How to use InceptionV3 bottlenecks as input in Keras 2.0 - python

I want to use bottlenecks for transfer learning using InceptionV3 in Keras.
I've used some of the tips on creating, loading and using bottlenecks from
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
My problem is that I don't know how to use a bottleneck (numpy array) as input to an InceptionV3 with a new top layer.
I get the following error:
ValueError: Error when checking input: expected input_3 to have shape
(None, None, None, 3) but got array with shape (248, 8, 8, 2048)
248 refers to the total number of images in this case.
I know that this line is wrong, but I dont't know how to correct it:
model = Model(inputs=base_model.input, outputs=predictions)
What is the correct way to input the bottleneck into InceptionV3?
Creating the InceptionV3 bottlenecks:
def create_bottlenecks():
datagen = ImageDataGenerator(rescale=1. / 255)
model = InceptionV3(include_top=False, weights='imagenet')
# Generate bottlenecks for all training images
generator = datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode=None,
shuffle=False)
nb_train_samples = len(generator.filenames)
bottlenecks_train = model.predict_generator(generator, int(math.ceil(nb_train_samples / float(batch_size))), verbose=1)
np.save(open(train_bottlenecks_file, 'w'), bottlenecks_train)
# Generate bottlenecks for all validation images
generator = datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode=None,
shuffle=False)
nb_validation_samples = len(generator.filenames)
bottlenecks_validation = model.predict_generator(generator, int(math.ceil(nb_validation_samples / float(batch_size))), verbose=1)
np.save(open(validation_bottlenecks_file, 'w'), bottlenecks_validation)
Loading the bottlenecks:
def load_bottlenecks(src_dir, bottleneck_file):
datagen = ImageDataGenerator(rescale=1. / 255)
generator = datagen.flow_from_directory(
src_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical',
shuffle=False)
num_classes = len(generator.class_indices)
# load the bottleneck features saved earlier
bottleneck_data = np.load(bottleneck_file)
# get the class lebels for the training data, in the original order
bottleneck_class_labels = generator.classes
# convert the training labels to categorical vectors
bottleneck_class_labels = to_categorical(bottleneck_class_labels, num_classes=num_classes)
return bottleneck_data, bottleneck_class_labels
Starting training:
def start_training():
global nb_train_samples, nb_validation_samples
create_bottlenecks()
train_data, train_labels = load_bottlenecks(train_data_dir, train_bottlenecks_file)
validation_data, validation_labels = load_bottlenecks(validation_data_dir, validation_bottlenecks_file)
nb_train_samples = len(train_data)
nb_validation_samples = len(validation_data)
base_model = InceptionV3(weights='imagenet', include_top=False)
# add a global spatial average pooling layer
x = base_model.output
x = GlobalAveragePooling2D()(x)
# let's add a fully-connected layer
x = Dense(1024, activation='relu')(x)
# and a logistic layer -- let's say we have 2 classes
predictions = Dense(2, activation='softmax')(x)
# What is the correct input? Obviously not base_model.input.
model = Model(inputs=base_model.input, outputs=predictions)
# first: train only the top layers (which were randomly initialized)
# i.e. freeze all convolutional InceptionV3 layers
for layer in base_model.layers:
layer.trainable = False
model.compile(optimizer=optimizers.SGD(lr=0.01, momentum=0.9), loss='categorical_crossentropy', metrics=['accuracy'])
# train the model on the new data for a few epochs
history = model.fit(train_data, train_labels,
epochs=epochs,
batch_size=batch_size,
validation_data=(validation_data, validation_labels),
)
Any help would be appreciated!

This error happens when you try to train your model with input data in a different shape from the shape your model supports.
Your model supports (None, None, None, 3), meaning:
Any number of images
Any height
Any width
3 channels
So, you must make sure that train_data (and validation_data) matches this shape.
The system is telling that train_data.shape = (248,8,8,2048)
I see that train_data comes from load_botlenecks. Is it really supposed to be coming from there? What is train data supposed to be? An image? Something else? What is a bottleneck?
Your model starts in the Inception model, and the Inception model takes images.
But if bottlenecks are already results of the Inception model, and you want to feed only bottlenecks, then the Inception model should not participate of anything at all.
Start from:
inputTensor = Input((8,8,2048)) #Use (None,None,2048) if bottlenecks vary in size
x = GlobalAveragePooling2D()(inputTensor)
.....
Create the model with:
model = Model(inputTensor, predictions)
The idea is:
Inception model: Image -> Inception -> Bottlenecks
Your model: Bottlenecks -> Model -> Labels
The combination of the two models is only necessary when you don't have the bottlenecks preloaded, but you have your own images for which you want to predict the bottlenecks first. (Of course you can work with separate models as well)
Then you're going to input only images (the bottlenecks will be created by Inception and passed to your model, everything internally):
Combined model: Image -> Inception ->(bottlenecks)-> Model -> Labels
For that:
inputImage = Input((None,None,3))
bottleNecks = base_model(inputImage)
predictions = model(bottleNecks)
fullModel = Model(inputImage, predictions)

Related

Low accuracy after testing hyperparameters

I am using VGG19 pre-trained model with ImageNet weights to do transfer-learning on 4 classes with keras. However I do not know if there really is a difference between these 4 classes, I'd like to discover it. The goal would be to discover if these classes make sense or if there is no difference between these images classes.
These classes are made up of abstract paintings from the same individual.
I tried different models with different hyperparameters (Adam/SGD, learning rate, dropout, l2 regularization, FC layers size, batch size, unfreeze, and also weighted classes as the data is a little bit unbalanced
batch_size = 32
unfreeze = 17
dropout = 0.2
fc = 256
lr = 1e-4
l2_reg = 0.1
train_datagen = ImageDataGenerator(
preprocessing_function = preprocess_input,
horizontal_flip=True,
vertical_flip=True,
fill_mode='nearest'
)
test_datagen = ImageDataGenerator(preprocessing_function = preprocess_input)
train_generator = train_datagen.flow_from_directory(
'C:/Users/train',
target_size=(224, 224),
batch_size=batch_size,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(
'C:/Users/test',
target_size=(224, 224),
batch_size=batch_size,
class_mode='categorical')
base_model = VGG19(
weights="imagenet",
input_shape=(224, 224, 3),
include_top=False,
)
last_layer = base_model.get_layer('block5_pool')
last_output = last_layer.output
x = Flatten()(last_output)
x = GlobalMaxPooling2D()(last_output)
x = Dense(fc)(x)
x = Activation('relu')(x)
x = BatchNormalization()(x)
x = Dropout(dropout)(x)
x = Dense(fc, activation='relu', kernel_regularizer = regularizers.l2(l2=l2_reg))(x)
x = layers.Dense(4, activation='softmax')(x)
model = Model(base_model.input, x)
for layer in model.layers:
layer.trainable = False
for layer in model.layers[unfreeze:]:
layer.trainable = True
model.compile(loss='categorical_crossentropy',
optimizer=optimizers.SGD(learning_rate = lr),
metrics=['accuracy'])
class_weights = class_weight.compute_class_weight('balanced',
np.unique(train_generator.classes),
train_generator.classes)
class_weights_dict = dict(enumerate(class_weights))
history = model.fit(train_generator, epochs=epochs, validation_data=validation_generator,
validation_steps=392//batch_size,
steps_per_epoch=907//batch_size)
plot_model_history(history)
I also did feature extractions at every layer, and fed the extracted features to a SVM (for each layer), and the accuracy of these SVM was about 40%, which is higher than this model (30 to 33%). So, I may be wrong but I think this model could achieve a higher accuracy.
I have a few questions about my model.
First, is my code correct, or am I doing something wrong ?
If the validation set accuracy for a 4-classes classification task is ~30% (assuming the data are balanced or weighted), is it likely or very not likely to be able to improve it to something significantly better with other hyperparameters ?
What else can I try to have a better accuracy ?
When and how can I conclude that these classes do not make sense ?

How Can I Increase My CNN Model's Accuracy

I built a cnn model that classifies facial moods as happy , sad, energetic and neutral faces. I used Vgg16 pre-trained model and freezed all layers. After 50 epoch of training my model's test accuracy is 0.65 validatation loss is about 0.8 .
My train data folder has 16000(4x4000) , validation data folder has 2000(4x500) and Test data folder has 4000(4x1000) rgb images.
1)What is your suggestion to increase the model accuracy?
2)I have tried to do some prediction with my model , predicted class is always same. What can cause the problem?
What I Have Tried So Far ?
Add dropout layer (0.5)
Add Dense (256, relu) before last layer
Shuff the train and validation datas.
Decrease the learning rate to 1e-5
But I could not the increase validation and test accuracy.
My Codes
train_src = "/content/drive/MyDrive/Affectnet/train_class/"
val_src = "/content/drive/MyDrive/Affectnet/val_class/"
test_src="/content/drive/MyDrive/Affectnet/test_classs/"
train_datagen = tensorflow.keras.preprocessing.image.ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
)
train_generator = train_datagen.flow_from_directory(
train_src,
target_size=(224,224 ),
batch_size=32,
class_mode='categorical',
shuffle=True
)
validation_datagen = tensorflow.keras.preprocessing.image.ImageDataGenerator(
rescale=1./255
)
validation_generator = validation_datagen.flow_from_directory(
val_src,
target_size=(224, 224),
batch_size=32,
class_mode='categorical',
shuffle=True
)
conv_base = tensorflow.keras.applications.VGG16(weights='imagenet',
include_top=False,
input_shape=(224, 224, 3)
)
for layer in conv_base.layers:
layer.trainable = False
model = tensorflow.keras.models.Sequential()
# VGG16 is added as convolutional layer.
model.add(conv_base)
# Layers are converted from matrices to a vector.
model.add(tensorflow.keras.layers.Flatten())
# Our neural layer is added.
model.add(tensorflow.keras.layers.Dropout(0.5))
model.add(tensorflow.keras.layers.Dense(256, activation='relu'))
model.add(tensorflow.keras.layers.Dense(4, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer=tensorflow.keras.optimizers.Adam(lr=1e-5),
metrics=['acc'])
history = model.fit_generator(
train_generator,
epochs=50,
steps_per_epoch=100,
validation_data=validation_generator,
validation_steps=5,
workers=8
)
Loss and accuracy
Well a few things. For training set you say you have 16,0000 images. However with a batch size of 32 and steps_per_epoch= 100 then for any given epoch you are only training on 3,200 images. Similarly you have 2000 validation images, but with a batch size of 32 and validation_steps = 5 you are only validating on 5 X 32 = 160 images.
Now Vgg is an OK model but I don't use it because it is very large which increases the training time significantly and there are other models out there for transfer learning that are smaller and even more accurate. I suggest you try using EfficientNetB3. Use the code
conv_base = tensorflow.keras.applications.EfficientNetB3(weights='imagenet',
include_top=False,
input_shape=(224, 224, 3)
pooling='max'
)
with pooling='max' you can eliminate the Flatten layer. Also EfficientNet models expect pixels in the range 0 to 255 so remove the rescale=1/255 in your generators.
Next thing to do is to use an adjustable learning rate. This can be done using Keras callbacks. Documentation for that is here. You want to use the ReduceLROnPlateau callback. Documentation for that is here. Set it up to monitor validation loss. My suggested code for that is below
rlronp=tf.keras.callbacks.ReduceLROnPlateau(monitor="val_loss",factor=0.5,
patience=1, verbose=1)
I also recommend you use the callback EarlyStopping. Documentation for that is here. . My recomended code for that is shown below
estop=tf.keras.callbacks.EarlyStopping( monitor="val_loss", patience=4, verbose=1,
restore_best_weights=True)
Now in model.fit include
callbacks=[rlronp, estop]
set your learning rate to .001. Set epochs=50. The estop callback if tripped will return your model loaded with the weights from the epoch with the lowest validation loss. I notice you have the code
for layer in conv_base.layers:
layer.trainable = False
I know the tutorials tell you to do that but I get better results leaving it trainable and I have done this on hundreds of models.

Different training and validation results with same input Keras

I am trying to re-train MobileNet for a different multiclassification purpose as:
train_datagen = ImageDataGenerator(
preprocessing_function = preprocess_input
training_generator = train_datagen.flow_from_directory(
directory = train_data_dir,
target_size=(parameters["img_width"], parameters["img_height"]),
batch_size = parameters["batch_size"],
class_mode= "categorical",
subset = "training",
color_mode = "rgb",
seed = 42)
# Define the Model
base_model = MobileNet(weights='imagenet',
include_top=False, input_shape = (128, 128, 3)) #imports the mobilenet model and discards the last 1000 neuron layer.
# Let only the last n layers as trainable
for layer in base_model.layers:
layer.trainable = False
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(800,activation='relu')(x) #we add dense layers so that the model can learn more complex functions and classify for better results.
x = Dense(600,activation='relu')(x) #dense layer 2
x = Dropout(0.8)(x)
x = Dense(256,activation='relu')(x) #dense layer 3
x = Dropout(0.2)(x)
preds = Dense(N_classes, activation='softmax')(x) #final layer with softmax activation
model= Model(inputs = base_model.input, outputs = preds)
model.compile(optimizer = "Adam", loss='categorical_crossentropy', metrics=['accuracy'])
And performing training setting as validation dataset, the training set as:
history = model.fit_generator(
training_generator,
steps_per_epoch= training_generator.n // parameters["batch_size"],
epochs = parameters["epochs"]
,
##### VALIDATION SET = TRAINING
validation_data = training_generator,
validation_steps = training_generator.n // parameters["batch_size"],
callbacks=[
EarlyStopping(monitor = "acc", patience = 8, restore_best_weights=False),
ReduceLROnPlateau(patience = 3)]
)
However, I do get significant differences in accuracy, between TRAINING AND VALIDATION ACCURACY, even if they are the same dataset, while training; what could it be due to?
Training a neural network involves random distribution of the data in the training database. Because of this, the results are not reproducible. If you're getting significant differences in accuracy, you may try:
get a bigger training database;
retrain the network;
get a database with more consistent results.
LE: it doesn't matter if you get significant differences in accuracy while training. Training is an iterative optimization process, which minimizes the mean square error objective function. It takes a while until this goal is achieved.
I do not know the EXACT reason but I duplicated your problem. The problem happens because you are using the SAME generator which runs for training and then again for validation. If your create a SEPERATE generator for validation that takes the same training data as input then once you run enough epochs for the training accuracy to get into the 90% range you will see the validation accuracy stabilize and converge toward the training accuracy
Train-Valid Acc vs Epochs

Keras: Transfer Learning - Image scaling worsens performance of the model significantly

I am working on an image classification problem with keras and tensorflow. I am using the VGG16 model with Imagenet weights and I am importing my data using the ImageDataGenerator from Keras.
Now I've been reading that one should always rescale the images using 1./255 for an efficient tranining. However, once I implement the scaling my model performs significantly worse than before. Changing the learning rate and batch size didn't help either.
Now I am questioning whether this is possible or if my model has some error. I am using standard .jpg image files.
from keras.preprocessing.image import ImageDataGenerator
IMAGE_SIZE = 224
BATCH_SIZE = 32
num_classes = 27
main_path = "C:/Users/abc/data"
final_path = os.path.join(main_path, "ML_DATA")
labels = listdir(gesamt_path)
data_generator = ImageDataGenerator(rescale=1./255, ### rescaling done here
validation_split=0.20)
train_generator = data_generator.flow_from_directory(final_path, target_size=(IMAGE_SIZE, IMAGE_SIZE), shuffle=True, seed=13,
class_mode='categorical', batch_size=BATCH_SIZE, subset="training")
validation_generator = data_generator.flow_from_directory(final_path, target_size=(IMAGE_SIZE, IMAGE_SIZE), shuffle=False, seed=13,
class_mode='categorical', batch_size=BATCH_SIZE, subset="validation")
Model definition and training
vgg16_model = keras.applications.vgg16.VGG16(weights='imagenet', include_top=True)
model = Sequential()
for layer in vgg16_model.layers[:-1]:
model.add(layer)
for layer in model.layers:
layer.trainable = False
model.add(Dense(num_classes, activation='softmax'))
model.compile(Adam(lr=.001), loss='categorical_crossentropy', metrics=['accuracy'])
history = model.fit_generator(train_generator,
validation_data=validation_generator,
epochs=85, verbose=1,callbacks=[tbCallBack,earlystopCallback])
It could be that Imagenet Weights are not compatible with your new image dimension.
I see that your only trainable layer is the very last layer, a dense layer, which doesn’t know anything about image dimension. My suggestion is to also let the first few convolutional layers to be trainable, so that those layers can adapt to the rescaling.
Working with ResNet and imagenet weights I improved my results using:
ImageDataGenerator(preprocessing_function=preprocess_input)
With rescaling I obtained worse results too.
This information was useful to me:
https://github.com/matterport/Mask_RCNN/issues/231

Fine-tuning ResNet50 with Keras - val_loss keeps increasing

I am trying to customize resnet50 using keras with a tensorflow backend. However, upon tranining my val_loss keeps increasing. Trying different learning rates and batch sizes does not resolve the problem.
Using different preprocessing methods such as rescaling or using the preprocess_input function for resnet50 inside the ImageDataGenerator did not not solve the problem either.
This is the code I am using
Importing and preprocessing data:
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.resnet50 import preprocess_input, decode_predictions
IMAGE_SIZE = 224
BATCH_SIZE = 32
num_classes = 27
main_path = "C:/Users/aaron/Desktop/DATEN/data"
gesamt_path = os.path.join(main_path, "ML_DATA")
labels = listdir(gesamt_path)
data_generator = ImageDataGenerator(#rescale=1./255,
validation_split=0.20,
preprocessing_function=preprocess_input)
train_generator = data_generator.flow_from_directory(gesamt_path, target_size=(IMAGE_SIZE, IMAGE_SIZE), shuffle=True, seed=13,
class_mode='categorical', batch_size=BATCH_SIZE, subset="training")
validation_generator = data_generator.flow_from_directory(gesamt_path, target_size=(IMAGE_SIZE, IMAGE_SIZE), shuffle=False, seed=13,
class_mode='categorical', batch_size=BATCH_SIZE, subset="validation")
Defining and training the model
img_width = 224
img_height = 224
model = keras.applications.resnet50.ResNet50()
classes = list(iter(train_generator.class_indices))
model.layers.pop()
for layer in model.layers:
layer.trainable=False
last = model.layers[-1].output
x = Dense(len(classes), activation="softmax")(last)
finetuned_model = Model(model.input, x)
finetuned_model.compile(optimizer=Adam(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
for c in train_generator.class_indices:
classes[train_generator.class_indices[c]] = c
finetuned_model.classes = classes
earlystopCallback = keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=8, verbose=1, mode='auto')
tbCallBack = keras.callbacks.TensorBoard(log_dir='./Graph', histogram_freq=0, write_graph=True, write_images=True)
history = finetuned_model.fit_generator(train_generator,
validation_data=validation_generator,
epochs=85, verbose=1,callbacks=[tbCallBack,earlystopCallback])
You need to match the preprocessing used for the pretrained network, not come up your own preprocessing. Double check the network input tensor, i.e. whether the channel-wise average of your input matches that of the data used for the pretrained network.
It could be that your new data is very different from the data used for the pretrained network. In that case, all BN layers gonna migrate their pretrained mean/var to new values, so an increasing loss is also possible (but eventually the loss should decrease).
In your training you are using a pretrained model (resnet50) changing only the last layer because you want to predict only a few classes and not the 1000 classes the pretrained model was trained on (that's the meaning of transfer learning).
You are freezing all weights and you are not letting your model to train. Try:
model = keras.applications.resnet50.ResNet50(include_top=False, pooling='avg')
for layer in model.layers:
layer.trainable=False
last = model.output
x = Dense(512, activation='relu')(last)
x = Dropout(0.5)(x)
#x = BatchNormalization()(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
#x = BatchNormalization()(x)
x = Dense(len(classes), activation="softmax")(x)
You can modify the code above, change 512 number of neurons, add or not dropout/batchnormalization, use as many dense layers as you want....
There is known ""problem"" (strange design) regarding BN in Keras and your bad result may be related to this issue.

Categories