Related
Given a single item, how do I count occurrences of it in a list, in Python?
A related but different problem is counting occurrences of each different element in a collection, getting a dictionary or list as a histogram result instead of a single integer. For that problem, see Using a dictionary to count the items in a list.
If you only want a single item's count, use the count method:
>>> [1, 2, 3, 4, 1, 4, 1].count(1)
3
Important: this is very slow if you are counting multiple different items
Each count call goes over the entire list of n elements. Calling count in a loop n times means n * n total checks, which can be catastrophic for performance.
If you want to count multiple items, use Counter, which only does n total checks.
Use Counter if you are using Python 2.7 or 3.x and you want the number of occurrences for each element:
>>> from collections import Counter
>>> z = ['blue', 'red', 'blue', 'yellow', 'blue', 'red']
>>> Counter(z)
Counter({'blue': 3, 'red': 2, 'yellow': 1})
Counting the occurrences of one item in a list
For counting the occurrences of just one list item you can use count()
>>> l = ["a","b","b"]
>>> l.count("a")
1
>>> l.count("b")
2
Counting the occurrences of all items in a list is also known as "tallying" a list, or creating a tally counter.
Counting all items with count()
To count the occurrences of items in l one can simply use a list comprehension and the count() method
[[x,l.count(x)] for x in set(l)]
(or similarly with a dictionary dict((x,l.count(x)) for x in set(l)))
Example:
>>> l = ["a","b","b"]
>>> [[x,l.count(x)] for x in set(l)]
[['a', 1], ['b', 2]]
>>> dict((x,l.count(x)) for x in set(l))
{'a': 1, 'b': 2}
Counting all items with Counter()
Alternatively, there's the faster Counter class from the collections library
Counter(l)
Example:
>>> l = ["a","b","b"]
>>> from collections import Counter
>>> Counter(l)
Counter({'b': 2, 'a': 1})
How much faster is Counter?
I checked how much faster Counter is for tallying lists. I tried both methods out with a few values of n and it appears that Counter is faster by a constant factor of approximately 2.
Here is the script I used:
from __future__ import print_function
import timeit
t1=timeit.Timer('Counter(l)', \
'import random;import string;from collections import Counter;n=1000;l=[random.choice(string.ascii_letters) for x in range(n)]'
)
t2=timeit.Timer('[[x,l.count(x)] for x in set(l)]',
'import random;import string;n=1000;l=[random.choice(string.ascii_letters) for x in range(n)]'
)
print("Counter(): ", t1.repeat(repeat=3,number=10000))
print("count(): ", t2.repeat(repeat=3,number=10000)
And the output:
Counter(): [0.46062711701961234, 0.4022796869976446, 0.3974247490405105]
count(): [7.779430688009597, 7.962715800967999, 8.420845870045014]
Another way to get the number of occurrences of each item, in a dictionary:
dict((i, a.count(i)) for i in a)
Given an item, how can I count its occurrences in a list in Python?
Here's an example list:
>>> l = list('aaaaabbbbcccdde')
>>> l
['a', 'a', 'a', 'a', 'a', 'b', 'b', 'b', 'b', 'c', 'c', 'c', 'd', 'd', 'e']
list.count
There's the list.count method
>>> l.count('b')
4
This works fine for any list. Tuples have this method as well:
>>> t = tuple('aabbbffffff')
>>> t
('a', 'a', 'b', 'b', 'b', 'f', 'f', 'f', 'f', 'f', 'f')
>>> t.count('f')
6
collections.Counter
And then there's collections.Counter. You can dump any iterable into a Counter, not just a list, and the Counter will retain a data structure of the counts of the elements.
Usage:
>>> from collections import Counter
>>> c = Counter(l)
>>> c['b']
4
Counters are based on Python dictionaries, their keys are the elements, so the keys need to be hashable. They are basically like sets that allow redundant elements into them.
Further usage of collections.Counter
You can add or subtract with iterables from your counter:
>>> c.update(list('bbb'))
>>> c['b']
7
>>> c.subtract(list('bbb'))
>>> c['b']
4
And you can do multi-set operations with the counter as well:
>>> c2 = Counter(list('aabbxyz'))
>>> c - c2 # set difference
Counter({'a': 3, 'c': 3, 'b': 2, 'd': 2, 'e': 1})
>>> c + c2 # addition of all elements
Counter({'a': 7, 'b': 6, 'c': 3, 'd': 2, 'e': 1, 'y': 1, 'x': 1, 'z': 1})
>>> c | c2 # set union
Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1, 'y': 1, 'x': 1, 'z': 1})
>>> c & c2 # set intersection
Counter({'a': 2, 'b': 2})
Silly answer, sum
There are good builtin answers, but this example is slightly instructive. Here we sum all the occurences where the character, c, is equal to 'b':
>>> sum(c == 'b' for c in l)
4
Not great for this use-case, but if you need to have a count of iterables where the case is True it works perfectly fine to sum the boolean results, since True is equivalent to 1.
Why not pandas?
Another answer suggests:
Why not use pandas?
Pandas is a common library, but it's not in the standard library. Adding it as a requirement is non-trivial.
There are builtin solutions for this use-case in the list object itself as well as in the standard library.
If your project does not already require pandas, it would be foolish to make it a requirement just for this functionality.
I've compared all suggested solutions (and a few new ones) with perfplot (a small project of mine).
Counting one item
For large enough arrays, it turns out that
numpy.sum(numpy.array(a) == 1)
is slightly faster than the other solutions.
Counting all items
As established before,
numpy.bincount(a)
is what you want.
Code to reproduce the plots:
from collections import Counter
from collections import defaultdict
import numpy
import operator
import pandas
import perfplot
def counter(a):
return Counter(a)
def count(a):
return dict((i, a.count(i)) for i in set(a))
def bincount(a):
return numpy.bincount(a)
def pandas_value_counts(a):
return pandas.Series(a).value_counts()
def occur_dict(a):
d = {}
for i in a:
if i in d:
d[i] = d[i]+1
else:
d[i] = 1
return d
def count_unsorted_list_items(items):
counts = defaultdict(int)
for item in items:
counts[item] += 1
return dict(counts)
def operator_countof(a):
return dict((i, operator.countOf(a, i)) for i in set(a))
perfplot.show(
setup=lambda n: list(numpy.random.randint(0, 100, n)),
n_range=[2**k for k in range(20)],
kernels=[
counter, count, bincount, pandas_value_counts, occur_dict,
count_unsorted_list_items, operator_countof
],
equality_check=None,
logx=True,
logy=True,
)
from collections import Counter
from collections import defaultdict
import numpy
import operator
import pandas
import perfplot
def counter(a):
return Counter(a)
def count(a):
return dict((i, a.count(i)) for i in set(a))
def bincount(a):
return numpy.bincount(a)
def pandas_value_counts(a):
return pandas.Series(a).value_counts()
def occur_dict(a):
d = {}
for i in a:
if i in d:
d[i] = d[i] + 1
else:
d[i] = 1
return d
def count_unsorted_list_items(items):
counts = defaultdict(int)
for item in items:
counts[item] += 1
return dict(counts)
def operator_countof(a):
return dict((i, operator.countOf(a, i)) for i in set(a))
b = perfplot.bench(
setup=lambda n: list(numpy.random.randint(0, 100, n)),
n_range=[2 ** k for k in range(20)],
kernels=[
counter,
count,
bincount,
pandas_value_counts,
occur_dict,
count_unsorted_list_items,
operator_countof,
],
equality_check=None,
)
b.save("out.png")
b.show()
list.count(x) returns the number of times x appears in a list
see:
http://docs.python.org/tutorial/datastructures.html#more-on-lists
If you want to count all values at once you can do it very fast using numpy arrays and bincount as follows
import numpy as np
a = np.array([1, 2, 3, 4, 1, 4, 1])
np.bincount(a)
which gives
>>> array([0, 3, 1, 1, 2])
Why not using Pandas?
import pandas as pd
my_list = ['a', 'b', 'c', 'd', 'a', 'd', 'a']
# converting the list to a Series and counting the values
my_count = pd.Series(my_list).value_counts()
my_count
Output:
a 3
d 2
b 1
c 1
dtype: int64
If you are looking for a count of a particular element, say a, try:
my_count['a']
Output:
3
If you can use pandas, then value_counts is there for rescue.
>>> import pandas as pd
>>> a = [1, 2, 3, 4, 1, 4, 1]
>>> pd.Series(a).value_counts()
1 3
4 2
3 1
2 1
dtype: int64
It automatically sorts the result based on frequency as well.
If you want the result to be in a list of list, do as below
>>> pd.Series(a).value_counts().reset_index().values.tolist()
[[1, 3], [4, 2], [3, 1], [2, 1]]
I had this problem today and rolled my own solution before I thought to check SO. This:
dict((i,a.count(i)) for i in a)
is really, really slow for large lists. My solution
def occurDict(items):
d = {}
for i in items:
if i in d:
d[i] = d[i]+1
else:
d[i] = 1
return d
is actually a bit faster than the Counter solution, at least for Python 2.7.
Count of all elements with itertools.groupby()
Antoher possiblity for getting the count of all elements in the list could be by means of itertools.groupby().
With "duplicate" counts
from itertools import groupby
L = ['a', 'a', 'a', 't', 'q', 'a', 'd', 'a', 'd', 'c'] # Input list
counts = [(i, len(list(c))) for i,c in groupby(L)] # Create value-count pairs as list of tuples
print(counts)
Returns
[('a', 3), ('t', 1), ('q', 1), ('a', 1), ('d', 1), ('a', 1), ('d', 1), ('c', 1)]
Notice how it combined the first three a's as the first group, while other groups of a are present further down the list. This happens because the input list L was not sorted. This can be a benefit sometimes if the groups should in fact be separate.
With unique counts
If unique group counts are desired, just sort the input list:
counts = [(i, len(list(c))) for i,c in groupby(sorted(L))]
print(counts)
Returns
[('a', 5), ('c', 1), ('d', 2), ('q', 1), ('t', 1)]
Note: For creating unique counts, many of the other answers provide easier and more readable code compared to the groupby solution. But it is shown here to draw a parallel to the duplicate count example.
Although it is very old question, since i didn't find a one liner, i made one.
# original numbers in list
l = [1, 2, 2, 3, 3, 3, 4]
# empty dictionary to hold pair of number and its count
d = {}
# loop through all elements and store count
[ d.update( {i:d.get(i, 0)+1} ) for i in l ]
print(d)
# {1: 1, 2: 2, 3: 3, 4: 1}
# Python >= 2.6 (defaultdict) && < 2.7 (Counter, OrderedDict)
from collections import defaultdict
def count_unsorted_list_items(items):
"""
:param items: iterable of hashable items to count
:type items: iterable
:returns: dict of counts like Py2.7 Counter
:rtype: dict
"""
counts = defaultdict(int)
for item in items:
counts[item] += 1
return dict(counts)
# Python >= 2.2 (generators)
def count_sorted_list_items(items):
"""
:param items: sorted iterable of items to count
:type items: sorted iterable
:returns: generator of (item, count) tuples
:rtype: generator
"""
if not items:
return
elif len(items) == 1:
yield (items[0], 1)
return
prev_item = items[0]
count = 1
for item in items[1:]:
if prev_item == item:
count += 1
else:
yield (prev_item, count)
count = 1
prev_item = item
yield (item, count)
return
import unittest
class TestListCounters(unittest.TestCase):
def test_count_unsorted_list_items(self):
D = (
([], []),
([2], [(2,1)]),
([2,2], [(2,2)]),
([2,2,2,2,3,3,5,5], [(2,4), (3,2), (5,2)]),
)
for inp, exp_outp in D:
counts = count_unsorted_list_items(inp)
print inp, exp_outp, counts
self.assertEqual(counts, dict( exp_outp ))
inp, exp_outp = UNSORTED_WIN = ([2,2,4,2], [(2,3), (4,1)])
self.assertEqual(dict( exp_outp ), count_unsorted_list_items(inp) )
def test_count_sorted_list_items(self):
D = (
([], []),
([2], [(2,1)]),
([2,2], [(2,2)]),
([2,2,2,2,3,3,5,5], [(2,4), (3,2), (5,2)]),
)
for inp, exp_outp in D:
counts = list( count_sorted_list_items(inp) )
print inp, exp_outp, counts
self.assertEqual(counts, exp_outp)
inp, exp_outp = UNSORTED_FAIL = ([2,2,4,2], [(2,3), (4,1)])
self.assertEqual(exp_outp, list( count_sorted_list_items(inp) ))
# ... [(2,2), (4,1), (2,1)]
Below are the three solutions:
Fastest is using a for loop and storing it in a Dict.
import time
from collections import Counter
def countElement(a):
g = {}
for i in a:
if i in g:
g[i] +=1
else:
g[i] =1
return g
z = [1,1,1,1,2,2,2,2,3,3,4,5,5,234,23,3,12,3,123,12,31,23,13,2,4,23,42,42,34,234,23,42,34,23,423,42,34,23,423,4,234,23,42,34,23,4,23,423,4,23,4]
#Solution 1 - Faster
st = time.monotonic()
for i in range(1000000):
b = countElement(z)
et = time.monotonic()
print(b)
print('Simple for loop and storing it in dict - Duration: {}'.format(et - st))
#Solution 2 - Fast
st = time.monotonic()
for i in range(1000000):
a = Counter(z)
et = time.monotonic()
print (a)
print('Using collections.Counter - Duration: {}'.format(et - st))
#Solution 3 - Slow
st = time.monotonic()
for i in range(1000000):
g = dict([(i, z.count(i)) for i in set(z)])
et = time.monotonic()
print(g)
print('Using list comprehension - Duration: {}'.format(et - st))
Result
#Solution 1 - Faster
{1: 4, 2: 5, 3: 4, 4: 6, 5: 2, 234: 3, 23: 10, 12: 2, 123: 1, 31: 1, 13: 1, 42: 5, 34: 4, 423: 3}
Simple for loop and storing it in dict - Duration: 12.032000000000153
#Solution 2 - Fast
Counter({23: 10, 4: 6, 2: 5, 42: 5, 1: 4, 3: 4, 34: 4, 234: 3, 423: 3, 5: 2, 12: 2, 123: 1, 31: 1, 13: 1})
Using collections.Counter - Duration: 15.889999999999418
#Solution 3 - Slow
{1: 4, 2: 5, 3: 4, 4: 6, 5: 2, 34: 4, 423: 3, 234: 3, 42: 5, 12: 2, 13: 1, 23: 10, 123: 1, 31: 1}
Using list comprehension - Duration: 33.0
It was suggested to use numpy's bincount, however it works only for 1d arrays with non-negative integers. Also, the resulting array might be confusing (it contains the occurrences of the integers from min to max of the original list, and sets to 0 the missing integers).
A better way to do it with numpy is to use the unique function with the attribute return_counts set to True. It returns a tuple with an array of the unique values and an array of the occurrences of each unique value.
# a = [1, 1, 0, 2, 1, 0, 3, 3]
a_uniq, counts = np.unique(a, return_counts=True) # array([0, 1, 2, 3]), array([2, 3, 1, 2]
and then we can pair them as
dict(zip(a_uniq, counts)) # {0: 2, 1: 3, 2: 1, 3: 2}
It also works with other data types and "2d lists", e.g.
>>> a = [['a', 'b', 'b', 'b'], ['a', 'c', 'c', 'a']]
>>> dict(zip(*np.unique(a, return_counts=True)))
{'a': 3, 'b': 3, 'c': 2}
To count the number of diverse elements having a common type:
li = ['A0','c5','A8','A2','A5','c2','A3','A9']
print sum(1 for el in li if el[0]=='A' and el[1] in '01234')
gives
3 , not 6
You can also use countOf method of a built-in module operator.
>>> import operator
>>> operator.countOf([1, 2, 3, 4, 1, 4, 1], 1)
3
I would use filter(), take Lukasz's example:
>>> lst = [1, 2, 3, 4, 1, 4, 1]
>>> len(filter(lambda x: x==1, lst))
3
use %timeit to see which operation is more efficient. np.array counting operations should be faster.
from collections import Counter
mylist = [1,7,7,7,3,9,9,9,7,9,10,0]
types_counts=Counter(mylist)
print(types_counts)
May not be the most efficient, requires an extra pass to remove duplicates.
Functional implementation :
arr = np.array(['a','a','b','b','b','c'])
print(set(map(lambda x : (x , list(arr).count(x)) , arr)))
returns :
{('c', 1), ('b', 3), ('a', 2)}
or return as dict :
print(dict(map(lambda x : (x , list(arr).count(x)) , arr)))
returns :
{'b': 3, 'c': 1, 'a': 2}
Given a list X
import numpy as np
X = [1, -1, 1, -1, 1]
The dictionary which shows i: frequency(i) for elements of this list is:
{i:X.count(i) for i in np.unique(X)}
Output:
{-1: 2, 1: 3}
Alternatively, you can also implement the counter by yourself. This is the way I do:
item_list = ['me', 'me', 'you', 'you', 'you', 'they']
occ_dict = {}
for item in item_list:
if item not in occ_dict:
occ_dict[item] = 1
else:
occ_dict[item] +=1
print(occ_dict)
Output: {'me': 2, 'you': 3, 'they': 1}
mot = ["compte", "france", "zied"]
lst = ["compte", "france", "france", "france", "france"]
dict((x, lst.count(x)) for x in set(mot))
this gives
{'compte': 1, 'france': 4, 'zied': 0}
sum([1 for elem in <yourlist> if elem==<your_value>])
This will return the amount of occurences of your_value
test = [409.1, 479.0, 340.0, 282.4, 406.0, 300.0, 374.0, 253.3, 195.1, 269.0, 329.3, 250.7, 250.7, 345.3, 379.3, 275.0, 215.2, 300.0]
for i in test:
print('{} numbers {}'.format(i, test.count(i)))
import pandas as pd
test = [409.1, 479.0, 340.0, 282.4, 406.0, 300.0, 374.0, 253.3, 195.1, 269.0, 329.3, 250.7, 250.7, 345.3, 379.3, 275.0, 215.2, 300.0]
#turning the list into a temporary dataframe
test = pd.DataFrame(test)
#using the very convenient value_counts() function
df_counts = test.value_counts()
df_counts
then you can use df_counts.index and df_counts.values to get the data.
x = ['Jess', 'Jack', 'Mary', 'Sophia', 'Karen',
'Addison', 'Joseph','Jack', 'Jack', 'Eric', 'Ilona', 'Jason']
the_item = input('Enter the item that you wish to find : ')
how_many_times = 0
for occurrence in x:
if occurrence == the_item :
how_many_times += 1
print('The occurrence of', the_item, 'in', x,'is',how_many_times)
Created a list of names wherein the name 'Jack' is repeated.
In order to check its Occurrence, I ran a for loop in the list named x.
Upon each iteration, if the loop variable attains the value same that of received from the user and stored in the variable the_item, the variable how_many_times gets incremented by 1.
After attaining some value...We print how_many_times which stores the value of the occurance of the word 'jack'
def countfrequncyinarray(arr1):
r=len(arr1)
return {i:arr1.count(i) for i in range(1,r+1)}
arr1=[4,4,4,4]
a=countfrequncyinarray(arr1)
print(a)
How else to "combine" multiple Counter but only taking the maximum value for each key for the "combined" Counter?
Given a couple of Counters as such:
>>> from collections import Counter
>>> x = Counter([('a'), ('a', 'bc'), ('a', 'bc'), ('xyz', 'hooli')])
>>> y = Counter([('a'), ('a'), ('a'), ('asd', 'asd')])
I could do this to add them up:
>>> x + y
Counter({'a': 4, ('a', 'bc'): 2, ('asd', 'asd'): 1, ('xyz', 'hooli'): 1})
But if my aim is to get combine the Counters but if they have the same key, the goal is NOT to add the values up but instead take the max of it. How do I do so?
I've tried the following code:
>>> z = Counter()
>>> for c in [x,y]:
... for k in c:
... z[k] = max(z.get(k,0), c[k])
...
>>> z
Counter({'a': 3, ('a', 'bc'): 2, ('asd', 'asd'): 1, ('xyz', 'hooli'): 1})
But is there other way to achieve the same output?
The Counter union operator (|) returns the maximum counts:
>>> x | y
Counter({'a': 3, ('a', 'bc'): 2, ('xyz', 'hooli'): 1, ('asd', 'asd'): 1})
Given a single item, how do I count occurrences of it in a list, in Python?
A related but different problem is counting occurrences of each different element in a collection, getting a dictionary or list as a histogram result instead of a single integer. For that problem, see Using a dictionary to count the items in a list.
If you only want a single item's count, use the count method:
>>> [1, 2, 3, 4, 1, 4, 1].count(1)
3
Important: this is very slow if you are counting multiple different items
Each count call goes over the entire list of n elements. Calling count in a loop n times means n * n total checks, which can be catastrophic for performance.
If you want to count multiple items, use Counter, which only does n total checks.
Use Counter if you are using Python 2.7 or 3.x and you want the number of occurrences for each element:
>>> from collections import Counter
>>> z = ['blue', 'red', 'blue', 'yellow', 'blue', 'red']
>>> Counter(z)
Counter({'blue': 3, 'red': 2, 'yellow': 1})
Counting the occurrences of one item in a list
For counting the occurrences of just one list item you can use count()
>>> l = ["a","b","b"]
>>> l.count("a")
1
>>> l.count("b")
2
Counting the occurrences of all items in a list is also known as "tallying" a list, or creating a tally counter.
Counting all items with count()
To count the occurrences of items in l one can simply use a list comprehension and the count() method
[[x,l.count(x)] for x in set(l)]
(or similarly with a dictionary dict((x,l.count(x)) for x in set(l)))
Example:
>>> l = ["a","b","b"]
>>> [[x,l.count(x)] for x in set(l)]
[['a', 1], ['b', 2]]
>>> dict((x,l.count(x)) for x in set(l))
{'a': 1, 'b': 2}
Counting all items with Counter()
Alternatively, there's the faster Counter class from the collections library
Counter(l)
Example:
>>> l = ["a","b","b"]
>>> from collections import Counter
>>> Counter(l)
Counter({'b': 2, 'a': 1})
How much faster is Counter?
I checked how much faster Counter is for tallying lists. I tried both methods out with a few values of n and it appears that Counter is faster by a constant factor of approximately 2.
Here is the script I used:
from __future__ import print_function
import timeit
t1=timeit.Timer('Counter(l)', \
'import random;import string;from collections import Counter;n=1000;l=[random.choice(string.ascii_letters) for x in range(n)]'
)
t2=timeit.Timer('[[x,l.count(x)] for x in set(l)]',
'import random;import string;n=1000;l=[random.choice(string.ascii_letters) for x in range(n)]'
)
print("Counter(): ", t1.repeat(repeat=3,number=10000))
print("count(): ", t2.repeat(repeat=3,number=10000)
And the output:
Counter(): [0.46062711701961234, 0.4022796869976446, 0.3974247490405105]
count(): [7.779430688009597, 7.962715800967999, 8.420845870045014]
Another way to get the number of occurrences of each item, in a dictionary:
dict((i, a.count(i)) for i in a)
Given an item, how can I count its occurrences in a list in Python?
Here's an example list:
>>> l = list('aaaaabbbbcccdde')
>>> l
['a', 'a', 'a', 'a', 'a', 'b', 'b', 'b', 'b', 'c', 'c', 'c', 'd', 'd', 'e']
list.count
There's the list.count method
>>> l.count('b')
4
This works fine for any list. Tuples have this method as well:
>>> t = tuple('aabbbffffff')
>>> t
('a', 'a', 'b', 'b', 'b', 'f', 'f', 'f', 'f', 'f', 'f')
>>> t.count('f')
6
collections.Counter
And then there's collections.Counter. You can dump any iterable into a Counter, not just a list, and the Counter will retain a data structure of the counts of the elements.
Usage:
>>> from collections import Counter
>>> c = Counter(l)
>>> c['b']
4
Counters are based on Python dictionaries, their keys are the elements, so the keys need to be hashable. They are basically like sets that allow redundant elements into them.
Further usage of collections.Counter
You can add or subtract with iterables from your counter:
>>> c.update(list('bbb'))
>>> c['b']
7
>>> c.subtract(list('bbb'))
>>> c['b']
4
And you can do multi-set operations with the counter as well:
>>> c2 = Counter(list('aabbxyz'))
>>> c - c2 # set difference
Counter({'a': 3, 'c': 3, 'b': 2, 'd': 2, 'e': 1})
>>> c + c2 # addition of all elements
Counter({'a': 7, 'b': 6, 'c': 3, 'd': 2, 'e': 1, 'y': 1, 'x': 1, 'z': 1})
>>> c | c2 # set union
Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1, 'y': 1, 'x': 1, 'z': 1})
>>> c & c2 # set intersection
Counter({'a': 2, 'b': 2})
Silly answer, sum
There are good builtin answers, but this example is slightly instructive. Here we sum all the occurences where the character, c, is equal to 'b':
>>> sum(c == 'b' for c in l)
4
Not great for this use-case, but if you need to have a count of iterables where the case is True it works perfectly fine to sum the boolean results, since True is equivalent to 1.
Why not pandas?
Another answer suggests:
Why not use pandas?
Pandas is a common library, but it's not in the standard library. Adding it as a requirement is non-trivial.
There are builtin solutions for this use-case in the list object itself as well as in the standard library.
If your project does not already require pandas, it would be foolish to make it a requirement just for this functionality.
I've compared all suggested solutions (and a few new ones) with perfplot (a small project of mine).
Counting one item
For large enough arrays, it turns out that
numpy.sum(numpy.array(a) == 1)
is slightly faster than the other solutions.
Counting all items
As established before,
numpy.bincount(a)
is what you want.
Code to reproduce the plots:
from collections import Counter
from collections import defaultdict
import numpy
import operator
import pandas
import perfplot
def counter(a):
return Counter(a)
def count(a):
return dict((i, a.count(i)) for i in set(a))
def bincount(a):
return numpy.bincount(a)
def pandas_value_counts(a):
return pandas.Series(a).value_counts()
def occur_dict(a):
d = {}
for i in a:
if i in d:
d[i] = d[i]+1
else:
d[i] = 1
return d
def count_unsorted_list_items(items):
counts = defaultdict(int)
for item in items:
counts[item] += 1
return dict(counts)
def operator_countof(a):
return dict((i, operator.countOf(a, i)) for i in set(a))
perfplot.show(
setup=lambda n: list(numpy.random.randint(0, 100, n)),
n_range=[2**k for k in range(20)],
kernels=[
counter, count, bincount, pandas_value_counts, occur_dict,
count_unsorted_list_items, operator_countof
],
equality_check=None,
logx=True,
logy=True,
)
from collections import Counter
from collections import defaultdict
import numpy
import operator
import pandas
import perfplot
def counter(a):
return Counter(a)
def count(a):
return dict((i, a.count(i)) for i in set(a))
def bincount(a):
return numpy.bincount(a)
def pandas_value_counts(a):
return pandas.Series(a).value_counts()
def occur_dict(a):
d = {}
for i in a:
if i in d:
d[i] = d[i] + 1
else:
d[i] = 1
return d
def count_unsorted_list_items(items):
counts = defaultdict(int)
for item in items:
counts[item] += 1
return dict(counts)
def operator_countof(a):
return dict((i, operator.countOf(a, i)) for i in set(a))
b = perfplot.bench(
setup=lambda n: list(numpy.random.randint(0, 100, n)),
n_range=[2 ** k for k in range(20)],
kernels=[
counter,
count,
bincount,
pandas_value_counts,
occur_dict,
count_unsorted_list_items,
operator_countof,
],
equality_check=None,
)
b.save("out.png")
b.show()
list.count(x) returns the number of times x appears in a list
see:
http://docs.python.org/tutorial/datastructures.html#more-on-lists
If you want to count all values at once you can do it very fast using numpy arrays and bincount as follows
import numpy as np
a = np.array([1, 2, 3, 4, 1, 4, 1])
np.bincount(a)
which gives
>>> array([0, 3, 1, 1, 2])
Why not using Pandas?
import pandas as pd
my_list = ['a', 'b', 'c', 'd', 'a', 'd', 'a']
# converting the list to a Series and counting the values
my_count = pd.Series(my_list).value_counts()
my_count
Output:
a 3
d 2
b 1
c 1
dtype: int64
If you are looking for a count of a particular element, say a, try:
my_count['a']
Output:
3
If you can use pandas, then value_counts is there for rescue.
>>> import pandas as pd
>>> a = [1, 2, 3, 4, 1, 4, 1]
>>> pd.Series(a).value_counts()
1 3
4 2
3 1
2 1
dtype: int64
It automatically sorts the result based on frequency as well.
If you want the result to be in a list of list, do as below
>>> pd.Series(a).value_counts().reset_index().values.tolist()
[[1, 3], [4, 2], [3, 1], [2, 1]]
I had this problem today and rolled my own solution before I thought to check SO. This:
dict((i,a.count(i)) for i in a)
is really, really slow for large lists. My solution
def occurDict(items):
d = {}
for i in items:
if i in d:
d[i] = d[i]+1
else:
d[i] = 1
return d
is actually a bit faster than the Counter solution, at least for Python 2.7.
Count of all elements with itertools.groupby()
Antoher possiblity for getting the count of all elements in the list could be by means of itertools.groupby().
With "duplicate" counts
from itertools import groupby
L = ['a', 'a', 'a', 't', 'q', 'a', 'd', 'a', 'd', 'c'] # Input list
counts = [(i, len(list(c))) for i,c in groupby(L)] # Create value-count pairs as list of tuples
print(counts)
Returns
[('a', 3), ('t', 1), ('q', 1), ('a', 1), ('d', 1), ('a', 1), ('d', 1), ('c', 1)]
Notice how it combined the first three a's as the first group, while other groups of a are present further down the list. This happens because the input list L was not sorted. This can be a benefit sometimes if the groups should in fact be separate.
With unique counts
If unique group counts are desired, just sort the input list:
counts = [(i, len(list(c))) for i,c in groupby(sorted(L))]
print(counts)
Returns
[('a', 5), ('c', 1), ('d', 2), ('q', 1), ('t', 1)]
Note: For creating unique counts, many of the other answers provide easier and more readable code compared to the groupby solution. But it is shown here to draw a parallel to the duplicate count example.
Although it is very old question, since i didn't find a one liner, i made one.
# original numbers in list
l = [1, 2, 2, 3, 3, 3, 4]
# empty dictionary to hold pair of number and its count
d = {}
# loop through all elements and store count
[ d.update( {i:d.get(i, 0)+1} ) for i in l ]
print(d)
# {1: 1, 2: 2, 3: 3, 4: 1}
# Python >= 2.6 (defaultdict) && < 2.7 (Counter, OrderedDict)
from collections import defaultdict
def count_unsorted_list_items(items):
"""
:param items: iterable of hashable items to count
:type items: iterable
:returns: dict of counts like Py2.7 Counter
:rtype: dict
"""
counts = defaultdict(int)
for item in items:
counts[item] += 1
return dict(counts)
# Python >= 2.2 (generators)
def count_sorted_list_items(items):
"""
:param items: sorted iterable of items to count
:type items: sorted iterable
:returns: generator of (item, count) tuples
:rtype: generator
"""
if not items:
return
elif len(items) == 1:
yield (items[0], 1)
return
prev_item = items[0]
count = 1
for item in items[1:]:
if prev_item == item:
count += 1
else:
yield (prev_item, count)
count = 1
prev_item = item
yield (item, count)
return
import unittest
class TestListCounters(unittest.TestCase):
def test_count_unsorted_list_items(self):
D = (
([], []),
([2], [(2,1)]),
([2,2], [(2,2)]),
([2,2,2,2,3,3,5,5], [(2,4), (3,2), (5,2)]),
)
for inp, exp_outp in D:
counts = count_unsorted_list_items(inp)
print inp, exp_outp, counts
self.assertEqual(counts, dict( exp_outp ))
inp, exp_outp = UNSORTED_WIN = ([2,2,4,2], [(2,3), (4,1)])
self.assertEqual(dict( exp_outp ), count_unsorted_list_items(inp) )
def test_count_sorted_list_items(self):
D = (
([], []),
([2], [(2,1)]),
([2,2], [(2,2)]),
([2,2,2,2,3,3,5,5], [(2,4), (3,2), (5,2)]),
)
for inp, exp_outp in D:
counts = list( count_sorted_list_items(inp) )
print inp, exp_outp, counts
self.assertEqual(counts, exp_outp)
inp, exp_outp = UNSORTED_FAIL = ([2,2,4,2], [(2,3), (4,1)])
self.assertEqual(exp_outp, list( count_sorted_list_items(inp) ))
# ... [(2,2), (4,1), (2,1)]
Below are the three solutions:
Fastest is using a for loop and storing it in a Dict.
import time
from collections import Counter
def countElement(a):
g = {}
for i in a:
if i in g:
g[i] +=1
else:
g[i] =1
return g
z = [1,1,1,1,2,2,2,2,3,3,4,5,5,234,23,3,12,3,123,12,31,23,13,2,4,23,42,42,34,234,23,42,34,23,423,42,34,23,423,4,234,23,42,34,23,4,23,423,4,23,4]
#Solution 1 - Faster
st = time.monotonic()
for i in range(1000000):
b = countElement(z)
et = time.monotonic()
print(b)
print('Simple for loop and storing it in dict - Duration: {}'.format(et - st))
#Solution 2 - Fast
st = time.monotonic()
for i in range(1000000):
a = Counter(z)
et = time.monotonic()
print (a)
print('Using collections.Counter - Duration: {}'.format(et - st))
#Solution 3 - Slow
st = time.monotonic()
for i in range(1000000):
g = dict([(i, z.count(i)) for i in set(z)])
et = time.monotonic()
print(g)
print('Using list comprehension - Duration: {}'.format(et - st))
Result
#Solution 1 - Faster
{1: 4, 2: 5, 3: 4, 4: 6, 5: 2, 234: 3, 23: 10, 12: 2, 123: 1, 31: 1, 13: 1, 42: 5, 34: 4, 423: 3}
Simple for loop and storing it in dict - Duration: 12.032000000000153
#Solution 2 - Fast
Counter({23: 10, 4: 6, 2: 5, 42: 5, 1: 4, 3: 4, 34: 4, 234: 3, 423: 3, 5: 2, 12: 2, 123: 1, 31: 1, 13: 1})
Using collections.Counter - Duration: 15.889999999999418
#Solution 3 - Slow
{1: 4, 2: 5, 3: 4, 4: 6, 5: 2, 34: 4, 423: 3, 234: 3, 42: 5, 12: 2, 13: 1, 23: 10, 123: 1, 31: 1}
Using list comprehension - Duration: 33.0
It was suggested to use numpy's bincount, however it works only for 1d arrays with non-negative integers. Also, the resulting array might be confusing (it contains the occurrences of the integers from min to max of the original list, and sets to 0 the missing integers).
A better way to do it with numpy is to use the unique function with the attribute return_counts set to True. It returns a tuple with an array of the unique values and an array of the occurrences of each unique value.
# a = [1, 1, 0, 2, 1, 0, 3, 3]
a_uniq, counts = np.unique(a, return_counts=True) # array([0, 1, 2, 3]), array([2, 3, 1, 2]
and then we can pair them as
dict(zip(a_uniq, counts)) # {0: 2, 1: 3, 2: 1, 3: 2}
It also works with other data types and "2d lists", e.g.
>>> a = [['a', 'b', 'b', 'b'], ['a', 'c', 'c', 'a']]
>>> dict(zip(*np.unique(a, return_counts=True)))
{'a': 3, 'b': 3, 'c': 2}
To count the number of diverse elements having a common type:
li = ['A0','c5','A8','A2','A5','c2','A3','A9']
print sum(1 for el in li if el[0]=='A' and el[1] in '01234')
gives
3 , not 6
You can also use countOf method of a built-in module operator.
>>> import operator
>>> operator.countOf([1, 2, 3, 4, 1, 4, 1], 1)
3
I would use filter(), take Lukasz's example:
>>> lst = [1, 2, 3, 4, 1, 4, 1]
>>> len(filter(lambda x: x==1, lst))
3
use %timeit to see which operation is more efficient. np.array counting operations should be faster.
from collections import Counter
mylist = [1,7,7,7,3,9,9,9,7,9,10,0]
types_counts=Counter(mylist)
print(types_counts)
May not be the most efficient, requires an extra pass to remove duplicates.
Functional implementation :
arr = np.array(['a','a','b','b','b','c'])
print(set(map(lambda x : (x , list(arr).count(x)) , arr)))
returns :
{('c', 1), ('b', 3), ('a', 2)}
or return as dict :
print(dict(map(lambda x : (x , list(arr).count(x)) , arr)))
returns :
{'b': 3, 'c': 1, 'a': 2}
Given a list X
import numpy as np
X = [1, -1, 1, -1, 1]
The dictionary which shows i: frequency(i) for elements of this list is:
{i:X.count(i) for i in np.unique(X)}
Output:
{-1: 2, 1: 3}
Alternatively, you can also implement the counter by yourself. This is the way I do:
item_list = ['me', 'me', 'you', 'you', 'you', 'they']
occ_dict = {}
for item in item_list:
if item not in occ_dict:
occ_dict[item] = 1
else:
occ_dict[item] +=1
print(occ_dict)
Output: {'me': 2, 'you': 3, 'they': 1}
mot = ["compte", "france", "zied"]
lst = ["compte", "france", "france", "france", "france"]
dict((x, lst.count(x)) for x in set(mot))
this gives
{'compte': 1, 'france': 4, 'zied': 0}
sum([1 for elem in <yourlist> if elem==<your_value>])
This will return the amount of occurences of your_value
test = [409.1, 479.0, 340.0, 282.4, 406.0, 300.0, 374.0, 253.3, 195.1, 269.0, 329.3, 250.7, 250.7, 345.3, 379.3, 275.0, 215.2, 300.0]
for i in test:
print('{} numbers {}'.format(i, test.count(i)))
import pandas as pd
test = [409.1, 479.0, 340.0, 282.4, 406.0, 300.0, 374.0, 253.3, 195.1, 269.0, 329.3, 250.7, 250.7, 345.3, 379.3, 275.0, 215.2, 300.0]
#turning the list into a temporary dataframe
test = pd.DataFrame(test)
#using the very convenient value_counts() function
df_counts = test.value_counts()
df_counts
then you can use df_counts.index and df_counts.values to get the data.
x = ['Jess', 'Jack', 'Mary', 'Sophia', 'Karen',
'Addison', 'Joseph','Jack', 'Jack', 'Eric', 'Ilona', 'Jason']
the_item = input('Enter the item that you wish to find : ')
how_many_times = 0
for occurrence in x:
if occurrence == the_item :
how_many_times += 1
print('The occurrence of', the_item, 'in', x,'is',how_many_times)
Created a list of names wherein the name 'Jack' is repeated.
In order to check its Occurrence, I ran a for loop in the list named x.
Upon each iteration, if the loop variable attains the value same that of received from the user and stored in the variable the_item, the variable how_many_times gets incremented by 1.
After attaining some value...We print how_many_times which stores the value of the occurance of the word 'jack'
def countfrequncyinarray(arr1):
r=len(arr1)
return {i:arr1.count(i) for i in range(1,r+1)}
arr1=[4,4,4,4]
a=countfrequncyinarray(arr1)
print(a)
aList = [2, 1, 4, 3, 5]
aList.sort()
=[1, 2, 3, 4, 5]
del aList[2]
=[1, 2, 4, 5]
**unsort the list back to original sequence with '3' deleted**
=[2, 1, 4, 5]
In reality I have a list of tuples that contain (Price, Quantity, Total).
I want to sort the list, allow the user to delete items in the list and
then put it back in the original order minus the deleted items.
One thing to note is that the values in the tuples can repeat in the list,
such as:
aList = [(4.55, 10, 45.5), (4.55, 10, 45.5), (1.99, 3, 5.97), (1.99, 1, 1.99)]
You cannot unsort the list but you could keep the original unsorted index to restore positions.
E.g.
from operator import itemgetter
aList = [(4.55, 10, 45.5), (4.55, 10, 45.5), (1.99, 3, 5.97), (1.99, 1, 1.99)]
# In keyList:
# * every element has a unique id (it also saves the original position in aList)
# * list is sorted by some criteria specific to your records
keyList = sorted(enumerate(aList), key = itemgetter(1))
# User want to delete item 1
for i, (key, record) in enumerate(keyList):
if key == 1:
del keyList[i]
break
# "Unsort" the list
theList = sorted(keyList, key = itemgetter(0))
# We don't need the unique id anymore
result = [record for key, record in theList]
As you can see this works with duplicate values.
Unsorting can be done
This approach is like others - the idea is to keep the original indices to restore the positions. I wanted to add a clearer example on how this is done.
In the example below, we keep track of the original positions of the items in a by associating them with their list index.
>>> a = [4, 3, 2, 1]
>>> b = [(a[i], i) for i in range(len(a))]
>>> b
[(4, 0), (3, 1), (2, 2), (1, 3)]
b serves as a mapping between the list values and their indices in the unsorted list.
Now we can sort b. Below, each item of b is sorted by the first tuple member, which is the corresponding value in the original list.
>>> c = sorted(b)
>>> c
[(1, 3), (2, 2), (3, 1), (4, 0)]
There it is... sorted.
Going back to the original order requires another sort, except using the second tuple item as the key.
>>> d = sorted(c, key=lambda t: t[1])
>>> d
[(4, 0), (3, 1), (2, 2), (1, 3)]
>>>
>>> d == b
True
And now it's back in its original order.
One use for this could be to transform a list of non sequential values into their ordinal values while maintaining the list order. For instance, a sequence like [1034 343 5 72 8997] could be transformed to [3, 2, 0, 1, 4].
>>> # Example for converting a list of non-contiguous
>>> # values in a list into their relative ordinal values.
>>>
>>> def ordinalize(a):
... idxs = list(range(len(a)))
... b = [(a[i], i) for i in idxs]
... b.sort()
... c = [(*b[i], i) for i in idxs]
... c.sort(key=lambda item: item[1])
... return [c[i][2] for i in idxs]
...
>>> ordinalize([58, 42, 37, 25, 10])
[4, 3, 2, 1, 0]
Same operation
>>> def ordinalize(a):
... idxs = range(len(a))
... a = sorted((a[i], i) for i in idxs)
... a = sorted(((*a[i], i) for i in idxs),
... key=lambda item: item[1])
... return [a[i][2] for i in idxs]
You can't really do an "unsort", the best you can do is:
aList = [2, 1, 4, 3, 5]
aList.remove(sorted(aList)[2])
>>> print aList
[2, 1, 4, 5]
Try this to unsort a sorted list
import random
li = list(range(101))
random.shuffle(li)
Here's how I recommend to sort a list, do something, then unsort back to the original ordering:
# argsort is the inverse of argsort, so we use that
# for undoing the sorting.
sorter = np.argsort(keys)
unsorter = np.argsort(sorter)
sorted_keys = np.array(keys)[sorter]
result = do_a_thing_that_preserves_order(sorted_keys)
unsorted_result = np.array(result)[unsorter]
I had the same use case and I found an easy solution for that, which is basically random the list:
import random
sorted_list = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k']
unsorted_list = random.sample(sorted_list, len(sorted_list))
This question already has answers here:
How to convert list of key-value tuples into dictionary?
(7 answers)
Closed 2 years ago.
Here's how I'm currently converting a list of tuples to dictionary in Python:
l = [('a',1),('b',2)]
h = {}
[h.update({k:v}) for k,v in l]
> [None, None]
h
> {'a': 1, 'b': 2}
Is there a better way? It seems like there should be a one-liner to do this.
Just call dict() on the list of tuples directly
>>> my_list = [('a', 1), ('b', 2)]
>>> dict(my_list)
{'a': 1, 'b': 2}
It seems everyone here assumes the list of tuples have one to one mapping between key and values (e.g. it does not have duplicated keys for the dictionary). As this is the first question coming up searching on this topic, I post an answer for a more general case where we have to deal with duplicates:
mylist = [(a,1),(a,2),(b,3)]
result = {}
for i in mylist:
result.setdefault(i[0],[]).append(i[1])
print(result)
>>> result = {a:[1,2], b:[3]}
The dict constructor accepts input exactly as you have it (key/value tuples).
>>> l = [('a',1),('b',2)]
>>> d = dict(l)
>>> d
{'a': 1, 'b': 2}
From the documentation:
For example, these all return a
dictionary equal to {"one": 1, "two":
2}:
dict(one=1, two=2)
dict({'one': 1, 'two': 2})
dict(zip(('one', 'two'), (1, 2)))
dict([['two', 2], ['one', 1]])
With dict comprehension:
h = {k:v for k,v in l}
Functional decision for #pegah answer:
from itertools import groupby
mylist = [('a', 1), ('b', 3), ('a', 2), ('b', 4)]
#mylist = iter([('a', 1), ('b', 3), ('a', 2), ('b', 4)])
result = { k : [*map(lambda v: v[1], values)]
for k, values in groupby(sorted(mylist, key=lambda x: x[0]), lambda x: x[0])
}
print(result)
# {'a': [1, 2], 'b': [3, 4]}