Arrange matplotlib subplots in skewed grid - python

Using matplotlib, I'd like to display multiple subplots on a grid that has a different number of columns per row, where each subplot has roughly the same size, and the subplots are arranged such that they are more or less centered, like this:
It's a fairly simple matter to create a grid that has the 2, 3, 2 pattern with gridspec, but the problem there is that gridspec, unsurprisingly, aligns them to a grid, so the plots in the rows with 2 plots in them are wider:
Here's the code to generate that:
from matplotlib import gridspec
from matplotlib import pyplot as plt
fig = plt.figure()
arrangement = (2, 3, 2)
nrows = len(arrangement)
gs = gridspec.GridSpec(nrows, 1)
ax_specs = []
for r, ncols in enumerate(arrangement):
gs_row = gridspec.GridSpecFromSubplotSpec(1, ncols, subplot_spec=gs[r])
for col in range(ncols):
ax = plt.Subplot(fig, gs_row[col])
fig.add_subplot(ax)
for i, ax in enumerate(fig.axes):
ax.text(0.5, 0.5, "Axis: {}".format(i), fontweight='bold',
va="center", ha="center")
ax.tick_params(axis='both', bottom='off', top='off', left='off',
right='off', labelbottom='off', labelleft='off')
plt.tight_layout()
I know that I can set up a bunch of subplots and tweak their arrangement by working out the geometry of it, but I think it could get a bit complicated, so I was hoping that there might be a simpler method available.
I should note that even though I'm using a (2, 3, 2) arrangement as my example, I'd like to do this for arbitrary collections, not just this one.

The idea is usually to find the common denominator between the subplots, i.e. the largest subplot that the desired grid can be composed of, and span all subplots over several of those such that the desired layout is achieved.
Here you have 3 rows and 6 columns and each subplot spans 1 row and two columns, just that the subplots in the first row span subplot positions 1/2 and 3/4, while in the second row they span positions 0/1, 2/3, 4/5.
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
gs = gridspec.GridSpec(3, 6)
ax1a = plt.subplot(gs[0, 1:3])
ax1b = plt.subplot(gs[0, 3:5])
ax2a = plt.subplot(gs[1, :2])
ax2b = plt.subplot(gs[1, 2:4])
ax2c = plt.subplot(gs[1, 4:])
ax3a = plt.subplot(gs[2, 1:3])
ax3b = plt.subplot(gs[2, 3:5])
for i, ax in enumerate(plt.gcf().axes):
ax.text(0.5, 0.5, "Axis: {}".format(i), fontweight='bold',
va="center", ha="center")
ax.tick_params(axis='both', bottom='off', top='off', left='off',
right='off', labelbottom='off', labelleft='off')
plt.tight_layout()
plt.show()

Related

How to increase plottable space above a subplot in matplotlib?

I am currently making a plot on matplotlib, which looks like below.
The code for which is:
fig, ax1 = plt.subplots(figsize=(20,5))
ax2 = ax1.twinx()
# plt.subplots_adjust(top=1.4)
ax2.fill_between(dryhydro_df['Time'],dryhydro_df['Flow [m³/s]'],0,facecolor='lightgrey')
ax2.set_ylim([0,10])
AB = ax2.fill_between(dryhydro_df['Time'],[12]*len(dryhydro_df['Time']),9.25,facecolor=colors[0],alpha=0.5,clip_on=False)
ab = ax2.scatter(presence_df['Datetime'][presence_df['AB']==True],[9.5]*sum(presence_df['AB']==True),marker='X',color='black')
# tidal heights
ax1.plot(tide_df['Time'],tide_df['Tide'],color='dimgrey')
I want the blue shaded region and black scatter to be above the plot. I can move the elements above the plot by using clip_on=False but I think I need to extend the space above the plot to do visualise it. Is there a way to do this? Mock-up of what I need is below:
You can use clip_on=False to draw outside the main plot. To position the elements, an xaxis transform helps. That way, x-values can be used in the x direction, while the y-direction uses "axes coordinates". ax.transAxes() uses "axes coordinates" for both directions.
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
dates = pd.date_range('2018-07-01', '2018-07-31', freq='H')
xs = dates.to_numpy().astype(float)
ys = np.sin(xs * .091) * (np.sin(xs * .023) ** 2 + 1)
fig, ax1 = plt.subplots(figsize=(20, 5))
ax1.plot(dates, ys)
ax1.scatter(np.random.choice(dates, 10), np.repeat(1.05, 10), s=20, marker='*', transform=ax1.get_xaxis_transform(),
clip_on=False)
ax1.plot([0, 1], [1.05, 1.05], color='steelblue', lw=20, alpha=0.2, transform=ax1.transAxes, clip_on=False)
plt.tight_layout() # fit labels etc. nicely
plt.subplots_adjust(top=0.9) # make room for the additional elements
plt.show()

Python Matplotlib add.subplot() - How to make grid with two rows with different number of columns

I would like to plot a composite figure over two rows with one entry on the top row and two on the bottom row, with each subplot having the same aspect ratio. How can this be done?
I think you could follow this pattern
from matplotlib.gridspec import GridSpec
# do not forget constrained_layout=True to have some space between axes
fig = plt.figure(constrained_layout=True)
gs = GridSpec(2, 2, figure=fig)
ax1 = fig.add_subplot(gs[0, :])
# identical to ax1 = plt.subplot(gs.new_subplotspec((0, 0), colspan=2))
ax2 = fig.add_subplot(gs[1, 0])
ax3 = fig.add_subplot(gs[1, 1])
plt.show()

Merge matplotlib subplots with shared x-axis

I have two graphs to where both have the same x-axis, but with different y-axis scalings.
The plot with regular axes is the data with a trend line depicting a decay while the y semi-log scaling depicts the accuracy of the fit.
fig1 = plt.figure(figsize=(15,6))
ax1 = fig1.add_subplot(111)
# Plot of the decay model
ax1.plot(FreqTime1,DecayCount1, '.', color='mediumaquamarine')
# Plot of the optimized fit
ax1.plot(x1, y1M, '-k', label='Fitting Function: $f(t) = %.3f e^{%.3f\t} \
%+.3f$' % (aR1,kR1,bR1))
ax1.set_xlabel('Time (sec)')
ax1.set_ylabel('Count')
ax1.set_title('Run 1 of Cesium-137 Decay')
# Allows me to change scales
# ax1.set_yscale('log')
ax1.legend(bbox_to_anchor=(1.0, 1.0), prop={'size':15}, fancybox=True, shadow=True)
Now, i'm trying to figure out to implement both close together like the examples supplied by this link
http://matplotlib.org/examples/pylab_examples/subplots_demo.html
In particular, this one
When looking at the code for the example, i'm a bit confused on how to implant 3 things:
1) Scaling the axes differently
2) Keeping the figure size the same for the exponential decay graph but having a the line graph have a smaller y size and same x size.
For example:
3) Keeping the label of the function to appear in just only the decay graph.
Any help would be most appreciated.
Look at the code and comments in it:
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import gridspec
# Simple data to display in various forms
x = np.linspace(0, 2 * np.pi, 400)
y = np.sin(x ** 2)
fig = plt.figure()
# set height ratios for subplots
gs = gridspec.GridSpec(2, 1, height_ratios=[2, 1])
# the first subplot
ax0 = plt.subplot(gs[0])
# log scale for axis Y of the first subplot
ax0.set_yscale("log")
line0, = ax0.plot(x, y, color='r')
# the second subplot
# shared axis X
ax1 = plt.subplot(gs[1], sharex = ax0)
line1, = ax1.plot(x, y, color='b', linestyle='--')
plt.setp(ax0.get_xticklabels(), visible=False)
# remove last tick label for the second subplot
yticks = ax1.yaxis.get_major_ticks()
yticks[-1].label1.set_visible(False)
# put legend on first subplot
ax0.legend((line0, line1), ('red line', 'blue line'), loc='lower left')
# remove vertical gap between subplots
plt.subplots_adjust(hspace=.0)
plt.show()
Here is my solution:
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 2 * np.pi, 400)
y = np.sin(x ** 2)
fig, (ax1,ax2) = plt.subplots(nrows=2, sharex=True, subplot_kw=dict(frameon=False)) # frameon=False removes frames
plt.subplots_adjust(hspace=.0)
ax1.grid()
ax2.grid()
ax1.plot(x, y, color='r')
ax2.plot(x, y, color='b', linestyle='--')
One more option is seaborn.FacetGrid but this requires Seaborn and Pandas libraries.
Here are some adaptions to show how the code could work to add a combined legend when plotting a pandas dataframe. ax=ax0 can be used to plot on a given ax and ax0.get_legend_handles_labels() gets the information for the legend.
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
dates = pd.date_range('20210101', periods=100, freq='D')
df0 = pd.DataFrame({'x': np.random.normal(0.1, 1, 100).cumsum(),
'y': np.random.normal(0.3, 1, 100).cumsum()}, index=dates)
df1 = pd.DataFrame({'z': np.random.normal(0.2, 1, 100).cumsum()}, index=dates)
fig, (ax0, ax1) = plt.subplots(nrows=2, sharex=True, gridspec_kw={'height_ratios': [2, 1], 'hspace': 0})
df0.plot(ax=ax0, color=['dodgerblue', 'crimson'], legend=False)
df1.plot(ax=ax1, color='limegreen', legend=False)
# put legend on first subplot
handles0, labels0 = ax0.get_legend_handles_labels()
handles1, labels1 = ax1.get_legend_handles_labels()
ax0.legend(handles=handles0 + handles1, labels=labels0 + labels1)
# remove last tick label for the second subplot
yticks = ax1.get_yticklabels()
yticks[-1].set_visible(False)
plt.tight_layout()
plt.show()

Plot alignment and formatting help in Matplotlib and Seaborn

I have a dataframe with 15 rows, which I plot using a seaborn heatmap. I have three plots, each with different scale for the heatmap. The first two plots are the first two rows, which are not aligned on the plot.
I have created a grid with 15 rows, I give each of the first two rows 1/15th of the grid so I don't know why it is not aligned.
Another problem with the first two rows of the heatmap is that the text formatting doesn't work either.
So I want to do two things:
Stretch the top two rows of the table to align it with the bottom one and;
To make the formatting work for the top two rows as well.
Maybe also add titles to my white xaxes (l1 and l2) that separate the the subgroups in the bottom plot (standard methods like ax.set_title does not work).
My code:
import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.gridspec as gs
gs = gs.GridSpec(15, 1) # nrows, ncols
f = plt.figure(figsize=(10, 15))
cmap = sns.diverging_palette(220, 10, as_cmap=True)
ax1 = f.add_subplot(gs[0:1, :])
ax2 = f.add_subplot(gs[1:2, :])
ax3 = f.add_subplot(gs[2:15, :])
ticksx = plt.xticks(fontsize = 18, fontweight='bold')
ticksy = plt.yticks(fontsize = 18, fontweight='bold')
wageplot = sns.heatmap(df[0:1], vmin=3000, vmax=10000, annot=False, square=True, cmap=cmap, ax=ax1, yticklabels=True, cbar=False, xticklabels=False)
tenureplot = sns.heatmap(df[1:2], vmin=45, vmax=100, annot=True, square=True, cmap=cmap, ax=ax2, yticklabels=True, cbar=False, xticklabels=False)
heatmap = sns.heatmap(df[2:15], vmin=0, vmax=1, annot=False, square=True, cmap=cmap, ax=ax3, yticklabels=True, cbar=True, xticklabels=True)
heatmap.set_xticklabels(cols, rotation=45, ha='right')
l1 = plt.axhline(y=1, linewidth=14, color='w', label='Female')
l2 = plt.axhline(y=5, linewidth=14, color='w', label='Education')
f.tight_layout()
I would appreciate if I can pointed to where can I get some information about how to program the needed grid. An example image:

Row titles for matplotlib subplot

In matplotlib, Is it possible to set a a separate title for each row of subplots in addition to the title set for the entire figure and the title set for each individual plot? This would correspond to the orange text in the figure below.
If not, how would you get around this problem? Create a separate column of empty subplots to the left and fill them with the orange text?
I am aware that it is possible to manually position each single title using text() or annotate(), but that usually requires a lot of tweaking and I have many subplots. Is there a smoother solution?
New in matplotlib 3.4.0
Row titles can now be implemented as subfigure suptitles:
The new subfigure feature allows creating virtual figures within figures with localized artists (e.g., colorbars and suptitles) that only pertain to each subfigure.
See how to plot subfigures for further details.
How to reproduce OP's reference figure:
Either Figure.subfigures (most straightforward)
Create 3x1 fig.subfigures where each subfig gets its own 1x3 subfig.subplots and subfig.suptitle:
fig = plt.figure(constrained_layout=True)
fig.suptitle('Figure title')
# create 3x1 subfigs
subfigs = fig.subfigures(nrows=3, ncols=1)
for row, subfig in enumerate(subfigs):
subfig.suptitle(f'Subfigure title {row}')
# create 1x3 subplots per subfig
axs = subfig.subplots(nrows=1, ncols=3)
for col, ax in enumerate(axs):
ax.plot()
ax.set_title(f'Plot title {col}')
Or Figure.add_subfigure (onto existing subplots)
If you already have 3x1 plt.subplots, then add_subfigure into the underlying gridspec. Again each subfig will get its own 1x3 subfig.subplots and subfig.suptitle:
# create 3x1 subplots
fig, axs = plt.subplots(nrows=3, ncols=1, constrained_layout=True)
fig.suptitle('Figure title')
# clear subplots
for ax in axs:
ax.remove()
# add subfigure per subplot
gridspec = axs[0].get_subplotspec().get_gridspec()
subfigs = [fig.add_subfigure(gs) for gs in gridspec]
for row, subfig in enumerate(subfigs):
subfig.suptitle(f'Subfigure title {row}')
# create 1x3 subplots per subfig
axs = subfig.subplots(nrows=1, ncols=3)
for col, ax in enumerate(axs):
ax.plot()
ax.set_title(f'Plot title {col}')
Output of either example (after some styling):
An idea is to create three "big subplots", to give each of them a title, and make them invisible. On the top of that you can create your matrix of smaller subplots.
This solution is entirely based on this post, except that more attention has been paid to actually removing the background subplot.
import matplotlib.pyplot as plt
fig, big_axes = plt.subplots( figsize=(15.0, 15.0) , nrows=3, ncols=1, sharey=True)
for row, big_ax in enumerate(big_axes, start=1):
big_ax.set_title("Subplot row %s \n" % row, fontsize=16)
# Turn off axis lines and ticks of the big subplot
# obs alpha is 0 in RGBA string!
big_ax.tick_params(labelcolor=(1.,1.,1., 0.0), top='off', bottom='off', left='off', right='off')
# removes the white frame
big_ax._frameon = False
for i in range(1,10):
ax = fig.add_subplot(3,3,i)
ax.set_title('Plot title ' + str(i))
fig.set_facecolor('w')
plt.tight_layout()
plt.show()
It is better to firstly plot your real subplots and then plot empty subplots above them, thus you will have a more precise title align. And to do it precisely we need plt.GridSpec() (link).
It is best seen in columns subtitles:
# modified code of #snake_chrmer
fig, big_axes = plt.subplots(figsize=(9, 3) , nrows=1, ncols=3, sharey=True)
for title, big_ax in zip(['First', 'Second', 'Third'], big_axes):
big_ax.set_title(f'{title}\n', fontweight='semibold')
big_ax.set_frame_on(False)
big_ax.axis('off')
for i in range(1, 7):
ax = fig.add_subplot(1,6,i)
ax.set_title('Plot title ' + str(i))
fig.set_facecolor('w')
plt.tight_layout()
plt.show()
# my solition
import matplotlib.pyplot as plt
from matplotlib.gridspec import SubplotSpec
def create_subtitle(fig: plt.Figure, grid: SubplotSpec, title: str):
"Sign sets of subplots with title"
row = fig.add_subplot(grid)
# the '\n' is important
row.set_title(f'{title}\n', fontweight='semibold')
# hide subplot
row.set_frame_on(False)
row.axis('off')
rows = 1
cols = 6
fig, axs = plt.subplots(rows, cols, figsize=(9, 3))
for i, ax in enumerate(axs.flatten()):
ax.set_title(f'Plot title {i}')
grid = plt.GridSpec(rows, cols)
create_subtitle(fig, grid[0, 0:2], 'First')
create_subtitle(fig, grid[0, 2:4], 'Second')
create_subtitle(fig, grid[0, 4:6], 'Third')
fig.tight_layout()
fig.set_facecolor('w')
# original problem
rows = 3
cols = 3
fig, axs = plt.subplots(rows, cols, figsize=(9, 9))
for i, ax in enumerate(axs.flatten()):
ax.set_title(f'Plot title {i}')
grid = plt.GridSpec(rows, cols)
create_subtitle(fig, grid[0, ::], 'First')
create_subtitle(fig, grid[1, ::], 'Second')
create_subtitle(fig, grid[2, ::], 'Third')
fig.tight_layout()
fig.set_facecolor('w')
UPD
It is more logical and comprehensible to create subgrid for a set of subplots just to title them. The subgrig gives a wast space for modifications:
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
rows = 1
cols = 3
fig = plt.figure(figsize=(9, 3))
# grid for pairs of subplots
grid = plt.GridSpec(rows, cols)
for i in range(rows * cols):
# create fake subplot just to title pair of subplots
fake = fig.add_subplot(grid[i])
# '\n' is important
fake.set_title(f'Fake #{i}\n', fontweight='semibold', size=14)
fake.set_axis_off()
# create subgrid for two subplots without space between them
# <https://matplotlib.org/2.0.2/users/gridspec.html>
gs = gridspec.GridSpecFromSubplotSpec(1, 2, subplot_spec=grid[i], wspace=0)
# real subplot #1
ax = fig.add_subplot(gs[0])
ax.set_title(f'Real {i}1')
# hide ticks and labels
ax.tick_params(left=False, labelleft=False, labelbottom=False, bottom=False)
# real subplot #2
ax = fig.add_subplot(gs[1], sharey=ax)
ax.set_title(f'Real {i}2')
# hide ticks and labels
ax.tick_params(left=False, labelleft=False, labelbottom=False, bottom=False)
fig.patch.set_facecolor('white')
fig.suptitle('SUPERTITLE', fontweight='bold', size=16)
fig.tight_layout()
Original problem:
rows = 3
cols = 1
fig = plt.figure(figsize=(9, 9))
# grid for pairs of subplots
grid = plt.GridSpec(rows, cols)
for i in range(rows * cols):
# create fake subplot just to title set of subplots
fake = fig.add_subplot(grid[i])
# '\n' is important
fake.set_title(f'Fake #{i}\n', fontweight='semibold', size=14)
fake.set_axis_off()
# create subgrid for two subplots without space between them
# <https://matplotlib.org/2.0.2/users/gridspec.html>
gs = gridspec.GridSpecFromSubplotSpec(1, 3, subplot_spec=grid[i])
# real subplot #1
ax = fig.add_subplot(gs[0])
ax.set_title(f'Real {i}1')
# real subplot #2
ax = fig.add_subplot(gs[1], sharey=ax)
ax.set_title(f'Real {i}2')
# real subplot #3
ax = fig.add_subplot(gs[2], sharey=ax)
ax.set_title(f'Real {i}3')
fig.patch.set_facecolor('white')
fig.suptitle('SUPERTITLE', fontweight='bold', size=16)
fig.tight_layout()
Another easy cheat is to give the title of the middle column as subplot row XX\n\nPlot title No.YY

Categories