I want to round the hh:mm:ss values in my TimeStamp col of the dataframe so that the seconds are always 00
Dataset:
TimeStamp A B C
10:27:30 1.953036 2.110234 1.981548
10:28:30 1.973408 2.046361 1.806923
10:29:30 0.000000 0.000000 0.014881
10:30:30 2.567976 3.169928 3.479591
I tried:
df_sr4500.TimeStamp = np.asarray(np.round(df_sr4500.TimeStamp.values / np.timedelta64(1, 'm')), dtype='timedelta64[m]')
I get:
TimeStamp A B C
10:28:00 1.953036 2.110234 1.981548
10:28:00 1.973408 2.046361 1.806923
10:30:00 0.000000 0.000000 0.014881
10:30:00 2.567976 3.169928 3.479591
I would have it rather rounding one way for the middle value.
The next step for me is to resample every two min with mean
Please suggest if you have any better/easier way to do this. I am very new to pandas/numpy.
Add one nanosecond to each time and then round.
df['TimeStamp'] = (df['TimeStamp'] + pd.Timedelta(1)).dt.round('min')
0 10:28:00
1 10:29:00
2 10:30:00
3 10:31:00
Name: TimeStamp, dtype: timedelta64[ns]
Related
I have a pandas dataframe (python) indexed with timestamps roughly every 10 seconds. I want to find hourly averages, but all functions I find start their averaging at even hours (e.g. hour 9 includes data from 08.00:00 to 08:59:50). Let's say I have the dataframe below.
Timestamp value data
2022-01-01 00:00:00 0.0 5.31
2022-01-01 00:00:10 0.0 0.52
2022-01-01 00:00:20 1.0 9.03
2022-01-01 00:00:30 1.0 4.37
2022-01-01 00:00:40 1.0 8.03
...
2022-01-01 13:52:30 1.0 9.75
2022-01-01 13:52:40 1.0 0.62
2022-01-01 13:52:50 1.0 3.58
2022-01-01 13:53:00 1.0 8.23
2022-01-01 13:53:10 1.0 3.07
Freq: 10S, Length: 5000, dtype: float64
So what I want to do:
Only look at data where we have data that consistently through 1 hour has a value of 1
Find an hourly average of these hours (could e.g. be between 01:30:00-02:29:50 and 11:16:30 - 12:16:20)..
I hope I made my problem clear enough. How do I do this?
EDIT:
Maybe the question was a bit unclear phrased.
I added a third column data, which is what I want to find the mean of. I am only interested in time intervals where, value = 1 consistently through one hour, the rest of the data can be excluded.
EDIT #2:
A bit of background to my problem: I have a sensor giving me data every 10 seconds. For data to be "approved" certain requirements are to be fulfilled (value in this example), and I need the hourly averages (and preferably timestamps for when this occurs). So in order to maximize the number of possible hours to include in my analysis, I would like to find full hours even if they don't start at an even timestamp.
If I understand you correctly you want a conditional mean - calculate the mean per hour of the data column conditional on the value column being all 1 for every 10s row in that hour.
Assuming your dataframe is called df, the steps to do this are:
Create a grouping column
This is your 'hour' column that can be created by
df['hour'] = df.Timestamp.hour
Create condition
Now we've got a column to identify groups we can check which groups are eligible - only those with value consistently equal to 1. If we have 10s intervals and it's per hour then if we group by hour and sum this column then we should get 360 as there are 360 10s intervals per hour.
Group and compute
We can now group and use the aggregate function to:
sum the value column to evaluate against our condition
compute the mean of the data column to return for the valid hours
# group and aggregate
df_mean = df[['hour', 'value', 'data']].groupby('hour').aggregate({'value': 'sum', 'data': 'mean'})
# apply condition
df_mean = df_mean[df_mean['value'] == 360]
That's it - you are left with a dataframe that contains the mean value of data for only the hours where you have a complete hour of value=1.
If you want to augment this so you don't have to start with the grouping as per hour starting as 08:00:00-09:00:00 and maybe you want to start as 08:00:10-09:00:10 then the solution is simple - augment the grouping column but don't change anything else in the process.
To do this you can use datetime.timedelta to shift things forward or back so that df.Timestamp.hour can still be leveraged to keep things simple.
Infer grouping from data
One final idea - if you want to infer which hours on a rolling basis you have complete data for then you can do this with a rolling sum - this is even easier. You:
compute the rolling sum of value and mean of data
only select where value is equal to 360
df_roll = df.rolling(360).aggregate({'value': 'sum', 'data': 'mean'})
df_roll = df_roll[df_roll['value'] == 360]
Yes, there is. You need resample with an offset.
Make some test data
Please make sure to provide meaningful test data next time.
import pandas as pd
import numpy as np
# One day in 10 second intervals
index = pd.date_range(start='1/1/2018', end='1/2/2018', freq='10S')
df = pd.DataFrame({"data": np.random.random(len(index))}, index=index)
# This will set the first part of the data to 1, the rest to 0
df["value"] = (df.index < "2018-01-01 10:00:10").astype(int)
This is what we got:
>>> df
data value
2018-01-01 00:00:00 0.377082 1
2018-01-01 00:00:10 0.574471 1
2018-01-01 00:00:20 0.284629 1
2018-01-01 00:00:30 0.678923 1
2018-01-01 00:00:40 0.094724 1
... ... ...
2018-01-01 23:59:20 0.839973 0
2018-01-01 23:59:30 0.890321 0
2018-01-01 23:59:40 0.426595 0
2018-01-01 23:59:50 0.089174 0
2018-01-02 00:00:00 0.351624 0
Get the mean per hour with an offset
Here is a small function that checks if all value rows in the slice are equal to 1 and returns the mean if so, otherwise it (implicitly) returns None.
def get_conditioned_average(frame):
if frame.value.eq(1).all():
return frame.data.mean()
Now just apply this to hourly slices, starting, e.g., at 10 seconds after the full hour.
df2 = df.resample('H', offset='10S').apply(get_conditioned_average)
This is the final result:
>>> df2
2017-12-31 23:00:10 0.377082
2018-01-01 00:00:10 0.522144
2018-01-01 01:00:10 0.506536
2018-01-01 02:00:10 0.505334
2018-01-01 03:00:10 0.504431
... ... ...
2018-01-01 19:00:10 NaN
2018-01-01 20:00:10 NaN
2018-01-01 21:00:10 NaN
2018-01-01 22:00:10 NaN
2018-01-01 23:00:10 NaN
Freq: H, dtype: float64
round() function in pandas rounds down the time 07:30 to 07:00 But I want to round up any time which passes the 30 minutes (inclusive).
Eg.
07:15 to 07:00
05:25 to 05:00
22:30 to 23:00
18:45 to 19:00
How to achieve this for a column of a dataframe using pandas?
timestamps
You need to use dt.round. This is however a bit as the previous/next hour behavior depends on the hour itself. You can force it by adding or subtracting a small amount of time (here 1ns):
s = pd.to_datetime(pd.Series(['1/2/2021 3:45', '25/4/2021 12:30',
'25/4/2021 13:30', '12/4/2022 23:45']))
# xx:30 -> rounding depending on the hour parity (default)
s.dt.round(freq='1h')
0 2021-01-02 04:00:00
1 2021-04-25 12:00:00 <- -30min
2 2021-04-25 14:00:00 <- +30min
3 2022-12-05 00:00:00
dtype: datetime64[ns]
# 00:30 -> 00:00 (force down)
s.sub(pd.Timedelta('1ns')).dt.round(freq='1h')
0 2021-01-02 04:00:00
1 2021-04-25 12:00:00
2 2021-04-25 13:00:00
3 2022-12-05 00:00:00
dtype: datetime64[ns]
# 00:30 -> 01:00 (force up)
s.add(pd.Timedelta('1ns')).dt.round(freq='1h')
0 2021-01-02 04:00:00
1 2021-04-25 12:00:00
2 2021-04-25 13:00:00
3 2022-12-05 00:00:00
dtype: datetime64[ns]
floats
IIUC, you can use divmod (or numpy.modf) to get the integer and decimal part, then perform simple boolean arithmetic:
s = pd.Series([7.15, 5.25, 22.30, 18.45])
s2, r = s.divmod(1) # or np.modf(s)
s2[r.ge(0.3)] += 1
s2 = s2.astype(int)
Alternative: using mod and boolean to int equivalence:
s2 = s.astype(int)+s.mod(1).ge(0.3)
output:
0 7
1 5
2 23
3 19
dtype: int64
Note on precision. It is not always easy to compare floats due to floating point arithmetics. For instance using gt would fail on the 22.30 here. To ensure precision round to 2 digits first.
s.mod(1).round(2).ge(0.3)
or use integers:
s.mod(1).mul(100).astype(int).ge(30)
Here a version that works with timestamps:
#dummy data:
df = pd.DataFrame({'time':pd.to_datetime([np.random.randint(0,10**8) for a in range(10)], unit='s')})
def custom_round(df, col, out):
if df[col].minute >= 30:
df[out] = df[col].ceil('H')
else:
df[out] = df[col].floor('H')
return df
df.apply(lambda x: custom_round(x, 'time', 'new_time'), axis=1)
#edit:
using numpy:
def custom_round(df, col, out):
df[out] = np.where(
(
df['time'].dt.minute>=30),
df[col].dt.ceil('H'),
df[col].dt.floor('H')
)
return df
df = custom_round(df, 'time', 'new_time')
I have a DataFrame like this:
date time value
0 2019-04-18 07:00:10 100.8
1 2019-04-18 07:00:20 95.6
2 2019-04-18 07:00:30 87.6
3 2019-04-18 07:00:40 94.2
The DataFrame contains value recorded every 10 seconds for entire year 2019. I need to calculate standard deviation and mean/average of value for each hour of each date, and create two new columns for them. I have tried first separating the hour for each value like:
df["hour"] = df["time"].astype(str).str[:2]
Then I have tried to calculate standard deviation by:
df["std"] = df.groupby("hour").median().index.get_level_values('value').stack().std()
But that won't work, could I have some advise on the problem?
We can split the time column around the delimiter :, then slice the hour component using str[0], finally group the dataframe on date along with hour component and aggregate column value with mean and std:
hr = df['time'].str.split(':', n=1).str[0]
df.groupby(['date', hr])['value'].agg(['mean', 'std'])
If you want to broadcast the aggregated values to original dataframe, then we need to use transform instead of agg:
g = df.groupby(['date', df['time'].str.split(':', n=1).str[0]])['value']
df['mean'], df['std'] = g.transform('mean'), g.transform('std')
date time value mean std
0 2019-04-18 07:00:10 100.8 94.55 5.434151
1 2019-04-18 07:00:20 95.6 94.55 5.434151
2 2019-04-18 07:00:30 87.6 94.55 5.434151
3 2019-04-18 07:00:40 94.2 94.55 5.434151
have synthesized data. Start by generating a true datetime column
groupby() hour
use describe() to get mean & std
merge() back to original data frame
d = pd.date_range("1-Jan-2019", "28-Feb-2019", freq="10S")
df = pd.DataFrame({"datetime":d, "value":np.random.uniform(70,90,len(d))})
df = df.assign(date=df.datetime.dt.strftime("%Y-%m-%d"),
time=df.datetime.dt.strftime("%H:%M:%S"))
# create a datetime column - better than manipulating strings
df["datetime"] = pd.to_datetime(df.date + " " + df.time)
# calc mean & std by hour
dfh = (df.groupby(df.datetime.dt.hour, as_index=False)
.apply(lambda dfa: dfa.describe().T.loc[:,["mean","std"]].reset_index(drop=True))
.droplevel(1)
)
# merge mean & std by hour back
df.merge(dfh, left_on=df.datetime.dt.hour, right_index=True).drop(columns="key_0")
datetime value mean std
0 2019-01-01 00:00:00 86.014209 80.043364 5.777724
1 2019-01-01 00:00:10 77.241141 80.043364 5.777724
2 2019-01-01 00:00:20 71.650739 80.043364 5.777724
3 2019-01-01 00:00:30 71.066332 80.043364 5.777724
4 2019-01-01 00:00:40 77.203291 80.043364 5.777724
... ... ... ... ...
3144955 2019-12-30 23:59:10 89.577237 80.009751 5.773007
3144956 2019-12-30 23:59:20 82.154883 80.009751 5.773007
3144957 2019-12-30 23:59:30 82.131952 80.009751 5.773007
3144958 2019-12-30 23:59:40 85.346724 80.009751 5.773007
3144959 2019-12-30 23:59:50 78.122761 80.009751 5.773007
UsageDate CustID1 CustID2 .... CustIDn
0 2018-01-01 00:00:00 1.095
1 2018-01-01 01:00:00 1.129
2 2018-01-01 02:00:00 1.165
3 2018-01-01 04:00:00 1.697
.
.
m 2018-31-01 23:00:00 1.835 (m,n)
The dataframe (df) has m rows and n columns. m is a Hourly TimeSeries Index which starts from first hour of month to last hour of month.
The columns are the customers which are almost 100,000.
The values at each cell of Dataframe are energy consumption values.
For every customer, I need to calculate:
1) Mean of every hour usage - so basically average of 1st hour of every day in a month, 2nd hour of every day in a month etc.
2) Summation of usage of every customer
3) Top 3 usage hours - for a customer x, it can be "2018-01-01 01:00:00",
"2018-11-01 05:00:00" "2018-21-01 17:00:00"
4) Bottom 3 usage hours - Similar explanation as above
5) Mean of usage for every customer in the month
My main point of trouble is how to aggregate data both for every customer and the hour of day, or day together.
For summation of usage for every customer, I tried:
df_temp = pd.DataFrame(columns=["TotalUsage"])
for col in df.columns:
`df_temp[col,"TotalUsage"] = df[col].apply.sum()`
However, this and many version of this which I tried are not helping me solve the problem.
Please help me with an approach and how to think about such problems.
Also, since the dataframe is large, it would be helpful if we can talk about Computational Complexity and how can we decrease computation time.
This looks like a job for pandas.groupby.
(I didn't test the code because I didn't have a good sample dataset from which to work. If there are errors, let me know.)
For some of your requirements, you'll need to add a column with the hour:
df['hour']=df['UsageDate'].dt.hour
1) Mean by hour.
mean_by_hour=df.groupby('hour').mean()
2) Summation by user.
sum_by_uers=df.sum()
3) Top usage by customer. Bottom 3 usage hours - Similar explanation as above.--I don't quite understand your desired output, you might be asking too many different questions in this question. If you want the hour and not the value, I think you may have to iterate through the columns. Adding an example may help.
4) Same comment.
5) Mean by customer.
mean_by_cust = df.mean()
I am not sure if this is all the information you are looking for but it will point you in the right direction:
import pandas as pd
import numpy as np
# sample data for 3 days
np.random.seed(1)
data = pd.DataFrame(pd.date_range('2018-01-01', periods= 72, freq='H'), columns=['UsageDate'])
data2 = pd.DataFrame(np.random.rand(72,5), columns=[f'ID_{i}' for i in range(5)])
df = data.join([data2])
# print('Sample Data:')
# print(df.head())
# print()
# mean of every month and hour per year
# groupby year month hour then find the mean of every hour in a given year and month
mean_data = df.groupby([df['UsageDate'].dt.year, df['UsageDate'].dt.month, df['UsageDate'].dt.hour]).mean()
mean_data.index.names = ['UsageDate_year', 'UsageDate_month', 'UsageDate_hour']
# print('Mean Data:')
# print(mean_data.head())
# print()
# use set_index with max and head
top_3_Usage_hours = df.set_index('UsageDate').max(1).sort_values(ascending=False).head(3)
# print('Top 3:')
# print(top_3_Usage_hours)
# print()
# use set_index with min and tail
bottom_3_Usage_hours = df.set_index('UsageDate').min(1).sort_values(ascending=False).tail(3)
# print('Bottom 3:')
# print(bottom_3_Usage_hours)
out:
Sample Data:
UsageDate ID_0 ID_1 ID_2 ID_3 ID_4
0 2018-01-01 00:00:00 0.417022 0.720324 0.000114 0.302333 0.146756
1 2018-01-01 01:00:00 0.092339 0.186260 0.345561 0.396767 0.538817
2 2018-01-01 02:00:00 0.419195 0.685220 0.204452 0.878117 0.027388
3 2018-01-01 03:00:00 0.670468 0.417305 0.558690 0.140387 0.198101
4 2018-01-01 04:00:00 0.800745 0.968262 0.313424 0.692323 0.876389
Mean Data:
ID_0 ID_1 ID_2 \
UsageDate_year UsageDate_month UsageDate_hour
2018 1 0 0.250716 0.546475 0.202093
1 0.414400 0.264330 0.535928
2 0.335119 0.877191 0.380688
3 0.577429 0.599707 0.524876
4 0.702336 0.654344 0.376141
ID_3 ID_4
UsageDate_year UsageDate_month UsageDate_hour
2018 1 0 0.244185 0.598238
1 0.400003 0.578867
2 0.623516 0.477579
3 0.429835 0.510685
4 0.503908 0.595140
Top 3:
UsageDate
2018-01-01 21:00:00 0.997323
2018-01-03 23:00:00 0.990472
2018-01-01 08:00:00 0.988861
dtype: float64
Bottom 3:
UsageDate
2018-01-01 19:00:00 0.002870
2018-01-03 02:00:00 0.000402
2018-01-01 00:00:00 0.000114
dtype: float64
For top and bottom 3 if you want to find the min sum across rows then:
df.set_index('UsageDate').sum(1).sort_values(ascending=False).tail(3)
(newbie to python and pandas)
I have a data set of 15 to 20 million rows, each row is a time-indexed observation of a time a 'user' was seen, and I need to analyze the visit-per-day patterns of each user, normalized to their first visit. So, I'm hoping to plot with an X axis of "days after first visit" and a Y axis of "visits by this user on this day", i.e., I need to get a series indexed by a timedelta and with values of visits in the period ending with that delta [0:1, 3:5, 4:2, 6:8,] But I'm stuck very early ...
I start with something like this:
rng = pd.to_datetime(['2000-01-01 08:00', '2000-01-02 08:00',
'2000-01-01 08:15', '2000-01-02 18:00',
'2000-01-02 17:00', '2000-03-01 08:00',
'2000-03-01 08:20','2000-01-02 18:00'])
uid=Series(['u1','u2','u1','u2','u1','u2','u2','u3'])
misc=Series(['','x1','A123','1.23','','','','u3'])
df = DataFrame({'uid':uid,'misc':misc,'ts':rng})
df=df.set_index(df.ts)
grouped = df.groupby('uid')
firstseen = grouped.first()
The ts values are unique to each uid, but can be duplicated (two uid can be seen at the same time, but any one uid is seen only once at any one timestamp)
The first step is (I think) to add a new column to the DataFrame, showing for each observation what the timedelta is back to the first observation for that user. But, I'm stuck getting that column in the DataFrame. The simplest thing I tried gives me an obscure-to-newbie error message:
df['sinceseen'] = df.ts - firstseen.ts[df.uid]
...
ValueError: cannot reindex from a duplicate axis
So I tried a brute-force method:
def f(row):
return row.ts - firstseen.ts[row.uid]
df['sinceseen'] = Series([{idx:f(row)} for idx, row in df.iterrows()], dtype=timedelta)
In this attempt, df gets a sinceseen but it's all NaN and shows a type of float for type(df.sinceseen[0]) - though, if I just print the Series (in iPython) it generates a nice list of timedeltas.
I'm working back and forth through "Python for Data Analysis" and it seems like apply() should work, but
def fg(ugroup):
ugroup['sinceseen'] = ugroup.index - ugroup.index.min()
return ugroup
df = df.groupby('uid').apply(fg)
gives me a TypeError on the "ugroup.index - ugroup.index.min(" even though each of the two operands is a Timestamp.
So, I'm flailing - can someone point me at the "pandas" way to get to the data structure Ineed?
Does this help you get started?
>>> df = DataFrame({'uid':uid,'misc':misc,'ts':rng})
>>> df = df.sort(["uid", "ts"])
>>> df["since_seen"] = df.groupby("uid")["ts"].apply(lambda x: x - x.iloc[0])
>>> df
misc ts uid since_seen
0 2000-01-01 08:00:00 u1 0 days, 00:00:00
2 A123 2000-01-01 08:15:00 u1 0 days, 00:15:00
4 2000-01-02 17:00:00 u1 1 days, 09:00:00
1 x1 2000-01-02 08:00:00 u2 0 days, 00:00:00
3 1.23 2000-01-02 18:00:00 u2 0 days, 10:00:00
5 2000-03-01 08:00:00 u2 59 days, 00:00:00
6 2000-03-01 08:20:00 u2 59 days, 00:20:00
7 u3 2000-01-02 18:00:00 u3 0 days, 00:00:00
[8 rows x 4 columns]