can be sign for anomalies and there their detection itself will be a method to spotting frauds or improving security.
Here are some k own methods for outliers detection (more details can be found in this good article):
Extreme Value Analysis,
Probabilistic and Statistical Models,
Linear Models: reduce the data dimension,
Proximity-based Models: mainly using clustering.
For the code, I suggest this good tutorial from mapr. ANd hope this answer helps. Good luck.
Related
I am trying to cluster retail data in order to extract groupings of customers based on 6 input features. The data has a shape of (1712594, 6) in the following format:
I've spilt the 'Department' categorical variable into binary n-dimensional array using Pandas get_dummies(). I'm aware this is not optimal but I just wanted to test it out before trying out Gower Distances.
The Elbow method gives the following output:
USING:
I'm using Python and Scikitlearn's KMeans because the dataset is so large and the more complex models are too computationally demanding for Google Colab.
OBSERVATINS:
I'm aware that columns 1-5 are extremely correlated but the data is limited Sales data and little to no data is captured about Customers. KMeans is very sensitive to inputs and this may affect the WCSS in the Elbow Method and cause the straight line but this is just an inclination and I don't have any quantitative backing to support the argument. I'm a Junior Data Scientist so knowledge about technical foundations of Clustering models and algorithms is still developing so forgive me if I'm missing something.
WHAT I'VE DONE:
There were massive outliers that were skewing the data (this is a Building Goods company and therefore most of their sale prices and quantities fall within a certain range. But ~5% of the data contained massive quantity entries (eg. a company buying 300000 bricks at R3/brick) or massive price entries (eg. company buying an expensive piece of equipment).
I've removed them and maintained ~94% of the data. I've also removed the returns made by customers (ie. negative quantities and prices) under the inclination that I may create a binary variable 'Returned' to capture this feature. Here are some metrics:
These are some metrics before removing the outliers:
and these are the metrics after Outlier removal:
KMeans uses Euclidean distances. I've used both Scikitlearn's StandardScaler and RobustScaler when scaling without any significant changes in both. Here are some distribution plots and scatter plots for the 3 numeric variables:
Anybody have any practical/intuitive reasoning as to why this may be happening? Open to any alternative methods to use as well and any help would be much appreciated! Thanks
I am not an expert, in my experience with scikit learn cluster analysis I find that when the features are really similar in magnitude K-means clustering usually does not fulfill the job. I will first try to use a StandardScaler to see if normalizing the data makes the clustering more efficient. the elbow plot shows that with more n_neighbors you get higher accuracy, and by the looks of the plot and the plots you provide, I would think the data is too similar, making it hard to separate into groups (clusters). Adding an additional feature made up of your data can do the trick.
I would try normalizing the data first, standard scaler.
If the groups are still not very clear with a simple plot of the data I would create another column made up of the combination of the others columns.
I would not suggest using DBSCAN, since the eps parameter (distance) would have to be tunned very finely and as you mention is more computationally expensive.
I have a bunch of contact data listing what members were contacted by what offer, which summarizes something like this:
To make sense of it (and to make it more scalable) I was considering creating dummy variables for each offer and then using a logistic model to see how different offers impact performance:
Before I embark too far on this journey I wanted to get some input if this is a sensible way to approach this (I have started playing around but and got a model output, but haven't dug into it yet). Someone suggested I use linear regression instead, but I'm not really sure about the approach for that in this case.
What I'm hoping to get are coefficients that are interpretable - so I can see that Mailing the 50% off offer in the 3d mailing is not as impactful as the $25 giftcard etc, and then do this at scale (lots of mailings with lots of different offers) to draw some conclusions about the impact of timing of different offers.
My concern is that I will end up with a fairly sparse matrix where only some combinations of the many possible are respresented, and what problems may arise from this. I've taken some online courses in ML but am new to it, and this is one of my first chances to work directly with it so I'm hoping I could create something useful out of this. I have access to lots and lots of data, it's just a matter of getting something basic out that can show some value. Maybe there's already some work on this or even some kind of library I can use?
Thanks for any help!
If your target variable is binary (1 or 0) as in the second chart, then a classification model is appropriate. Logistic Regression is a good first option, you could also a tree-based model like a decision tree classifier or a random forest.
Creating dummy variables is a good move; you could also convert the discounts to numerical values if you want to keep them in a single column, however this may not work so well for a linear model like logistic regression as the correlation will probably not be linear.
If you wanted to model the first chart directly you could use a linear regressions for predicting the conversion rate, I'm not sure about the difference is in doing this, it's actually something I've been wondering about for a while, you've motivated me to post a question on stats.stackexchange.com
I have some time series data which contains some seasonal trends and I want to use an ARIMA model to predict how this series will behave in the future.
In order to predict how my variable of interest (log_var) will behave I have taken a weekly, monthly and annual difference and then used these as the input to an ARIMA model.
Below is an example.
exog = np.column_stack([df_arima['log_var_diff_wk'],
df_arima['log_var_diff_mth'],
df_arima['log_var_diff_yr']])
model = ARIMA(df_arima['log_var'], exog = exog, order=(1,0,1))
results_ARIMA = model.fit()
I am doing this for several different data sources and in all of them I see great results, in the sense that if I plot log_var against results_ARIMA.fittedvalues for the training data then it matches very well (I tune p and q for each data source separately, but d is always 0 given that I have already taken the difference myself).
However, I then want to check what the predictions look like, and in order to do this I redfine exog to just be the 'test' dataset. For example, if I train the original ARIMA model on 2014-01-01 to 2016-01-01, the 'test' set would just be 2016-01-01 onwards.
My approach has worked well for some data sources (in the sense that I plot the forecast against the known values and the trends look sensible) but badly for others, although they are all the same 'kind' of data and they have just been taken from different geographical locations. In some of the locations it completely fails to catch obvious seasonal trends that occur again and again in the training data on the same dates each year. The ARIMA model always fits the training data well, it just seems that in some cases the predictions are completely useless.
I am now wondering if I am actually following the correct procedure to predict values from the ARIMA model. My approach is basically:
exog = np.column_stack([df_arima_predict['log_val_diff_wk'],
df_arima_predict['log_val_diff_mth'],
df_arima_predict['log_val_diff_yr']])
arima_predict = results_ARIMA.predict(start=training_cut_date, end = '2017-01-01', dynamic = False, exog = exog)
Is this the correct way to go about making predictions with ARIMA?
If so, is there a way I can try to understand why the predictions look very good in some datasets and terrible in others, when the ARIMA model seems to fit the training data just as well in both cases?
I have a similar problem atm which I have not entirely figured out yet. It seems including multiple seasonal terms in python is still a bit tricky. R does seem to have this capacity, see here. So, one suggestion I can give you is to try this with the more sophisticated functionality R provides for now (although that could require a large investment of time if you are not familiar with R yet).
Looking at your approach for modeling the seasonal patterns, taking the nth order difference scores does not give you seasonal constants, but rather some representation of the difference between the time points that you designate as seasonally related. If those differences are small, correcting for them might not have much impact on your modeling results. In such cases, model prediction might turn out fairly well. Conversely, if the differences are big, including them can easily distort prediction results. This could explain the variation you are seeing in your modeling results. Conceptually, then, what you'd want to do instead is represent the constants over time.
In the blog post referenced above, the author advocates the use of Fourier series to model the variance within each time period. Both the NumPy and SciPy packages offer routines for calculating the fast Fourier transform. However, as a non-mathematician I found it difficult to ascertain that the fast Fourier transform yielded the appropriate numbers.
In the end I opted to use the Welch signal decomposition form SciPy's signal module. What this does is return a spectral density analysis of your time series, from which you can deduce signal strength at various frequencies in your time series.
If you identify the peaks in the spectral density analysis which correspond to the seasonal frequencies you are trying to account for in your time series, you can use their frequencies and amplitudes to construct sine waves representing the seasonal variations. You can then include these in your ARIMA as exogenous variables, much like the Fourier terms in the blog post.
This is about as far as I have gotten myself at this point - right now I am trying to figure out whether I can get the statsmodels ARIMA process to use these sine waves, which specify a seasonal trend, as exogenous variables in my model (the documentation specifies they should not represent trends but hey, a guy can dream, right?) edit: This blog post by Rob Hyneman is also highly relevant, and explains some of the rationale behind including Fourier terms.
Sorry I'm not able to give you a solution that's proven to be effective within Python, but I hope this gives you some new ideas to control for that pesky seasonal variance.
TL;DR:
It seems python is not very well suited to handle multiple seasonal terms right now, R might be a better solution (see reference);
Using difference scores to account for seasonal trends seems not to capture the constant variance associated with the recurrence of the season;
One way to do this in python could be to use Fourier series representing seasonal trends (also see reference), which can be obtained using, among other ways, a Welch signal decomposition. How to use these as exogenous variables in an ARIMA to good effect is an open question, though.
Best of luck,
Evert
p.s.: I'll update if I find a way to get this to work in Python
I recently started working on Document clustering using SciKit module in python. However I am having a hard time understanding the basics of document clustering.
What I know ?
Document clustering is typically done using TF/IDF. Which essentially
converts the words in the documents to vector space model which is
then input to the algorithm.
There are many algorithms like k-means, neural networks, hierarchical
clustering to accomplish this.
My Data :
I am experimenting with linkedin data, each document would be the
linkedin profile summary, I would like to see if similar job
documents get clustered together.
Current Challenges:
My data has huge summary descriptions, which end up becoming 10000's
of words when I apply TF/IDF. Is there any proper way to handle this
high dimensional data.
K - means and other algorithms requires I specify the no. of clusters
( centroids ), in my case I do not know the number of clusters
upfront. This I believe is a completely unsupervised learning. Are
there algorithms which can determine the no. of clusters themselves?
I've never worked with document clustering before, if you are aware
of tutorials , textbooks or articles which address this issue, please
feel free to suggest.
I went through the code on SciKit webpage, it consists of too many technical words which I donot understand, if you guys have any code with good explanation or comments please share. Thanks in advance.
My data has huge summary descriptions, which end up becoming 10000's of words when I apply TF/IDF. Is there any proper way to handle this high dimensional data.
My first suggestion is that you don't unless you absolutely have to, due to memory or execution time problems.
If you must handle it, you should use dimensionality reduction (PCA for example) or feature selection (probably better in your case, see chi2 for example)
K - means and other algorithms requires I specify the no. of clusters ( centroids ), in my case I do not know the number of clusters upfront. This I believe is a completely unsupervised learning. Are there algorithms which can determine the no. of clusters themselves?
If you look at the clustering algorithms available in scikit-learn, you'll see that not all of them require that you specify the number of clusters.
Another one that does not is hierarchical clustering, implemented in scipy. Also see this answer.
I would also suggest that you use KMeans and try to manually tweak the number of clusters until you are satisfied with the results.
I've never worked with document clustering before, if you are aware of tutorials , textbooks or articles which address this issue, please feel free to suggest.
Scikit has a lot of tutorials for working with text data, just use the "text data" search query on their site. One is for KMeans, others are for supervised learning, but I suggest you go over those too to get more familiar with the library. From a coding, style and syntax POV, unsupervised and supervised learning are pretty similar in scikit-learn, in my opinion.
Document clustering is typically done using TF/IDF. Which essentially converts the words in the documents to vector space model which is then input to the algorithm.
Minor correction here: TF-IDF has nothing to do with clustering. It is simply a method for turning text data into numerical data. It does not care what you do with that data (clustering, classification, regression, search engine things etc.) afterwards.
I understand the message you were trying to get across, but it is incorrect to say that "clustering is done using TF-IDF". It's done using a clustering algorithm, TF-IDF only plays a preprocessing role in document clustering.
For the large matrix after TF/IDF transformation, consider using sparse matrix.
You could try different k values. I am not an expert in unsupervised clustering algorithms, but I bet with such algorithms and different parameters, you could also end up with a varied number of clusters.
This link might be useful. It provides good amount of explanation for k-means clustering with a visual output http://brandonrose.org/clustering
I am currently working on a project, a simple sentiment analyzer such that there will be 2 and 3 classes in separate cases. I am using a corpus that is pretty rich in the means of unique words (around 200.000). I used bag-of-words method for feature selection and to reduce the number of unique features, an elimination is done due to a threshold value of frequency of occurrence. The final set of features includes around 20.000 features, which is actually a 90% decrease, but not enough for intended accuracy of test-prediction. I am using LibSVM and SVM-light in turn for training and prediction (both linear and RBF kernel) and also Python and Bash in general.
The highest accuracy observed so far is around 75% and I need at least 90%. This is the case for binary classification. For multi-class training, the accuracy falls to ~60%. I need at least 90% at both cases and can not figure how to increase it: via optimizing training parameters or via optimizing feature selection?
I have read articles about feature selection in text classification and what I found is that three different methods are used, which have actually a clear correlation among each other. These methods are as follows:
Frequency approach of bag-of-words (BOW)
Information Gain (IG)
X^2 Statistic (CHI)
The first method is already the one I use, but I use it very simply and need guidance for a better use of it in order to obtain high enough accuracy. I am also lacking knowledge about practical implementations of IG and CHI and looking for any help to guide me in that way.
Thanks a lot, and if you need any additional info for help, just let me know.
#larsmans: Frequency Threshold: I am looking for the occurrences of unique words in examples, such that if a word is occurring in different examples frequently enough, it is included in the feature set as a unique feature.
#TheManWithNoName: First of all thanks for your effort in explaining the general concerns of document classification. I examined and experimented all the methods you bring forward and others. I found Proportional Difference (PD) method the best for feature selection, where features are uni-grams and Term Presence (TP) for the weighting (I didn't understand why you tagged Term-Frequency-Inverse-Document-Frequency (TF-IDF) as an indexing method, I rather consider it as a feature weighting approach). Pre-processing is also an important aspect for this task as you mentioned. I used certain types of string elimination for refining the data as well as morphological parsing and stemming. Also note that I am working on Turkish, which has different characteristics compared to English. Finally, I managed to reach ~88% accuracy (f-measure) for binary classification and ~84% for multi-class. These values are solid proofs of the success of the model I used. This is what I have done so far. Now working on clustering and reduction models, have tried LDA and LSI and moving on to moVMF and maybe spherical models (LDA + moVMF), which seems to work better on corpus those have objective nature, like news corpus. If you have any information and guidance on these issues, I will appreciate. I need info especially to setup an interface (python oriented, open-source) between feature space dimension reduction methods (LDA, LSI, moVMF etc.) and clustering methods (k-means, hierarchical etc.).
This is probably a bit late to the table, but...
As Bee points out and you are already aware, the use of SVM as a classifier is wasted if you have already lost the information in the stages prior to classification. However, the process of text classification requires much more that just a couple of stages and each stage has significant effects on the result. Therefore, before looking into more complicated feature selection measures there are a number of much simpler possibilities that will typically require much lower resource consumption.
Do you pre-process the documents before performing tokensiation/representation into the bag-of-words format? Simply removing stop words or punctuation may improve accuracy considerably.
Have you considered altering your bag-of-words representation to use, for example, word pairs or n-grams instead? You may find that you have more dimensions to begin with but that they condense down a lot further and contain more useful information.
Its also worth noting that dimension reduction is feature selection/feature extraction. The difference is that feature selection reduces the dimensions in a univariate manner, i.e. it removes terms on an individual basis as they currently appear without altering them, whereas feature extraction (which I think Ben Allison is referring to) is multivaritate, combining one or more single terms together to produce higher orthangonal terms that (hopefully) contain more information and reduce the feature space.
Regarding your use of document frequency, are you merely using the probability/percentage of documents that contain a term or are you using the term densities found within the documents? If category one has only 10 douments and they each contain a term once, then category one is indeed associated with the document. However, if category two has only 10 documents that each contain the same term a hundred times each, then obviously category two has a much higher relation to that term than category one. If term densities are not taken into account this information is lost and the fewer categories you have the more impact this loss with have. On a similar note, it is not always prudent to only retain terms that have high frequencies, as they may not actually be providing any useful information. For example if a term appears a hundred times in every document, then it is considered a noise term and, while it looks important, there is no practical value in keeping it in your feature set.
Also how do you index the data, are you using the Vector Space Model with simple boolean indexing or a more complicated measure such as TF-IDF? Considering the low number of categories in your scenario a more complex measure will be beneficial as they can account for term importance for each category in relation to its importance throughout the entire dataset.
Personally I would experiment with some of the above possibilities first and then consider tweaking the feature selection/extraction with a (or a combination of) complex equations if you need an additional performance boost.
Additional
Based on the new information, it sounds as though you are on the right track and 84%+ accuracy (F1 or BEP - precision and recall based for multi-class problems) is generally considered very good for most datasets. It might be that you have successfully acquired all information rich features from the data already, or that a few are still being pruned.
Having said that, something that can be used as a predictor of how good aggressive dimension reduction may be for a particular dataset is 'Outlier Count' analysis, which uses the decline of Information Gain in outlying features to determine how likely it is that information will be lost during feature selection. You can use it on the raw and/or processed data to give an estimate of how aggressively you should aim to prune features (or unprune them as the case may be). A paper describing it can be found here:
Paper with Outlier Count information
With regards to describing TF-IDF as an indexing method, you are correct in it being a feature weighting measure, but I consider it to be used mostly as part of the indexing process (though it can also be used for dimension reduction). The reasoning for this is that some measures are better aimed toward feature selection/extraction, while others are preferable for feature weighting specifically in your document vectors (i.e. the indexed data). This is generally due to dimension reduction measures being determined on a per category basis, whereas index weighting measures tend to be more document orientated to give superior vector representation.
In respect to LDA, LSI and moVMF, I'm afraid I have too little experience of them to provide any guidance. Unfortunately I've also not worked with Turkish datasets or the python language.
I would recommend dimensionality reduction instead of feature selection. Consider either singular value decomposition, principal component analysis, or even better considering it's tailored for bag-of-words representations, Latent Dirichlet Allocation. This will allow you to notionally retain representations that include all words, but to collapse them to fewer dimensions by exploiting similarity (or even synonymy-type) relations between them.
All these methods have fairly standard implementations that you can get access to and run---if you let us know which language you're using, I or someone else will be able to point you in the right direction.
There's a python library for feature selection
TextFeatureSelection. This library provides discriminatory power in the form of score for each word token, bigram, trigram etc.
Those who are aware of feature selection methods in machine learning, it is based on filter method and provides ML engineers required tools to improve the classification accuracy in their NLP and deep learning models. It has 4 methods namely Chi-square, Mutual information, Proportional difference and Information gain to help select words as features before being fed into machine learning classifiers.
from TextFeatureSelection import TextFeatureSelection
#Multiclass classification problem
input_doc_list=['i am very happy','i just had an awesome weekend','this is a very difficult terrain to trek. i wish i stayed back at home.','i just had lunch','Do you want chips?']
target=['Positive','Positive','Negative','Neutral','Neutral']
fsOBJ=TextFeatureSelection(target=target,input_doc_list=input_doc_list)
result_df=fsOBJ.getScore()
print(result_df)
#Binary classification
input_doc_list=['i am content with this location','i am having the time of my life','you cannot learn machine learning without linear algebra','i want to go to mars']
target=[1,1,0,1]
fsOBJ=TextFeatureSelection(target=target,input_doc_list=input_doc_list)
result_df=fsOBJ.getScore()
print(result_df)
Edit:
It now has genetic algorithm for feature selection as well.
from TextFeatureSelection import TextFeatureSelectionGA
#Input documents: doc_list
#Input labels: label_list
getGAobj=TextFeatureSelectionGA(percentage_of_token=60)
best_vocabulary=getGAobj.getGeneticFeatures(doc_list=doc_list,label_list=label_list)
Edit2
There is another method nowTextFeatureSelectionEnsemble, which combines feature selection while ensembling. It does feature selection for base models through document frequency thresholds. At ensemble layer, it uses genetic algorithm to identify best combination of base models and keeps only those.
from TextFeatureSelection import TextFeatureSelectionEnsemble
imdb_data=pd.read_csv('../input/IMDB Dataset.csv')
le = LabelEncoder()
imdb_data['labels'] = le.fit_transform(imdb_data['sentiment'].values)
#convert raw text and labels to python list
doc_list=imdb_data['review'].tolist()
label_list=imdb_data['labels'].tolist()
#Initialize parameter for TextFeatureSelectionEnsemble and start training
gaObj=TextFeatureSelectionEnsemble(doc_list,label_list,n_crossvalidation=2,pickle_path='/home/user/folder/',average='micro',base_model_list=['LogisticRegression','RandomForestClassifier','ExtraTreesClassifier','KNeighborsClassifier'])
best_columns=gaObj.doTFSE()`
Check the project for details: https://pypi.org/project/TextFeatureSelection/
Linear svm is recommended for high dimensional features. Based on my experience the ultimate limitation of SVM accuracy depends on the positive and negative "features". You can do a grid search (or in the case of linear svm you can just search for the best cost value) to find the optimal parameters for maximum accuracy, but in the end you are limited by the separability of your feature-sets. The fact that you are not getting 90% means that you still have some work to do finding better features to describe your members of the classes.
I'm sure this is way too late to be of use to the poster, but perhaps it will be useful to someone else. The chi-squared approach to feature reduction is pretty simple to implement. Assuming BoW binary classification into classes C1 and C2, for each feature f in candidate_features calculate the freq of f in C1; calculate total words C1; repeat calculations for C2; Calculate a chi-sqaure determine filter candidate_features based on whether p-value is below a certain threshold (e.g. p < 0.05). A tutorial using Python and nltk can been seen here: http://streamhacker.com/2010/06/16/text-classification-sentiment-analysis-eliminate-low-information-features/ (though if I remember correctly, I believe the author incorrectly applies this technique to his test data, which biases the reported results).