perfect squares leetcode missing testcase with recursive solution - python

Trying to solve this problem with recursion but for input 7168 getting wrong answer.
Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n.
For example, given n = 12, return 3 because 12 = 4 + 4 + 4; given n = 13, return 2 because 13 = 4 + 9.
def recursive(self, n, result, dp):
if n in dp:
return dp[n]
#very large number
large_no = 1 << 31
if n < 1:
return 0
#checking if n is a square or not?
r = n**0.5
if int(r)*int(r) == n:
return result + 1
#iterate from square root till 1 checking all numbers
r = int(r)
while r >= 1:
large_no = min(large_no, self.recursive(n - int(r)*int(r), result + 1, dp))
r -= 1
#memoize the result
dp[n] = large_no
return large_no
I am calling above function as this: self.recursive(7168, 0, {})
Answer should be 4 but I am getting 5. Please don't suggest alternative ways to solve this problem as I have tried them already and it works. I am here to just know the problem with this logic.

First, you have a typo: m should be large_no.
But you're using dp incorrectly: you should be caching the smallest way to write i as the sum of squares, but you're actually caching the result of whatever path you happen to get there.
That means you may cache an accidentally larger value than necessary, and your algorithm is wrong. Although the algorithm is wrong, 7168 is the first value for which it produces the wrong result.
Drop the result argument, change return result+1 to return 1 and your recursive call to:
large_no = min(large_no, 1+self.recursive(n - int(r)*int(r), dp))
A cleaned-up, working version of your code:
def recursive(n, dp):
if n in dp:
return dp[n]
if n == 0: return 0
best = n
for r in xrange(int(n**0.5), 0, -1):
best = min(best, 1 + recursive(n - r*r, dp))
dp[n] = best
return dp[n]

I think the problem is that you're passing result down into your recursion but do not take it into account in memoizing.
recursive(X, Y, dp) and recursive(X, Z, dp) both return dp[X] if X in dp but return dp[X] + y and dp[X] + z, respectively, if dp[X] is not yet memoized (where y = R - Y and z = R - Z, with R the value of result when dp[X] got memoized).
I would get rid of result altogether:
def recursive(self, n, dp):
if n in dp:
return dp[n]
#very large number
large_no = 1 << 31
if n < 1:
return 0
#checking if n is a square or not?
r = n**0.5
if int(r)*int(r) == n:
return 1
#iterate from square root till 1 checking all numbers
r = int(r)
while r >= 1:
large_no = min(large_no, self.recursive(n - int(r)*int(r), dp))
r -= 1
#memoize the result
dp[n] = large_no + 1
return large_no + 1

Related

Use Recursion to Find Distinct Ways N can be computed

Was recently trying to solve this coding challenge from a company and I was stumped.
Let T(n) denote the number of different ways that a value of n cents, where n >= 4 and n is even, can be made by using 4-cent and 6-cent coins. For example, if n = 12 then we can use 3 4-cent coins or 2 6-cent coins, so T(12) = 2. Write a recursive algorithm in Python to find T(n) for n >= 4 and n is even.
I nailed down the base cases to be T(n < 4 or n not even) = 0, T(4) = 1 distinct way (1 4-cent coin) and T(6) = 1 distinct way (1 6-cent coin). But I'm not entirely sure how to proceed with a value greater than 6 and is even. Actually, if n > 4 and is even I did think of using modulo (%), so
if(n % 4 == 0): increment count
if(n % 6 == 0): increment count
I guess, I'm stuck on the recursive part because the two if-statements I've computed would count as only a single a way whereas there can be multiple ways to compute N.
Not recursive, but should help you get started.
To determine unique solutions, you are basically asking for partitions of N such that N1 + N2 = N and N1 % 4 == 0 and N2 % 6 == 0. An iterative solution would go something like this:
count = 0
for j in range(0, N + 1, 4):
if (N - j) % 6 == 0:
count += 1
Turning this loop into a recursion is trivial:
def count(N):
def count4(N, n4):
if n4 > N:
return 0
return int((N - n4) % 6 == 0) + count4(N, n4 + 4)
if N < 4 or N % 2:
return 0
return count4(N, 0)
Assuming that ways means "exact order in which coins are laid out", here is a recursive solution.
def T_recurse (n):
if 0 == n:
return 1
elif n < 3:
return 0
else:
return T_recurse(n - 4) + T_recurse(n - 6)
print(T_recurse(100))
And a faster solution
def T_iter(n):
if n < 0:
return 0
else:
answers = [1, 0, 0, 0, 1, 0]
while len(answers) <= n:
answers.append(answers[-4] + answers[-6])
return answers[n]
print(T_iter(100))
(There is also an analytical solution involving the roots of the polynomial x^6 - x^2 - 1, but that is slower to calculate in practice.)
Assuming that ways means "this many of one, that many of the other", then here is a recursive solution:
def S_recurse (n, coins):
if 0 == n:
return 1
elif n < 0:
return 0
elif len(coins) == 0:
return 0
else:
return S_recurse(n - coins[0], coins) + S_recurse(n, coins[1:])
S_recurse(12, [4, 6])
The recursive slowdown is not as bad though still exponential. However but iterative gives you quadratic:
def S_iter (n, coins):
last_row = [0 for i in range(n + 1)]
last_row[0] = 1
for coin in coins:
this_row = []
for i in range(n+1):
if i < coin:
this_row.append(last_row[i])
else:
this_row.append(last_row[i] + this_row[i - coin])
last_row = this_row
return last_row[n]
You can use an optional parameter to keep track of the current sum of 6-cent coins for a given recursive call, and return 1 when the given number is divisible by 4 after deducting the sum of 6's:
def count46(n, sum6=0):
return sum6 <= n and (((n - sum6) % 4) == 0) + count46(n, sum6 + 6)
so that:
for i in range(4, 24, 2):
print(i, count_4_6(i))
outputs:
4 1
6 1
8 1
10 1
12 2
14 1
16 2
18 2
20 2
22 2
Not the most optimized but it returns an array of all distinct solutions
def coins(n, sum=0, current=[], answers=[]):
if sum > n:
return
if sum == n:
answers.append(current)
return
a4 = list(current)
a4.append(4)
coins(n, sum+4, a4, answers)
lastIndex = len(current) - 1
if len(current) == 0 or current[lastIndex] == 6:
a6 = list(current)
a6.append(6)
coins(n, sum+6, a6, answers)
return answers
Try it online!

Codewars. Some tests are passed, but i need to get tests which outputs the following mistake: 3263 should equal -1

Can you explain it what problems are here? To my mind, this code is like a heap of crap but with the right solving. I beg your pardon for my english.
the task of this kata:
Some numbers have funny properties. For example:
89 --> 8¹ + 9² = 89 * 1
695 --> 6² + 9³ + 5⁴= 1390 = 695 * 2
46288 --> 4³ + 6⁴+ 2⁵ + 8⁶ + 8⁷ = 2360688 = 46288 * 51
Given a positive integer n written as abcd... (a, b, c, d... being digits) and a positive integer p we want to find a positive integer k, if it exists, such as the sum of the digits of n taken to the successive powers of p is equal to k * n. In other words:
Is there an integer k such as : (a ^ p + b ^ (p+1) + c ^(p+2) + d ^ (p+3) + ...) = n * k
If it is the case we will return k, if not return -1.
Note: n, p will always be given as strictly positive integers.
dig_pow(89, 1) should return 1 since 8¹ + 9² = 89 = 89 * 1
dig_pow(92, 1) should return -1 since there is no k such as 9¹ + 2² equals 92 * k
dig_pow(695, 2) should return 2 since 6² + 9³ + 5⁴= 1390 = 695 * 2
dig_pow(46288, 3) should return 51 since 4³ + 6⁴+ 2⁵ + 8⁶ + 8⁷ = 2360688 = 46288 * 51
def dig_pow(n, p):
if n > 0 and p > 0:
b = []
a = str(n)
result = []
for i in a:
b.append(int(i))
for x in b:
if p != 1:
result.append(x ** p)
p += 1
else:
result.append(x ** (p + 1))
if int((sum(result)) / n) < 1:
return -1
elif int((sum(result)) / n) < 2:
return 1
else:
return int((sum(result)) / n)
test results:
Test Passed
Test Passed
Test Passed
Test Passed
3263 should equal -1
I don't know what exact version of Python you're using. This following code are in Python 3. And if I get you correctly, the code can be as simple as
def dig_pow(n, p):
assert n > 0 and p > 0
digits = (int(i) for i in str(n)) # replaces your a,b part with generator
result = 0 # you don't use result as a list, so an int suffice
for x in digits: # why do you need if in the loop? (am I missing something?)
result += x ** p
p += 1
if result % n: # you just test for divisibility
return -1
else:
return result // n
The major problem is that, in your objective, you have only two option of returning, but you wrote if elif else, which is definitely unnecessary and leads to problems and bugs. The % is modulus operator.
Also, having an if and not returning anything in the other branch is often not a good idea (see the assert part). Of course, if you don't like it, just fall back to if.
I believe this could work as well and I find it a little easier to read, however it can definitely be improved:
def dig_pow(n, p):
value = 0
for digit in str(n):
value += int(digit)**p
p += 1
for k in range(1,value):
if value/k == n:
return k
return -1
this is some example simple example than using:
digits = (int(i) for i in str(n))
I'm opting to use this version since I am still a beginner which can be done with this alt way:
result = 0
for digits in str(n):
#iterate through each digit from n
# single of digits turn to int & power to p
for number in digits:
result += int(number) ** p
p += 1
as for the full solution, it goes like this:
def dig_pow(n, p):
# example n = 123 , change it to string = 1, 2, 3
# each string[] **p, and p iterate by 1
# if n % p not equal to p return - 1
result = 0
for digits in str(n):
#iterate through each digit from n
# single digit turn to int & power to p
for number in digits:
result += int(number) ** p
p += 1
if result % n:
return -1
else:
return result // n

Python function returning first value twice

I've written this function to calculate sin(x) using Taylor series to any specified degree of accuracy, 'N terms', my problem is the results aren't being returned as expected and I can't figure out why, any help would be appreciated.
What is am expecting is:
1 6.28318530718
2 -35.0585169332
3 46.5467323429
4 -30.1591274102
5 11.8995665347
6 -3.19507604213
7 0.624876542716
8 -0.0932457590621
9 0.0109834031461
What I am getting is:
1 None
2 6.28318530718
3 -35.0585169332
4 46.5467323429
5 -30.1591274102
6 11.8995665347
7 -3.19507604213
8 0.624876542716
9 -0.0932457590621
Thanks in advance.
def factorial(x):
if x <= 1:
return 1
else:
return x * factorial(x-1)
def sinNterms(x, N):
x = float(x)
while N >1:
result = x
for i in range(2, N):
power = ((2 * i)-1)
sign = 1
if i % 2 == 0:
sign = -1
else:
sign = 1
result = result + (((x ** power)*sign) / factorial(power))
return result
pi = 3.141592653589793
for i in range(1,10):
print i, sinNterms(2*pi, i)
I see that you are putting the return under the for which will break it out of the while loop. You should explain if this is what you mean to do. However, given the for i in range(1,10): means that you will ignore the first entry and return None when the input argument i is 1. Is this really what you wanted? Also, since you always exit after the calculation, you should not do a while N > 1 but use if N > 1 to avoid infinite recursion.
The reason why your results are off is because you are using range incorrectly. range(2, N) gives you a list of numbers from 2 to N-1. Thus range(2, 2) gives you an empty list.
You should calculate the range(2, N+1)
def sinNterms(x, N):
x = float(x)
while N >1:
result = x
for i in range(2, N):
Your comment explains that you have the lines of code in the wrong order. You should have
def sinNterms(x, N):
x = float(x)
result = x
# replace the while with an if since you do not need a loop
# Otherwise you would get an infinite recursion
if N > 1:
for i in range(2, N+1):
power = ((2 * i)-1)
sign = 1
if i % 2 == 0:
sign = -1
# The else is not needed as this is the default
# else:
# sign = 1
# use += operator for the calculation
result += (((x ** power)*sign) / factorial(power))
# Now return the value with the indentation under the if N > 1
return result
Note that in order to handle things set factorial to return a float not an int.
An alternative method that saves some calculations is
def sinNterms(x, N):
x = float(x)
lim = 1e-12
result = 0
sign = 1
# This range gives the odd numbers, saves calculation.
for i in range(1, 2*(N+1), 2):
# use += operator for the calculation
temp = ((x ** i)*sign) / factorial(i)
if fabs(temp) < lim:
break
result += temp
sign *= -1
return result

How to check if the number can be represented prime power (nth root is prime or not)

I am trying this problem for a while but getting wrong answer again and again.
number can be very large <=2^2014.
22086. Prime Power Test
Explanation about my algorithm:
For a Given number I am checking if the number can be represented as form of prime power or not.
So the the maximum limit to check for prime power is log n base 2.
Finally problem reduced to finding nth root of a number and if it is prime we have our answer else check for all i till log (n base 2) and exit.
I have used all sort of optimizations and have tested enormous test-cases and for all my algorithm gives correct answer
but Judge says wrong answer.
Spoj have another similar problem with small constraints n<=10^18 for which I already got accepted with Python and C++(Best solver in c++)
Here is My python code Please suggest me if I am doing something wrong I am not very proficient in python so my algorithm is a bit lengthy. Thanks in advance.
My Algorithm:
import math
import sys
import fractions
import random
import decimal
write = sys.stdout.write
def sieve(n):
sqrtn = int(n**0.5)
sieve = [True] * (n+1)
sieve[0] = False
sieve[1] = False
for i in range(2, sqrtn+1):
if sieve[i]:
m = n//i - i
sieve[i*i:n+1:i] = [False] * (m+1)
return sieve
def gcd(a, b):
while b:
a, b = b, a%b
return a
def mr_pass(a, s, d, n):
a_to_power = pow(a, d, n)
if a_to_power == 1:
return True
for i in range(s-1):
if a_to_power == n - 1:
return True
a_to_power = (a_to_power * a_to_power) % n
return a_to_power == n - 1
isprime=sieve(1000000)
sprime= [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997]
def smooth_num(n):
c=0
for a in sprime:
if(n%a==0):
c+=1
if(c>=2):
return True;
return False
def is_prime(n):
if(n<1000000):
return isprime[n]
if any((n % p) == 0 for p in sprime):
return False
if n==2:
return True
d = n - 1
s = 0
while d % 2 == 0:
d >>= 1
s += 1
for repeat in range(10):
a=random.randint(1,n-1)
if not mr_pass(a, s, d, n):
return False
return True
def iroot(n,k):
hi = 1
while pow(hi, k) < n:
hi *= 2
lo = hi // 2
while hi - lo > 1:
mid = (lo + hi) // 2
midToK = (mid**k)
if midToK < n:
lo = mid
elif n < midToK:
hi = mid
else:
return mid
if (hi**k) == n:
return hi
else:
return lo
def isqrt(x):
n = int(x)
if n == 0:
return 0
a, b = divmod(n.bit_length(), 2)
x = pow(2,(a+b))
while True:
y = (x + n//x)>>1
if y >= x:
return x
x = y
maxx=2**1024;minn=2**64
def nth_rootp(n,k):
return int(round(math.exp(math.log(n)/k),0))
def main():
for cs in range(int(input())):
n=int(sys.stdin.readline().strip())
if(smooth_num(n)):
write("Invalid order\n")
continue;
order = 0;m=0
power =int(math.log(n,2))
for i in range(1,power+1):
if(n<=maxx):
if i==1:m=n
elif(i==2):m=isqrt(n)
elif(i==4):m=isqrt(isqrt(n))
elif(i==8):m=isqrt(isqrt(isqrt(n)))
elif(i==16):m=isqrt(isqrt(isqrt(isqrt(n))))
elif(i==32):m=isqrt(isqrt(isqrt(isqrt(isqrt(n)))))
elif(i==64):m=isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(n))))))
elif(i==128):m=isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(n)))))))
elif(i==256):m=isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(n))))))))
else:m=int(nth_rootp(n,i))
else:
if i==1:m=n
elif i==2:m=isqrt(n)
elif(i==4):m=isqrt(isqrt(n))
elif(i==8):m=isqrt(isqrt(isqrt(n)))
elif(i==16):m=isqrt(isqrt(isqrt(isqrt(n))))
elif(i==32):m=isqrt(isqrt(isqrt(isqrt(isqrt(n)))))
elif(i==64):m=isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(n))))))
elif(i==128):m=isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(n)))))))
elif(i==256):m=isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(isqrt(n))))))))
else:m=iroot(n,i)
if m<2:
order=0
break
if(is_prime(m) and n==(m**i)):
write("%d %d\n"%(m,i))
order = 1
break
if(order==0):
write("Invalid order\n")
main()
I'm not going to read all that code, though I suspect the problem is floating-point inaccuracy. Here is my program to determine if a number n is a prime power; it returns the prime p and the power k:
# prime power predicate
from random import randint
from fractions import gcd
def findWitness(n, k=5): # miller-rabin
s, d = 0, n-1
while d % 2 == 0:
s, d = s+1, d/2
for i in range(k):
a = randint(2, n-1)
x = pow(a, d, n)
if x == 1 or x == n-1: continue
for r in range(1, s):
x = (x * x) % n
if x == 1: return a
if x == n-1: break
else: return a
return 0
# returns p,k such that n=p**k, or 0,0
# assumes n is an integer greater than 1
def primePower(n):
def checkP(n, p):
k = 0
while n > 1 and n % p == 0:
n, k = n / p, k + 1
if n == 1: return p, k
else: return 0, 0
if n % 2 == 0: return checkP(n, 2)
q = n
while True:
a = findWitness(q)
if a == 0: return checkP(n, q)
d = gcd(pow(a,q,n)-a, q)
if d == 1 or d == q: return 0, 0
q = d
The program uses Fermat's Little Theorem and exploits the witness a to the compositeness of n that is found by the Miller-Rabin algorithm. It is given as Algorithm 1.7.5 in Henri Cohen's book A Course in Computational Algebraic Number Theory. You can see the program in action at http://ideone.com/cNzQYr.
this is not really an answer, but I don't have enough space to write it as a comment.
So, if the problem still not solved, you may try the following function for nth_rootp, though it is a bit ugly (it is just a binary search to find the precise value of the function):
def nth_rootp(n,k):
r = int(round(math.log(n,2)/k))
left = 2**(r-1)
right = 2**(r+1)
if left**k == n:
return left
if right**k == n:
return right
while left**k < n and right**k > n:
tmp = (left + right)/2
if tmp**k == n:
return tmp
if tmp == left or tmp == right:
return tmp
if tmp**k < n:
left = tmp
else:
if tmp**k > n:
right = tmp
your code look like a little overcomplicated for this task, I will not bother to check it, but the thing you need are the following
is_prime, naturally
a prime generator, optional
calculate the nth root of a number in a precise way
for the first one I recommend the deterministic form of the Miller-Rabin test with a appropriate set of witness to guaranty a exact result until 1543267864443420616877677640751301 (1.543 x 1033) for even bigger numbers you can use the probabilistic one or use a bigger list of witness chosen at your criteria
with all that a template for the solution is as follow
import math
def is_prime(n):
...
def sieve(n):
"list of all primes p such that p<n"
...
def inthroot(x,n):
"calculate floor(x**(1/n))"
...
def is_a_power(n):
"return (a,b) if n=a**b otherwise throw ValueError"
for b in sieve( math.log2(n) +1 ):
a = inthroot(n,b)
if a**b == n:
return a,b
raise ValueError("is not a power")
def smooth_factorization(n):
"return (p,e) where p is prime and n = p**e if such value exists, otherwise throw ValueError"
e=1
p=n
while True:
try:
p,n = is_a_power(p)
e = e*n
except ValueError:
break
if is_prime(p):
return p,e
raise ValueError
def main():
for test in range( int(input()) ):
try:
p,e = smooth_factorization( int(input()) )
print(p,e)
except ValueError:
print("Invalid order")
main()
And the code above should be self explanatory
Filling the blacks
As you are familiar with Miller-Rabin test, I will only mention that if you are interested you can find a implementation of the determinist version here just update the list of witness and you are ready to go.
For the sieve, just change the one you are using to return a list with primes number like this for instance [ p for p,is_p in enumerate(sieve) if is_p ]
With those out of the way, the only thing left is calculate the nth root of the number and to do that in a precise way we need to get rip of that pesky floating point arithmetic that only produce headaches, and the answer is implement the Nth root algorithm using only integer arithmetic, which is pretty similar to the one of isqrt that you already use, I guide myself with the one made by Mark Dickinson for cube root and generalize it and I get this
def inthroot(A, n) :
"calculate floor( A**(1/n) )"
#https://en.wikipedia.org/wiki/Nth_root_algorithm
#https://en.wikipedia.org/wiki/Nth_root#nth_root_algorithm
#https://stackoverflow.com/questions/35254566/wrong-answer-in-spoj-cubert/35276426#35276426
#https://stackoverflow.com/questions/39560902/imprecise-results-of-logarithm-and-power-functions-in-python/39561633#39561633
if A<0:
if n%2 == 0:
raise ValueError
return - inthroot(-A,n)
if A==0:
return 0
n1 = n-1
if A.bit_length() < 1024: # float(n) safe from overflow
xk = int( round( pow(A,1.0/n) ) )
xk = ( n1*xk + A//pow(xk,n1) )//n # Ensure xk >= floor(nthroot(A)).
else:
xk = 1 << -(-A.bit_length()//n) # 1 << sum(divmod(A.bit_length(),n))
# power of 2 closer but greater than the nth root of A
while True:
sig = A // pow(xk,n1)
if xk <= sig:
return xk
xk = ( n1*xk + sig )//n
and with all the above you can solve the problem without inconvenient
from sympy.ntheory import factorint
q=int(input("Give me the number q="))
fact=factorint(q) #We factor the number q=p_1^{n_1}*p_2^{n_2}*...
p_1=list(fact.keys()) #We create a list from keys to be the the numbers p_1,p_2,...
n_1=list(fact.values()) #We create a list from values to be the the numbers n_1,n_2,...
p=int(p_1[0])
n=int(n_1[0])
if q!=p**n: #Check if the number q=p_{1}[0]**n_{1}[0]=p**n.
print("The number "+str(q)+" is not a prime power")
else:
print("The number "+str(q)+" is a prime power")
print("The prime number p="+str(p))
print("The natural number n="+str(n))

Computing Eulers Totient Function

I am trying to find an efficient way to compute Euler's totient function.
What is wrong with this code? It doesn't seem to be working.
def isPrime(a):
return not ( a < 2 or any(a % i == 0 for i in range(2, int(a ** 0.5) + 1)))
def phi(n):
y = 1
for i in range(2,n+1):
if isPrime(i) is True and n % i == 0 is True:
y = y * (1 - 1/i)
else:
continue
return int(y)
Here's a much faster, working way, based on this description on Wikipedia:
Thus if n is a positive integer, then φ(n) is the number of integers k in the range 1 ≤ k ≤ n for which gcd(n, k) = 1.
I'm not saying this is the fastest or cleanest, but it works.
from math import gcd
def phi(n):
amount = 0
for k in range(1, n + 1):
if gcd(n, k) == 1:
amount += 1
return amount
You have three different problems...
y needs to be equal to n as initial value, not 1
As some have mentioned in the comments, don't use integer division
n % i == 0 is True isn't doing what you think because of Python chaining the comparisons! Even if n % i equals 0 then 0 == 0 is True BUT 0 is True is False! Use parens or just get rid of comparing to True since that isn't necessary anyway.
Fixing those problems,
def phi(n):
y = n
for i in range(2,n+1):
if isPrime(i) and n % i == 0:
y *= 1 - 1.0/i
return int(y)
Calculating gcd for every pair in range is not efficient and does not scales. You don't need to iterate throught all the range, if n is not a prime you can check for prime factors up to its square root, refer to https://stackoverflow.com/a/5811176/3393095.
We must then update phi for every prime by phi = phi*(1 - 1/prime).
def totatives(n):
phi = int(n > 1 and n)
for p in range(2, int(n ** .5) + 1):
if not n % p:
phi -= phi // p
while not n % p:
n //= p
#if n is > 1 it means it is prime
if n > 1: phi -= phi // n
return phi
I'm working on a cryptographic library in python and this is what i'm using. gcd() is Euclid's method for calculating greatest common divisor, and phi() is the totient function.
def gcd(a, b):
while b:
a, b=b, a%b
return a
def phi(a):
b=a-1
c=0
while b:
if not gcd(a,b)-1:
c+=1
b-=1
return c
Most implementations mentioned by other users rely on calling a gcd() or isPrime() function. In the case you are going to use the phi() function many times, it pays of to calculated these values before hand. A way of doing this is by using a so called sieve algorithm.
https://stackoverflow.com/a/18997575/7217653 This answer on stackoverflow provides us with a fast way of finding all primes below a given number.
Oke, now we can replace isPrime() with a search in our array.
Now the actual phi function:
Wikipedia gives us a clear example: https://en.wikipedia.org/wiki/Euler%27s_totient_function#Example
phi(36) = phi(2^2 * 3^2) = 36 * (1- 1/2) * (1- 1/3) = 30 * 1/2 * 2/3 = 12
In words, this says that the distinct prime factors of 36 are 2 and 3; half of the thirty-six integers from 1 to 36 are divisible by 2, leaving eighteen; a third of those are divisible by 3, leaving twelve numbers that are coprime to 36. And indeed there are twelve positive integers that are coprime with 36 and lower than 36: 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, and 35.
TL;DR
With other words: We have to find all the prime factors of our number and then multiply these prime factors together using foreach prime_factor: n *= 1 - 1/prime_factor.
import math
MAX = 10**5
# CREDIT TO https://stackoverflow.com/a/18997575/7217653
def sieve_for_primes_to(n):
size = n//2
sieve = [1]*size
limit = int(n**0.5)
for i in range(1,limit):
if sieve[i]:
val = 2*i+1
tmp = ((size-1) - i)//val
sieve[i+val::val] = [0]*tmp
return [2] + [i*2+1 for i, v in enumerate(sieve) if v and i>0]
PRIMES = sieve_for_primes_to(MAX)
print("Primes generated")
def phi(n):
original_n = n
prime_factors = []
prime_index = 0
while n > 1: # As long as there are more factors to be found
p = PRIMES[prime_index]
if (n % p == 0): # is this prime a factor?
prime_factors.append(p)
while math.ceil(n / p) == math.floor(n / p): # as long as we can devide our current number by this factor and it gives back a integer remove it
n = n // p
prime_index += 1
for v in prime_factors: # Now we have the prime factors, we do the same calculation as wikipedia
original_n *= 1 - (1/v)
return int(original_n)
print(phi(36)) # = phi(2**2 * 3**2) = 36 * (1- 1/2) * (1- 1/3) = 36 * 1/2 * 2/3 = 12
It looks like you're trying to use Euler's product formula, but you're not calculating the number of primes which divide a. You're calculating the number of elements relatively prime to a.
In addition, since 1 and i are both integers, so is the division, in this case you always get 0.
With regards to efficiency, I haven't noticed anyone mention that gcd(k,n)=gcd(n-k,n). Using this fact can save roughly half the work needed for the methods involving the use of the gcd. Just start the count with 2 (because 1/n and (n-1)/k will always be irreducible) and add 2 each time the gcd is one.
Here is a shorter implementation of orlp's answer.
from math import gcd
def phi(n): return sum([gcd(n, k)==1 for k in range(1, n+1)])
As others have already mentioned it leaves room for performance optimization.
Actually to calculate phi(any number say n)
We use the Formula
where p are the prime factors of n.
So, you have few mistakes in your code:
1.y should be equal to n
2. For 1/i actually 1 and i both are integers so their evaluation will also be an integer,thus it will lead to wrong results.
Here is the code with required corrections.
def phi(n):
y = n
for i in range(2,n+1):
if isPrime(i) and n % i == 0 :
y -= y/i
else:
continue
return int(y)

Categories