Fast way to sample geometric points from SVG paths - python

I'm using the excellent svgpathtools library in Python 3 to work with some paths in an SVG file, created in a vector drawing application.
I'd like to create detailed point arrays for each of the paths contained within the SVG, where the points are equidistant along the path. The following does just that but becomes unbearably slow if more than a few thousand samples are taken.
SAMPLES_PER_PX = 1
fname = "/path/to/file.svg"
paths, attributes = svg2paths(fname)
myPaths = {}
for path,attr in zip(paths, attributes):
myPathList = []
pathLength = path.length()
pathColour = attr['stroke']
numSamples = int(pathLength * SAMPLES_PER_PX)
for i in range(numSamples):
#parametric length = ilength(geometric length)
myPathList.append(path.point(path.ilength(pathLength * i / (numSamples-1))))
myPaths[pathColour] = np.array(myPathList)
I've always felt that my Python ain't very Pythonic. Is there a way I can take advantage of some Python-ness to speed this up?

I had the same problem. My solution was to sample N points using path.point and then interpolate those points using scipy spline and resample from the spline. Something like:
tck, _ = interpolate.splprep(pts, s=0)
result = interpolate.splev(np.linspace(0, 1, 1000), tck)
Where pts is a list of sampled points. The number N depends on how non-uniform the input curve is. Usually N=20 is sufficient for not too crazy cases:-)

You actually do not need to use the ilength method. What you are doing with myPathList.append(path.point(path.ilength(pathLength * i / (numSamples-1)))) is computing the position of the point you want on the geometric length of the path, but since you know you are taking numSamples points regularly spaced on the path, you will keep the same number of points regularly spaced in the parametric distance, so you can directly write myPathList.append(path.point(i / (numSamples-1))).
Hope this will help!

Related

2D interpolate list of many points [duplicate]

So, I have three numpy arrays which store latitude, longitude, and some property value on a grid -- that is, I have LAT(y,x), LON(y,x), and, say temperature T(y,x), for some limits of x and y. The grid isn't necessarily regular -- in fact, it's tripolar.
I then want to interpolate these property (temperature) values onto a bunch of different lat/lon points (stored as lat1(t), lon1(t), for about 10,000 t...) which do not fall on the actual grid points. I've tried matplotlib.mlab.griddata, but that takes far too long (it's not really designed for what I'm doing, after all). I've also tried scipy.interpolate.interp2d, but I get a MemoryError (my grids are about 400x400).
Is there any sort of slick, preferably fast way of doing this? I can't help but think the answer is something obvious... Thanks!!
Try the combination of inverse-distance weighting and
scipy.spatial.KDTree
described in SO
inverse-distance-weighted-idw-interpolation-with-python.
Kd-trees
work nicely in 2d 3d ..., inverse-distance weighting is smooth and local,
and the k= number of nearest neighbours can be varied to tradeoff speed / accuracy.
There is a nice inverse distance example by Roger Veciana i Rovira along with some code using GDAL to write to geotiff if you're into that.
This is of coarse to a regular grid, but assuming you project the data first to a pixel grid with pyproj or something, all the while being careful what projection is used for your data.
A copy of his algorithm and example script:
from math import pow
from math import sqrt
import numpy as np
import matplotlib.pyplot as plt
def pointValue(x,y,power,smoothing,xv,yv,values):
nominator=0
denominator=0
for i in range(0,len(values)):
dist = sqrt((x-xv[i])*(x-xv[i])+(y-yv[i])*(y-yv[i])+smoothing*smoothing);
#If the point is really close to one of the data points, return the data point value to avoid singularities
if(dist<0.0000000001):
return values[i]
nominator=nominator+(values[i]/pow(dist,power))
denominator=denominator+(1/pow(dist,power))
#Return NODATA if the denominator is zero
if denominator > 0:
value = nominator/denominator
else:
value = -9999
return value
def invDist(xv,yv,values,xsize=100,ysize=100,power=2,smoothing=0):
valuesGrid = np.zeros((ysize,xsize))
for x in range(0,xsize):
for y in range(0,ysize):
valuesGrid[y][x] = pointValue(x,y,power,smoothing,xv,yv,values)
return valuesGrid
if __name__ == "__main__":
power=1
smoothing=20
#Creating some data, with each coodinate and the values stored in separated lists
xv = [10,60,40,70,10,50,20,70,30,60]
yv = [10,20,30,30,40,50,60,70,80,90]
values = [1,2,2,3,4,6,7,7,8,10]
#Creating the output grid (100x100, in the example)
ti = np.linspace(0, 100, 100)
XI, YI = np.meshgrid(ti, ti)
#Creating the interpolation function and populating the output matrix value
ZI = invDist(xv,yv,values,100,100,power,smoothing)
# Plotting the result
n = plt.normalize(0.0, 100.0)
plt.subplot(1, 1, 1)
plt.pcolor(XI, YI, ZI)
plt.scatter(xv, yv, 100, values)
plt.title('Inv dist interpolation - power: ' + str(power) + ' smoothing: ' + str(smoothing))
plt.xlim(0, 100)
plt.ylim(0, 100)
plt.colorbar()
plt.show()
There's a bunch of options here, which one is best will depend on your data...
However I don't know of an out-of-the-box solution for you
You say your input data is from tripolar data. There are three main cases for how this data could be structured.
Sampled from a 3d grid in tripolar space, projected back to 2d LAT, LON data.
Sampled from a 2d grid in tripolar space, projected into 2d LAT LON data.
Unstructured data in tripolar space projected into 2d LAT LON data
The easiest of these is 2. Instead of interpolating in LAT LON space, "just" transform your point back into the source space and interpolate there.
Another option that works for 1 and 2 is to search for the cells that maps from tripolar space to cover your sample point. (You can use a BSP or grid type structure to speed up this search) Pick one of the cells, and interpolate inside it.
Finally there's a heap of unstructured interpolation options .. but they tend to be slow.
A personal favourite of mine is to use a linear interpolation of the nearest N points, finding those N points can again be done with gridding or a BSP. Another good option is to Delauney triangulate the unstructured points and interpolate on the resulting triangular mesh.
Personally if my mesh was case 1, I'd use an unstructured strategy as I'd be worried about having to handle searching through cells with overlapping projections. Choosing the "right" cell would be difficult.
I suggest you taking a look at GRASS (an open source GIS package) interpolation features (http://grass.ibiblio.org/gdp/html_grass62/v.surf.bspline.html). It's not in python but you can reimplement it or interface with C code.
Am I right in thinking your data grids look something like this (red is the old data, blue is the new interpolated data)?
alt text http://www.geekops.co.uk/photos/0000-00-02%20%28Forum%20images%29/DataSeparation.png
This might be a slightly brute-force-ish approach, but what about rendering your existing data as a bitmap (opengl will do simple interpolation of colours for you with the right options configured and you could render the data as triangles which should be fairly fast). You could then sample pixels at the locations of the new points.
Alternatively, you could sort your first set of points spatially and then find the closest old points surrounding your new point and interpolate based on the distances to those points.
There is a FORTRAN library called BIVAR, which is very suitable for this problem. With a few modifications you can make it usable in python using f2py.
From the description:
BIVAR is a FORTRAN90 library which interpolates scattered bivariate data, by Hiroshi Akima.
BIVAR accepts a set of (X,Y) data points scattered in 2D, with associated Z data values, and is able to construct a smooth interpolation function Z(X,Y), which agrees with the given data, and can be evaluated at other points in the plane.

Generate random points on any 3 dimensional surface

I was wondering, how would you, mathematically speaking, generate x points at random positions on a 3D surface, knowing the number of triangle polygons composing the surface (their dimensions, positions, normals, etc.)? In how many steps would you proceed?
I'm trying to create a "scatterer" in Maya (with Python and API), but I don't even know where to start in terms of concept. Should I generate the points first, and then check if they belong to the surface? Should I create the points directly on the surface (and how, in this case)?
Edit: I want to achieve this without using 2D projection or UVs, as far as possible.
You should compute the area of each triangle, and use those as weights to determine the destination of each random point. It is probably easiest to do this as a batch operation:
def sample_areas(triangles, samples):
# compute and sum triangle areas
totalA = 0.0
areas = []
for t in triangles:
a = t.area()
areas.append(a)
totalA += a
# compute and sort random numbers from [0,1)
rands = sorted([random.random() for x in range(samples)])
# sample based on area
area_limit = 0.0
rand_index = 0
rand_value = rands[rand_index]
for i in range(len(areas)):
area_limit += areas[i]
while rand_value * totalA < area_limit:
# sample randomly over current triangle
triangles[i].add_random_sample()
# advance to next sorted random number
rand_index += 1;
if rand_index >= samples:
return
rand_value = rands[rand_index]
Note that ridged or wrinkled regions may appear to have higher point density, simply because they have more surface area in a smaller space.
If the constraint is that all of the output points be on the surface, you want a consistent method of addressing the surface itself rather than worrying about the 3d > surface conversion for your points.
The hacktastic way to do that would be to create a UV map for your 3d object, and then scatter points randomly in 2 dimensions (throwing away points which happened not to land inside a valid UV shell). Once your UV shells are filled up as much as you'd like, you can convert your UV points to barycentric coordinates to convert those 2-d points back to 3-d points: effectively you say "i am 30% vertex A, 30 % vertex B, and 40% vertex C, so my position is (.3A + .3B + .4C)
Besides simplicity, another advantage of using is UV map is that it would allow you to customize the density and relative importance of different parts of the mesh: a larger UV face will get a lot of scattered points, and a smaller one fewer -- even if that doesn't match the physical size or the faces.
Going to 2D will introduce some artifacts because you probably will not be able to come up with a UV map that is both stretch-free and seam-free, so you'll get variations in the density of your scatter because of that. However for many applications this will be fine, since the algorithm is really simple and the results easy to hand tune.
I have not used this one but this looks like it's based on this general approach: http://www.shanemarks.co.za/uncategorized/uv-scatter-script/
If you need a more mathematically rigorous method, you'd need a fancier method of mesh parameterization : a way to turn your 3-d collection of triangles into a consistent space. There is a lot of interesting work in that field but it would be hard to pick a particular path without knowing the application.
Pick 2 random edges from random triangle.
Create 2 random points on edges.
Create new random point between them.
My ugly mel script:
//Select poly and target object
{
$sel = `ls -sl -fl`; select $sel[0];
polyTriangulate -ch 0;
$poly_s = `polyListComponentConversion -toFace`;$poly_s = `ls -fl $poly_s`;//poly flat list
int $numPoly[] = `polyEvaluate -fc`;//max random from number of poly
int $Rand = rand($numPoly[0]);//random number
$vtx_s =`polyListComponentConversion -tv $poly_s[$Rand]`;$vtx_s=`ls- fl $vtx_s`;//3 vertex from random poly flat list
undo; //for polyTriangulate
vector $A = `pointPosition $vtx_s[0]`;
vector $B = `pointPosition $vtx_s[1]`;
vector $C = `pointPosition $vtx_s[2]`;
vector $AB = $B-$A; $AB = $AB/mag($AB); //direction vector and normalize
vector $AC = $A-$C; $AC = $AC/mag($AC); //direction vector and normalize
$R_AB = mag($B-$A) - rand(mag($B-$A)); vector $AB = $A + ($R_AB * $AB);//new position
$R_AC = mag($A-$C) - rand(mag($A-$C)); vector $AC = $C + ($R_AC * $AC);//new position
vector $ABC = $AB-$AC; $ABC = $ABC/mag($ABC); //direction vector and normalize
$R_ABC = mag($AB-$AC) - rand(mag($AB-$AC)); //random
vector $ABC = $AC + ($R_ABC * $ABC);
float $newP2[] = {$ABC.x,$ABC.y,$ABC.z};//back to float
move $newP2[0] $newP2[1] $newP2[2] $sel[1];
select -add $sel[1];
}
PS UV method is better
Here is pseudo code that might be a good starting point:
Let N = no of vertices of 3D face that you are working with.
Just generate N random numbers, compute their sum, divide each one by the sum. Now you have N random number whose sum is = 1.0.
Using above random numbers, take a linear combination of 3D vertices of the 3D face that you are interested in. This should give you a random 3D point on the face.
Repeat till you get sufficient no. of random points on the 3D face.

Fast 3D interpolation of atmospheric data in Numpy/Scipy

I am trying to interpolate 3D atmospheric data from one vertical coordinate to another using Numpy/Scipy. For example, I have cubes of temperature and relative humidity, both of which are on constant, regular pressure surfaces. I want to interpolate the relative humidity to constant temperature surface(s).
The exact problem I am trying to solve has been asked previously here, however, the solution there is very slow. In my case, I have approximately 3M points in my cube (30x321x321), and that method takes around 4 minutes to operate on one set of data.
That post is nearly 5 years old. Do newer versions of Numpy/Scipy perhaps have methods that handle this faster? Maybe new sets of eyes looking at the problem have a better approach? I'm open to suggestions.
EDIT:
Slow = 4 minutes for one set of data cubes. I'm not sure how else I can quantify it.
The code being used...
def interpLevel(grid,value,data,interp='linear'):
"""
Interpolate 3d data to a common z coordinate.
Can be used to calculate the wind/pv/whatsoever values for a common
potential temperature / pressure level.
grid : numpy.ndarray
The grid. For example the potential temperature values for the whole 3d
grid.
value : float
The common value in the grid, to which the data shall be interpolated.
For example, 350.0
data : numpy.ndarray
The data which shall be interpolated. For example, the PV values for
the whole 3d grid.
kind : str
This indicates which kind of interpolation will be done. It is directly
passed on to scipy.interpolate.interp1d().
returns : numpy.ndarray
A 2d array containing the *data* values at *value*.
"""
ret = np.zeros_like(data[0,:,:])
for yIdx in xrange(grid.shape[1]):
for xIdx in xrange(grid.shape[2]):
# check if we need to flip the column
if grid[0,yIdx,xIdx] > grid[-1,yIdx,xIdx]:
ind = -1
else:
ind = 1
f = interpolate.interp1d(grid[::ind,yIdx,xIdx], \
data[::ind,yIdx,xIdx], \
kind=interp)
ret[yIdx,xIdx] = f(value)
return ret
EDIT 2:
I could share npy dumps of sample data, if anyone was interested enough to see what I am working with.
Since this is atmospheric data, I imagine that your grid does not have uniform spacing; however if your grid is rectilinear (such that each vertical column has the same set of z-coordinates) then you have some options.
For instance, if you only need linear interpolation (say for a simple visualization), you can just do something like:
# Find nearest grid point
idx = grid[:,0,0].searchsorted(value)
upper = grid[idx,0,0]
lower = grid[idx - 1, 0, 0]
s = (value - lower) / (upper - lower)
result = (1-s) * data[idx - 1, :, :] + s * data[idx, :, :]
(You'll need to add checks for value being out of range, of course).For a grid your size, this will be extremely fast (as in tiny fractions of a second)
You can pretty easily modify the above to perform cubic interpolation if need be; the challenge is in picking the correct weights for non-uniform vertical spacing.
The problem with using scipy.ndimage.map_coordinates is that, although it provides higher order interpolation and can handle arbitrary sample points, it does assume that the input data be uniformly spaced. It will still produce smooth results, but it won't be a reliable approximation.
If your coordinate grid is not rectilinear, so that the z-value for a given index changes for different x and y indices, then the approach you are using now is probably the best you can get without a fair bit of analysis of your particular problem.
UPDATE:
One neat trick (again, assuming that each column has the same, not necessarily regular, coordinates) is to use interp1d to extract the weights doing something like follows:
NZ = grid.shape[0]
zs = grid[:,0,0]
ident = np.identity(NZ)
weight_func = interp1d(zs, ident, 'cubic')
You only need to do the above once per grid; you can even reuse weight_func as long as the vertical coordinates don't change.
When it comes time to interpolate then, weight_func(value) will give you the weights, which you can use to compute a single interpolated value at (x_idx, y_idx) with:
weights = weight_func(value)
interp_val = np.dot(data[:, x_idx, y_idx), weights)
If you want to compute a whole plane of interpolated values, you can use np.inner, although since your z-coordinate comes first, you'll need to do:
result = np.inner(data.T, weights).T
Again, the computation should be practically immediate.
This is quite an old question but the best way to do this nowadays is to use MetPy's interpolate_1d funtion:
https://unidata.github.io/MetPy/latest/api/generated/metpy.interpolate.interpolate_1d.html
There is a new implementation of Numba accelerated interpolation on regular grids in 1, 2, and 3 dimensions:
https://github.com/dbstein/fast_interp
Usage is as follows:
from fast_interp import interp2d
import numpy as np
nx = 50
ny = 37
xv, xh = np.linspace(0, 1, nx, endpoint=True, retstep=True)
yv, yh = np.linspace(0, 2*np.pi, ny, endpoint=False, retstep=True)
x, y = np.meshgrid(xv, yv, indexing='ij')
test_function = lambda x, y: np.exp(x)*np.exp(np.sin(y))
f = test_function(x, y)
test_x = -xh/2.0
test_y = 271.43
fa = test_function(test_x, test_y)
interpolater = interp2d([0,0], [1,2*np.pi], [xh,yh], f, k=5, p=[False,True], e=[1,0])
fe = interpolater(test_x, test_y)

calculate turning points / pivot points in trajectory (path)

I'm trying to come up with an algorithm that will determine turning points in a trajectory of x/y coordinates. The following figures illustrates what I mean: green indicates the starting point and red the final point of the trajectory (the entire trajectory consists of ~ 1500 points):
In the following figure, I added by hand the possible (global) turning points that an algorithm could return:
Obviously, the true turning point is always debatable and will depend on the angle that one specifies that has to lie between points. Furthermore a turning point can be defined on a global scale (what I tried to do with the black circles), but could also be defined on a high-resolution local scale. I'm interested in the global (overall) direction changes, but I'd love to see a discussion on the different approaches that one would use to tease apart global vs local solutions.
What I've tried so far:
calculate distance between subsequent points
calculate angle between subsequent points
look how distance / angle changes between subsequent points
Unfortunately this doesn't give me any robust results. I probably have too calculate the curvature along multiple points, but that's just an idea.
I'd really appreciate any algorithms / ideas that might help me here. The code can be in any programming language, matlab or python are preferred.
EDIT here's the raw data (in case somebody want's to play with it):
mat file
text file (x coordinate first, y coordinate in second line)
You could use the Ramer-Douglas-Peucker (RDP) algorithm to simplify the path. Then you could compute the change in directions along each segment of the simplified path. The points corresponding to the greatest change in direction could be called the turning points:
A Python implementation of the RDP algorithm can be found on github.
import matplotlib.pyplot as plt
import numpy as np
import os
import rdp
def angle(dir):
"""
Returns the angles between vectors.
Parameters:
dir is a 2D-array of shape (N,M) representing N vectors in M-dimensional space.
The return value is a 1D-array of values of shape (N-1,), with each value
between 0 and pi.
0 implies the vectors point in the same direction
pi/2 implies the vectors are orthogonal
pi implies the vectors point in opposite directions
"""
dir2 = dir[1:]
dir1 = dir[:-1]
return np.arccos((dir1*dir2).sum(axis=1)/(
np.sqrt((dir1**2).sum(axis=1)*(dir2**2).sum(axis=1))))
tolerance = 70
min_angle = np.pi*0.22
filename = os.path.expanduser('~/tmp/bla.data')
points = np.genfromtxt(filename).T
print(len(points))
x, y = points.T
# Use the Ramer-Douglas-Peucker algorithm to simplify the path
# http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm
# Python implementation: https://github.com/sebleier/RDP/
simplified = np.array(rdp.rdp(points.tolist(), tolerance))
print(len(simplified))
sx, sy = simplified.T
# compute the direction vectors on the simplified curve
directions = np.diff(simplified, axis=0)
theta = angle(directions)
# Select the index of the points with the greatest theta
# Large theta is associated with greatest change in direction.
idx = np.where(theta>min_angle)[0]+1
fig = plt.figure()
ax =fig.add_subplot(111)
ax.plot(x, y, 'b-', label='original path')
ax.plot(sx, sy, 'g--', label='simplified path')
ax.plot(sx[idx], sy[idx], 'ro', markersize = 10, label='turning points')
ax.invert_yaxis()
plt.legend(loc='best')
plt.show()
Two parameters were used above:
The RDP algorithm takes one parameter, the tolerance, which
represents the maximum distance the simplified path
can stray from the original path. The larger the tolerance, the cruder the simplified path.
The other parameter is the min_angle which defines what is considered a turning point. (I'm taking a turning point to be any point on the original path, whose angle between the entering and exiting vectors on the simplified path is greater than min_angle).
I will be giving numpy/scipy code below, as I have almost no Matlab experience.
If your curve is smooth enough, you could identify your turning points as those of highest curvature. Taking the point index number as the curve parameter, and a central differences scheme, you can compute the curvature with the following code
import numpy as np
import matplotlib.pyplot as plt
import scipy.ndimage
def first_derivative(x) :
return x[2:] - x[0:-2]
def second_derivative(x) :
return x[2:] - 2 * x[1:-1] + x[:-2]
def curvature(x, y) :
x_1 = first_derivative(x)
x_2 = second_derivative(x)
y_1 = first_derivative(y)
y_2 = second_derivative(y)
return np.abs(x_1 * y_2 - y_1 * x_2) / np.sqrt((x_1**2 + y_1**2)**3)
You will probably want to smooth your curve out first, then calculate the curvature, then identify the highest curvature points. The following function does just that:
def plot_turning_points(x, y, turning_points=10, smoothing_radius=3,
cluster_radius=10) :
if smoothing_radius :
weights = np.ones(2 * smoothing_radius + 1)
new_x = scipy.ndimage.convolve1d(x, weights, mode='constant', cval=0.0)
new_x = new_x[smoothing_radius:-smoothing_radius] / np.sum(weights)
new_y = scipy.ndimage.convolve1d(y, weights, mode='constant', cval=0.0)
new_y = new_y[smoothing_radius:-smoothing_radius] / np.sum(weights)
else :
new_x, new_y = x, y
k = curvature(new_x, new_y)
turn_point_idx = np.argsort(k)[::-1]
t_points = []
while len(t_points) < turning_points and len(turn_point_idx) > 0:
t_points += [turn_point_idx[0]]
idx = np.abs(turn_point_idx - turn_point_idx[0]) > cluster_radius
turn_point_idx = turn_point_idx[idx]
t_points = np.array(t_points)
t_points += smoothing_radius + 1
plt.plot(x,y, 'k-')
plt.plot(new_x, new_y, 'r-')
plt.plot(x[t_points], y[t_points], 'o')
plt.show()
Some explaining is in order:
turning_points is the number of points you want to identify
smoothing_radius is the radius of a smoothing convolution to be applied to your data before computing the curvature
cluster_radius is the distance from a point of high curvature selected as a turning point where no other point should be considered as a candidate.
You may have to play around with the parameters a little, but I got something like this:
>>> x, y = np.genfromtxt('bla.data')
>>> plot_turning_points(x, y, turning_points=20, smoothing_radius=15,
... cluster_radius=75)
Probably not good enough for a fully automated detection, but it's pretty close to what you wanted.
A very interesting question. Here is my solution, that allows for variable resolution. Although, fine-tuning it may not be simple, as it's mostly intended to narrow down
Every k points, calculate the convex hull and store it as a set. Go through the at most k points and remove any points that are not in the convex hull, in such a way that the points don't lose their original order.
The purpose here is that the convex hull will act as a filter, removing all of "unimportant points" leaving only the extreme points. Of course, if the k-value is too high, you'll end up with something too close to the actual convex hull, instead of what you actually want.
This should start with a small k, at least 4, then increase it until you get what you seek. You should also probably only include the middle point for every 3 points where the angle is below a certain amount, d. This would ensure that all of the turns are at least d degrees (not implemented in code below). However, this should probably be done incrementally to avoid loss of information, same as increasing the k-value. Another possible improvement would be to actually re-run with points that were removed, and and only remove points that were not in both convex hulls, though this requires a higher minimum k-value of at least 8.
The following code seems to work fairly well, but could still use improvements for efficiency and noise removal. It's also rather inelegant in determining when it should stop, thus the code really only works (as it stands) from around k=4 to k=14.
def convex_filter(points,k):
new_points = []
for pts in (points[i:i + k] for i in xrange(0, len(points), k)):
hull = set(convex_hull(pts))
for point in pts:
if point in hull:
new_points.append(point)
return new_points
# How the points are obtained is a minor point, but they need to be in the right order.
x_coords = [float(x) for x in x.split()]
y_coords = [float(y) for y in y.split()]
points = zip(x_coords,y_coords)
k = 10
prev_length = 0
new_points = points
# Filter using the convex hull until no more points are removed
while len(new_points) != prev_length:
prev_length = len(new_points)
new_points = convex_filter(new_points,k)
Here is a screen shot of the above code with k=14. The 61 red dots are the ones that remain after the filter.
The approach you took sounds promising but your data is heavily oversampled. You could filter the x and y coordinates first, for example with a wide Gaussian and then downsample.
In MATLAB, you could use x = conv(x, normpdf(-10 : 10, 0, 5)) and then x = x(1 : 5 : end). You will have to tweak those numbers depending on the intrinsic persistence of the objects you are tracking and the average distance between points.
Then, you will be able to detect changes in direction very reliably, using the same approach you tried before, based on the scalar product, I imagine.
Another idea is to examine the left and the right surroundings at every point. This may be done by creating a linear regression of N points before and after each point. If the intersecting angle between the points is below some threshold, then you have an corner.
This may be done efficiently by keeping a queue of the points currently in the linear regression and replacing old points with new points, similar to a running average.
You finally have to merge adjacent corners to a single corner. E.g. choosing the point with the strongest corner property.

Python 4D linear interpolation on a rectangular grid

I need to interpolate temperature data linearly in 4 dimensions (latitude, longitude, altitude and time).
The number of points is fairly high (360x720x50x8) and I need a fast method of computing the temperature at any point in space and time within the data bounds.
I have tried using scipy.interpolate.LinearNDInterpolator but using Qhull for triangulation is inefficient on a rectangular grid and takes hours to complete.
By reading this SciPy ticket, the solution seemed to be implementing a new nd interpolator using the standard interp1d to calculate a higher number of data points, and then use a "nearest neighbor" approach with the new dataset.
This, however, takes a long time again (minutes).
Is there a quick way of interpolating data on a rectangular grid in 4 dimensions without it taking minutes to accomplish?
I thought of using interp1d 4 times without calculating a higher density of points, but leaving it for the user to call with the coordinates, but I can't get my head around how to do this.
Otherwise would writing my own 4D interpolator specific to my needs be an option here?
Here's the code I've been using to test this:
Using scipy.interpolate.LinearNDInterpolator:
import numpy as np
from scipy.interpolate import LinearNDInterpolator
lats = np.arange(-90,90.5,0.5)
lons = np.arange(-180,180,0.5)
alts = np.arange(1,1000,21.717)
time = np.arange(8)
data = np.random.rand(len(lats)*len(lons)*len(alts)*len(time)).reshape((len(lats),len(lons),len(alts),len(time)))
coords = np.zeros((len(lats),len(lons),len(alts),len(time),4))
coords[...,0] = lats.reshape((len(lats),1,1,1))
coords[...,1] = lons.reshape((1,len(lons),1,1))
coords[...,2] = alts.reshape((1,1,len(alts),1))
coords[...,3] = time.reshape((1,1,1,len(time)))
coords = coords.reshape((data.size,4))
interpolatedData = LinearNDInterpolator(coords,data)
Using scipy.interpolate.interp1d:
import numpy as np
from scipy.interpolate import LinearNDInterpolator
lats = np.arange(-90,90.5,0.5)
lons = np.arange(-180,180,0.5)
alts = np.arange(1,1000,21.717)
time = np.arange(8)
data = np.random.rand(len(lats)*len(lons)*len(alts)*len(time)).reshape((len(lats),len(lons),len(alts),len(time)))
interpolatedData = np.array([None, None, None, None])
interpolatedData[0] = interp1d(lats,data,axis=0)
interpolatedData[1] = interp1d(lons,data,axis=1)
interpolatedData[2] = interp1d(alts,data,axis=2)
interpolatedData[3] = interp1d(time,data,axis=3)
Thank you very much for your help!
In the same ticket you have linked, there is an example implementation of what they call tensor product interpolation, showing the proper way to nest recursive calls to interp1d. This is equivalent to quadrilinear interpolation if you choose the default kind='linear' parameter for your interp1d's.
While this may be good enough, this is not linear interpolation, and there will be higher order terms in the interpolation function, as this image from the wikipedia entry on bilinear interpolation shows:
This may very well be good enough for what you are after, but there are applications where a triangulated, really piecewise linear, interpoaltion is preferred. If you really need this, there is an easy way of working around the slowness of qhull.
Once LinearNDInterpolator has been setup, there are two steps to coming up with an interpolated value for a given point:
figure out inside which triangle (4D hypertetrahedron in your case) the point is, and
interpolate using the barycentric coordinates of the point relative to the vertices as weights.
You probably do not want to mess with barycentric coordinates, so better leave that to LinearNDInterpolator. But you do know some things about the triangulation. Mostly that, because you have a regular grid, within each hypercube the triangulation is going to be the same. So to interpolate a single value, you could first determine in which subcube your point is, build a LinearNDInterpolator with the 16 vertices of that cube, and use it to interpolate your value:
from itertools import product
def interpolator(coords, data, point) :
dims = len(point)
indices = []
sub_coords = []
for j in xrange(dims) :
idx = np.digitize([point[j]], coords[j])[0]
indices += [[idx - 1, idx]]
sub_coords += [coords[j][indices[-1]]]
indices = np.array([j for j in product(*indices)])
sub_coords = np.array([j for j in product(*sub_coords)])
sub_data = data[list(np.swapaxes(indices, 0, 1))]
li = LinearNDInterpolator(sub_coords, sub_data)
return li([point])[0]
>>> point = np.array([12.3,-4.2, 500.5, 2.5])
>>> interpolator((lats, lons, alts, time), data, point)
0.386082399091
This cannot work on vectorized data, since that would require storing a LinearNDInterpolator for every possible subcube, and even though it probably would be faster than triangulating the whole thing, it would still be very slow.
scipy.ndimage.map_coordinates
is a nice fast interpolator for uniform grids (all boxes the same size).
See multivariate-spline-interpolation-in-python-scipy on SO
for a clear description.
For non-uniform rectangular grids, a simple wrapper
Intergrid maps / scales non-uniform to uniform grids,
then does map_coordinates.
On a 4d test case like yours it takes about 1 μsec per query:
Intergrid: 1000000 points in a (361, 720, 47, 8) grid took 652 msec
For very similar things I use Scientific.Functions.Interpolation.InterpolatingFunction.
import numpy as np
from Scientific.Functions.Interpolation import InterpolatingFunction
lats = np.arange(-90,90.5,0.5)
lons = np.arange(-180,180,0.5)
alts = np.arange(1,1000,21.717)
time = np.arange(8)
data = np.random.rand(len(lats)*len(lons)*len(alts)*len(time)).reshape((len(lats),len(lons),len(alts),len(time)))
axes = (lats, lons, alts, time)
f = InterpolatingFunction(axes, data)
You can now leave it to the user to call the InterpolatingFunction with coordinates:
>>> f(0,0,10,3)
0.7085675631375401
InterpolatingFunction has nice additional features, such as integration and slicing.
However, I do not know for sure whether the interpolation is linear. You would have to look in the module source to find out.
I can not open this address, and find enough informations about this package

Categories