pandas cumulative sum of stock in warehouse - python

Consider the warehouse stocks on different days
day action quantity symbol
0 1 40 a
1 1 53 b
2 -1 21 a
3 1 21 b
4 -1 2 a
5 1 42 b
Here, day represents time series, action represents buy/sell for specific product (symbol) and of quantity.
For this dataframe, How do I calculate the cumulative sum daily, for each product.
Basically, a resultant dataframe as below:
days a b
0 40 0
1 40 53
2 19 53
3 19 64
4 17 64
5 17 106
I have tried cumsum() with groupby and was unsuccessful with it

Using pivot_table
In [920]: dff = df.pivot_table(
index=['day', 'action'], columns='symbol',
values='quantity').reset_index()
In [921]: dff
Out[921]:
symbol day action a b
0 0 1 40.0 NaN
1 1 1 NaN 53.0
2 2 -1 21.0 NaN
3 3 1 NaN 21.0
4 4 -1 2.0 NaN
5 5 1 NaN 42.0
Then, mul the action, take cumsum, forward fill missing values, and finally replace NaNs with 0
In [922]: dff[['a', 'b']].mul(df.action, 0).cumsum().ffill().fillna(0)
Out[922]:
symbol a b
0 40.0 0.0
1 40.0 53.0
2 19.0 53.0
3 19.0 74.0
4 17.0 74.0
5 17.0 116.0
Final result
In [926]: dff[['a', 'b']].mul(df.action, 0).cumsum().ffill().fillna(0).join(df.day)
Out[926]:
a b day
0 40.0 0.0 0
1 40.0 53.0 1
2 19.0 53.0 2
3 19.0 74.0 3
4 17.0 74.0 4
5 17.0 116.0 5

Nevermind, didn't see pandas tag. This is just plain Python.
Try this:
sums = []
currentsums = {'a': 0, 'b': 0}
for i in data:
currentsums[i['symbol']] += i['action'] * i['quantity']
sums.append({'a': currentsums['a'], 'b': currentsums['b']})
Try it online!
Note that it gives a different result than you posted because you calculated wrong.

Related

Putting Na on several columns according to conditions on certain columns

I have a pandas dataframe with amount of bills columns,with dates and ids associated with those amounts. I would like to set the columns to Na when the date is less than 2016-12-31 and their associated id and amount. Here is an example
ID customer
Bill1
Date 1
ID Bill 1
Bill2
Date 2
ID Bill 2
Bill3
Date3
ID Bill 3
Gender
Age
4
6
2000-10-04
1
45
2000-11-05
2
51
1999-12-05
8
M
25
6
8
2016-05-03
7
39
2017-08-09
8
38
2018-07-14
17
W
54
12
14
2016-11-16
10
73
2017-05-04
15
14
2017-07-04
35
M
68
And I would like to get this:
ID customer
Bill1
Date 1
ID Bill 1
Bill2
Date 2
ID Bill 2
Bill3
Date 3
ID Bill 3
Gender
Age
4
Nan
Nan
Nan
Nan
Nan
Nan
Nan
Nan
Nan
M
25
6
Nan
Nan
Nan
39
2017-08-09
8
38
2018-07-14
17
W
54
12
Nan
Nan
Nan
73
2017-05-04
15
14
2017-07-04
35
M
68
One option is to create a MultiIndex.from_frame based on the values extracted str.extractall:
new_df = df.set_index(['ID customer', 'Gender', 'Age'])
orig_cols = new_df.columns # Save For Later
new_df.columns = pd.MultiIndex.from_frame(
new_df.columns.str.extractall(r'(.*?)(?:\s+)?(\d+)')
)
0 Bill Date ID Bill Bill Date ID Bill Bill Date ID Bill
1 1 1 1 2 2 2 3 3 3
ID customer Gender Age
4 M 25 6 2000-10-04 1 45 2000-11-05 2 51 1999-12-05 8
6 W 54 8 2016-05-03 7 39 2017-08-09 8 38 2018-07-14 17
12 M 68 14 2016-11-16 10 73 2017-05-04 15 14 2017-07-04 35
Then mask on the Date column (in level 0) where dates are less than the threshold:
new_df = new_df.mask(new_df['Date'].lt(pd.to_datetime('2016-12-31')))
0 Bill Date ID Bill Bill Date ID Bill Bill Date ID Bill
1 1 1 1 2 2 2 3 3 3
ID customer Gender Age
4 M 25 NaN NaT NaN NaN NaT NaN NaN NaT NaN
6 W 54 NaN NaT NaN 39.0 2017-08-09 8.0 38.0 2018-07-14 17.0
12 M 68 NaN NaT NaN 73.0 2017-05-04 15.0 14.0 2017-07-04 35.0
Lastly, restore columns and order:
new_df.columns = orig_cols # Restore from "save"
new_df = new_df.reset_index().reindex(columns=df.columns)
ID customer Bill1 Date 1 ID Bill 1 Bill2 Date 2 ID Bill 2 Bill3 Date3 ID Bill 3 Gender Age
0 4 NaN NaT NaN NaN NaT NaN NaN NaT NaN M 25
1 6 NaN NaT NaN 39.0 2017-08-09 8.0 38.0 2018-07-14 17.0 W 54
2 12 NaN NaT NaN 73.0 2017-05-04 15.0 14.0 2017-07-04 35.0 M 68
All Together:
(ensure Date Columns are DateTime)
df['Date 1'] = pd.to_datetime(df['Date 1'])
df['Date 2'] = pd.to_datetime(df['Date 2'])
df['Date3'] = pd.to_datetime(df['Date3'])
new_df = df.set_index(['ID customer', 'Gender', 'Age'])
orig_cols = new_df.columns # Save For Later
new_df.columns = pd.MultiIndex.from_frame(
new_df.columns.str.extractall(r'(.*?)(?:\s+)?(\d+)')
)
new_df = new_df.mask(new_df['Date'].lt(pd.to_datetime('2016-12-31')))
new_df.columns = orig_cols # Restore from "save"
new_df = new_df.reset_index().reindex(columns=df.columns)
Another way:
#Assumption Your dates are of dtype datetime[ns]
c=~df.filter(like='Date').lt(pd.to_datetime('2016-12-31'))
c=pd.DataFrame(c.values.repeat(3,1),columns=df.columns[1:10])
Finally:
out=df[df.columns[1:10]]
out=out[c].join(df[['ID customer','Gender','Age']])
Now If you print out you will get your desired output

Get summary data columns in new pandas dataframe from existing dataframe based on other column-ID

I'm want to summarize the data in a dataframe and add the new columns to another dataframe. My data contains appartments with an ID-number and it has surface and volume values for each room in the appartment. What I want is having a dataframe that summarizes this and gives me the total surface and volume per appartment. There are two conditions for the original dataframe:
Two conditions:
- the dataframe can contain empty cells
- when the values of surface or volume are equal for all of the rows within that ID
(so all the same values for the same ID), then the data (surface, volumes) is not
summed but one value/row is passed to the new summary column (example: 'ID 4')(as
this could be a mistake in the original dataframe and the total surface/volume was
inserted for all the rooms by the government-employee)
Initial dataframe 'data':
print(data)
ID Surface Volume
0 2 10.0 25.0
1 2 12.0 30.0
2 2 24.0 60.0
3 2 8.0 20.0
4 4 84.0 200.0
5 4 84.0 200.0
6 4 84.0 200.0
7 52 NaN NaN
8 52 96.0 240.0
9 95 8.0 20.0
10 95 6.0 15.0
11 95 12.0 30.0
12 95 30.0 75.0
13 95 12.0 30.0
Desired output from 'df':
print(df)
ID Surface Volume
0 2 54.0 135.0
1 4 84.0 200.0 #-> as the values are the same for each row of this ID in the original data, the sum is not taken, but only one of the rows is passed (see the second condition)
2 52 96.0 240.0
3 95 68.0 170.0
Tried code:
import pandas as pd
import numpy as np

df = pd.DataFrame({"ID": [2,4,52,95]})

data = pd.DataFrame({"ID": [2,2,2,2,4,4,4,52,52,95,95,95,95,95],
"Surface": [10,12,24,8,84,84,84,np.nan,96,8,6,12,30,12],
"Volume": [25,30,60,20,200,200,200,np.nan,240,20,15,30,75,30]})

print(data)

#Tried something, but no idea how to do this actually:
df["Surface"] = data.groupby("ID").agg(sum)
df["Volume"] = data.groupby("ID").agg(sum)
print(df)
Here are necessary 2 conditions - first testing if unique values per groups for each columns separately by GroupBy.transform and DataFrameGroupBy.nunique and compare by eq for equal with 1 and then second condition - it used DataFrame.duplicated by each column with ID column.
Chain both masks by & for bitwise AND and repalce matched values by NaNs by DataFrame.mask and last aggregate sum:
cols = ['Surface','Volume']
m1 = data.groupby("ID")[cols].transform('nunique').eq(1)
m2 = data[cols].apply(lambda x: x.to_frame().join(data['ID']).duplicated())
df = data[cols].mask(m1 & m2).groupby(data["ID"]).sum().reset_index()
print(df)
ID Surface Volume
0 2 54.0 135.0
1 4 84.0 200.0
2 52 96.0 240.0
3 95 68.0 170.0
If need new columns filled by aggregate sum values use GroupBy.transform :
cols = ['Surface','Volume']
m1 = data.groupby("ID")[cols].transform('nunique').eq(1)
m2 = data[cols].apply(lambda x: x.to_frame().join(data['ID']).duplicated())
data[cols] = data[cols].mask(m1 & m2).groupby(data["ID"]).transform('sum')
print(data)
ID Surface Volume
0 2 54.0 135.0
1 2 54.0 135.0
2 2 54.0 135.0
3 2 54.0 135.0
4 4 84.0 200.0
5 4 84.0 200.0
6 4 84.0 200.0
7 52 96.0 240.0
8 52 96.0 240.0
9 95 68.0 170.0
10 95 68.0 170.0
11 95 68.0 170.0
12 95 68.0 170.0
13 95 68.0 170.0

How to add missing dates within date interval?

I have a dataframe like as shown below
df = pd.DataFrame({
'subject_id':[1,1,1,1,1,1,1,2,2,2,2,2],
'time_1' :['2173-04-03 12:35:00','2173-04-03 12:50:00','2173-04-05
12:59:00','2173-05-04 13:14:00','2173-05-05 13:37:00','2173-07-06
13:39:00','2173-07-08 11:30:00','2173-04-08 16:00:00','2173-04-09
22:00:00','2173-04-11 04:00:00','2173- 04-13 04:30:00','2173-04-14 08:00:00'],
'val' :[5,5,5,5,1,6,5,5,8,3,4,6]})
df['time_1'] = pd.to_datetime(df['time_1'])
df['day'] = df['time_1'].dt.day
df['month'] = df['time_1'].dt.month
As you can see from the dataframe above that there are few missing dates in between. I would like to create new records for those dates and fill in values from the immediate previous row
def dt(df):
r = pd.date_range(start=df.date.min(), end=df.date.max())
df.set_index('date').reindex(r)
new_df = df.groupby(['subject_id','month']).apply(dt)
This generates all the dates. I only want to find the missing date within the input date interval for each subject for each month
I did try the code from this related post. Though it helped me but doesn't get me the expected output for this updated/new requirement. As we do left join, it copies all records. I can't do inner join either because it will drop non-match column. I want a mix of left join and inner join
Currently it creates new records for all 365 days in a year which I don't want. something like below. This is not expected
I only wish to add missing dates between input date interval as shown below. For example subject = 1, in the 4th month has records from 3rd and 5th. but 4th is missing. So we add record for 4th day alone. We don't need 6th,7th etc unlike current output. Similarly in 7th month, record for 7th day missing. so we just add a new record for that
I expect my output to be like as shown below
Here is problem you need resample for append new days, so it is necessary.
df['time_1'] = pd.to_datetime(df['time_1'])
df['day'] = df['time_1'].dt.day
df['date'] = df['time_1'].dt.floor('d')
df1 = (df.set_index('date')
.groupby('subject_id')
.resample('d')
.last()
.index
.to_frame(index=False))
print (df1)
subject_id date
0 1 2173-04-03
1 1 2173-04-04
2 1 2173-04-05
3 1 2173-04-06
4 1 2173-04-07
.. ... ...
99 2 2173-04-10
100 2 2173-04-11
101 2 2173-04-12
102 2 2173-04-13
103 2 2173-04-14
[104 rows x 2 columns]
Idea is remove unnecessary missing rows - you can create threshold for minimum consecutive mising values (here 5) and remove rows (created new column fro easy test):
df2 = df1.merge(df, how='left')
thresh = 5
mask = df2['day'].notna()
s = mask.cumsum().mask(mask)
df2['count'] = s.map(s.value_counts())
df2 = df2[(df2['count'] < thresh) | (df2['count'].isna())]
print (df2)
subject_id date time_1 val day count
0 1 2173-04-03 2173-04-03 12:35:00 5.0 3.0 NaN
1 1 2173-04-03 2173-04-03 12:50:00 5.0 3.0 NaN
2 1 2173-04-04 NaT NaN NaN 1.0
3 1 2173-04-05 2173-04-05 12:59:00 5.0 5.0 NaN
32 1 2173-05-04 2173-05-04 13:14:00 5.0 4.0 NaN
33 1 2173-05-05 2173-05-05 13:37:00 1.0 5.0 NaN
95 1 2173-07-06 2173-07-06 13:39:00 6.0 6.0 NaN
96 1 2173-07-07 NaT NaN NaN 1.0
97 1 2173-07-08 2173-07-08 11:30:00 5.0 8.0 NaN
98 2 2173-04-08 2173-04-08 16:00:00 5.0 8.0 NaN
99 2 2173-04-09 2173-04-09 22:00:00 8.0 9.0 NaN
100 2 2173-04-10 NaT NaN NaN 1.0
101 2 2173-04-11 2173-04-11 04:00:00 3.0 11.0 NaN
102 2 2173-04-12 NaT NaN NaN 1.0
103 2 2173-04-13 2173-04-13 04:30:00 4.0 13.0 NaN
104 2 2173-04-14 2173-04-14 08:00:00 6.0 14.0 NaN
Last use previous solution:
df2 = df2.groupby(df['subject_id']).ffill()
dates = df2['time_1'].dt.normalize()
df2['time_1'] += np.where(dates == df2['date'], 0, df2['date'] - dates)
df2['day'] = df2['time_1'].dt.day
df2['val'] = df2['val'].astype(int)
print (df2)
subject_id date time_1 val day count
0 1 2173-04-03 2173-04-03 12:35:00 5 3 NaN
1 1 2173-04-03 2173-04-03 12:50:00 5 3 NaN
2 1 2173-04-04 2173-04-04 12:50:00 5 4 1.0
3 1 2173-04-05 2173-04-05 12:59:00 5 5 1.0
32 1 2173-05-04 2173-05-04 13:14:00 5 4 NaN
33 1 2173-05-05 2173-05-05 13:37:00 1 5 NaN
95 1 2173-07-06 2173-07-06 13:39:00 6 6 NaN
96 1 2173-07-07 2173-07-07 13:39:00 6 7 1.0
97 1 2173-07-08 2173-07-08 11:30:00 5 8 1.0
98 2 2173-04-08 2173-04-08 16:00:00 5 8 1.0
99 2 2173-04-09 2173-04-09 22:00:00 8 9 1.0
100 2 2173-04-10 2173-04-10 22:00:00 8 10 1.0
101 2 2173-04-11 2173-04-11 04:00:00 3 11 1.0
102 2 2173-04-12 2173-04-12 04:00:00 3 12 1.0
103 2 2173-04-13 2173-04-13 04:30:00 4 13 1.0
104 2 2173-04-14 2173-04-14 08:00:00 6 14 1.0
EDIT: Solution with reindex for each month:
df['time_1'] = pd.to_datetime(df['time_1'])
df['day'] = df['time_1'].dt.day
df['date'] = df['time_1'].dt.floor('d')
df['month'] = df['time_1'].dt.month
df1 = (df.drop_duplicates(['date','subject_id'])
.set_index('date')
.groupby(['subject_id', 'month'])
.apply(lambda x: x.reindex(pd.date_range(x.index.min(), x.index.max())))
.rename_axis(('subject_id','month','date'))
.index
.to_frame(index=False)
)
print (df1)
subject_id month date
0 1 4 2173-04-03
1 1 4 2173-04-04
2 1 4 2173-04-05
3 1 5 2173-05-04
4 1 5 2173-05-05
5 1 7 2173-07-06
6 1 7 2173-07-07
7 1 7 2173-07-08
8 2 4 2173-04-08
9 2 4 2173-04-09
10 2 4 2173-04-10
11 2 4 2173-04-11
12 2 4 2173-04-12
13 2 4 2173-04-13
14 2 4 2173-04-14
df2 = df1.merge(df, how='left')
df2 = df2.groupby(df2['subject_id']).ffill()
dates = df2['time_1'].dt.normalize()
df2['time_1'] += np.where(dates == df2['date'], 0, df2['date'] - dates)
df2['day'] = df2['time_1'].dt.day
df2['val'] = df2['val'].astype(int)
print (df2)
subject_id month date time_1 val day
0 1 4 2173-04-03 2173-04-03 12:35:00 5 3
1 1 4 2173-04-03 2173-04-03 12:50:00 5 3
2 1 4 2173-04-04 2173-04-04 12:50:00 5 4
3 1 4 2173-04-05 2173-04-05 12:59:00 5 5
4 1 5 2173-05-04 2173-05-04 13:14:00 5 4
5 1 5 2173-05-05 2173-05-05 13:37:00 1 5
6 1 7 2173-07-06 2173-07-06 13:39:00 6 6
7 1 7 2173-07-07 2173-07-07 13:39:00 6 7
8 1 7 2173-07-08 2173-07-08 11:30:00 5 8
9 2 4 2173-04-08 2173-04-08 16:00:00 5 8
10 2 4 2173-04-09 2173-04-09 22:00:00 8 9
11 2 4 2173-04-10 2173-04-10 22:00:00 8 10
12 2 4 2173-04-11 2173-04-11 04:00:00 3 11
13 2 4 2173-04-12 2173-04-12 04:00:00 3 12
14 2 4 2173-04-13 2173-04-13 04:30:00 4 13
15 2 4 2173-04-14 2173-04-14 08:00:00 6 14
Does this help?
def fill_dates(df):
result = pd.DataFrame()
for i,row in df.iterrows():
if i == 0:
result = result.append(row)
else:
start_date = result.iloc[-1]['time_1']
end_date = row['time_1']
# print(start_date, end_date)
delta = (end_date - start_date).days
# print(delta)
if delta > 0 and start_date.month == end_date.month:
for j in range(delta):
day = start_date + timedelta(days=j+1)
new_row = result.iloc[-1].copy()
new_row['time_1'] = day
new_row['remarks'] = 'added'
if new_row['time_1'].date() != row['time_1'].date():
result = result.append(new_row)
result = result.append(row)
else:
result = result.append(row)
result.reset_index(inplace = True)
return result

Adding column in pandas based on values from other columns with conditions

I have a dataframe with information about sales of some products (unit):
unit year month price
0 1 2018 6 100
1 1 2013 4 70
2 2 2015 10 80
3 2 2015 2 110
4 3 2017 4 120
5 3 2002 6 90
6 4 2016 1 55
and I would like to add, for each sale, columns with information about the previous sales and NaN if there is no previous sale.
unit year month price prev_price prev_year prev_month
0 1 2018 6 100 70.0 2013.0 4.0
1 1 2013 4 70 NaN NaN NaN
2 2 2015 10 80 110.0 2015.0 2.0
3 2 2015 2 110 NaN NaN NaN
4 3 2017 4 120 90.0 2002.0 6.0
5 3 2002 6 90 NaN NaN NaN
6 4 2016 1 55 NaN NaN NaN
For the moment I am doing some grouping on the unit, keeping those that have several rows, then extracting the information for these units that are associated with the minimal date. Then joining this table with my original table keeping only the rows that have a different date in the 2 tables that have been merged.
I feel like there is a much simple way to do this but I am not sure how.
Use DataFrameGroupBy.shift with add_prefix and join to append new DataFrame to original:
#if real data are not sorted
#df = df.sort_values(['unit','year','month'], ascending=[True, False, False])
df = df.join(df.groupby('unit', sort=False).shift(-1).add_prefix('prev_'))
print (df)
unit year month price prev_year prev_month prev_price
0 1 2018 6 100 2013.0 4.0 70.0
1 1 2013 4 70 NaN NaN NaN
2 2 2015 10 80 2015.0 2.0 110.0
3 2 2015 2 110 NaN NaN NaN
4 3 2017 4 120 2002.0 6.0 90.0
5 3 2002 6 90 NaN NaN NaN
6 4 2016 1 55 NaN NaN NaN

Improve Performance of Apply Method

I would like to groupby by the variable of my df "cod_id" and then apply this function:
[df.loc[df['dt_op'].between(d, d + pd.Timedelta(days = 7)), 'quantity'].sum() \
for d in df['dt_op']]
Moving from this df:
print(df)
dt_op quantity cod_id
20/01/18 1 613
21/01/18 8 611
21/01/18 1 613
...
To this one:
print(final_df)
n = 7
dt_op quantity product_code Final_Quantity
20/01/18 1 613 2
21/01/18 8 611 8
25/01/18 1 613 1
...
I tried with:
def lookforward(x):
L = [x.loc[x['dt_op'].between(row.dt_op, row.dt_op + pd.Timedelta(days=7)), \
'quantity'].sum() for row in x.itertuples(index=False)]
return pd.Series(L, index=x.index)
s = df.groupby('cod_id').apply(lookforward)
s.index = s.index.droplevel(0)
df['Final_Quantity'] = s
print(df)
dt_op quantity cod_id Final_Quantity
0 2018-01-20 1 613 2
1 2018-01-21 8 611 8
2 2018-01-21 1 613 1
But it is not an efficient solution, since it is computationally slow;
How can I improve its performance?
I would achieve it even with a new code/new function that leads to the same result.
EDIT:
Subset of the original dataset, with just one product (cod_id == 2), I tried to run on the code provided by "w-m":
print(df)
cod_id dt_op quantita final_sum
0 2 2017-01-03 1 54.0
1 2 2017-01-04 1 53.0
2 2 2017-01-13 1 52.0
3 2 2017-01-23 2 51.0
4 2 2017-01-26 1 49.0
5 2 2017-02-03 1 48.0
6 2 2017-02-27 1 47.0
7 2 2017-03-05 1 46.0
8 2 2017-03-15 1 45.0
9 2 2017-03-23 1 44.0
10 2 2017-03-27 2 43.0
11 2 2017-03-31 3 41.0
12 2 2017-04-04 1 38.0
13 2 2017-04-05 1 37.0
14 2 2017-04-15 2 36.0
15 2 2017-04-27 2 34.0
16 2 2017-04-30 1 32.0
17 2 2017-05-16 1 31.0
18 2 2017-05-18 1 30.0
19 2 2017-05-19 1 29.0
20 2 2017-06-03 1 28.0
21 2 2017-06-04 1 27.0
22 2 2017-06-07 1 26.0
23 2 2017-06-13 2 25.0
24 2 2017-06-14 1 23.0
25 2 2017-06-20 1 22.0
26 2 2017-06-22 2 21.0
27 2 2017-06-28 1 19.0
28 2 2017-06-30 1 18.0
29 2 2017-07-03 1 17.0
30 2 2017-07-06 2 16.0
31 2 2017-07-07 1 14.0
32 2 2017-07-13 1 13.0
33 2 2017-07-20 1 12.0
34 2 2017-07-28 1 11.0
35 2 2017-08-06 1 10.0
36 2 2017-08-07 1 9.0
37 2 2017-08-24 1 8.0
38 2 2017-09-06 1 7.0
39 2 2017-09-16 2 6.0
40 2 2017-09-20 1 4.0
41 2 2017-10-07 1 3.0
42 2 2017-11-04 1 2.0
43 2 2017-12-07 1 1.0
Edit 181017: this approach doesn't work due to forward rolling functions on sparse time series not currently being supported by pandas, see the comments.
Using for loops can be a performance killer when doing pandas operations.
The for loop around the rows plus their timedelta of 7 days can be replaced with a .rolling("7D"). To get a forward-rolling time delta (current date + 7 days), we reverse the df by date, as shown here.
Then no custom function is required anymore, and you can just take .quantity.sum() from the groupby.
quant_sum = df.sort_values("dt_op", ascending=False).groupby("cod_id") \
.rolling("7D", on="dt_op").quantity.sum()
cod_id dt_op
611 2018-01-21 8.0
613 2018-01-21 1.0
2018-01-20 2.0
Name: quantity, dtype: float64
result = df.set_index(["cod_id", "dt_op"])
result["final_sum"] = quant_sum
result.reset_index()
cod_id dt_op quantity final_sum
0 613 2018-01-20 1 2.0
1 611 2018-01-21 8 8.0
2 613 2018-01-21 1 1.0
Implementing the exact behavior from the question is difficult due to two shortcoming in pandas: neither groupby/rolling/transform nor forward looking rolling sparse dates being implemented (see other answer for more details).
This answer attempts to work around both by resampling the data, filling in all days, and then joining the quant_sums back with the original data.
# Create a temporary df with all in between days filled in with zeros
filled = df.set_index("dt_op").groupby("cod_id") \
.resample("D").asfreq().fillna(0) \
.quantity.to_frame()
# Reverse and sum
filled["quant_sum"] = filled.reset_index().set_index("dt_op") \
.iloc[::-1] \
.groupby("cod_id") \
.rolling(7, min_periods=1) \
.quantity.sum().astype(int)
# Join with original `df`, dropping the filled days
result = df.set_index(["cod_id", "dt_op"]).join(filled.quant_sum).reset_index()

Categories