I am working with CSV files where several of the columns have a simple json object (several key value pairs) while other columns are normal. Here is an example:
name,dob,stats
john smith,1/1/1980,"{""eye_color"": ""brown"", ""height"": 160, ""weight"": 76}"
dave jones,2/2/1981,"{""eye_color"": ""blue"", ""height"": 170, ""weight"": 85}"
bob roberts,3/3/1982,"{""eye_color"": ""green"", ""height"": 180, ""weight"": 94}"
After using df = pandas.read_csv('file.csv'), what's the most efficient way to parse and split the stats column into additional columns?
After about an hour, the only thing I could come up with was:
import json
stdf = df['stats'].apply(json.loads)
stlst = list(stdf)
stjson = json.dumps(stlst)
df.join(pandas.read_json(stjson))
This seems like I'm doing it wrong, and it's quite a bit of work considering I'll need to do this on three columns regularly.
Desired output is the dataframe object below. Added following lines of code to get there in my (crappy) way:
df = df.join(pandas.read_json(stjson))
del(df['stats'])
In [14]: df
Out[14]:
name dob eye_color height weight
0 john smith 1/1/1980 brown 160 76
1 dave jones 2/2/1981 blue 170 85
2 bob roberts 3/3/1982 green 180 94
I think applying the json.load is a good idea, but from there you can simply directly convert it to dataframe columns instead of writing/loading it again:
stdf = df['stats'].apply(json.loads)
pd.DataFrame(stdf.tolist()) # or stdf.apply(pd.Series)
or alternatively in one step:
df.join(df['stats'].apply(json.loads).apply(pd.Series))
There is a slightly easier way, but ultimately you'll have to call json.loads There is a notion of a converter in pandas.read_csv
converters : dict. optional
Dict of functions for converting values in certain columns. Keys can either be integers or column labels
So first define your custom parser. In this case the below should work:
def CustomParser(data):
import json
j1 = json.loads(data)
return j1
In your case you'll have something like:
df = pandas.read_csv(f1, converters={'stats':CustomParser},header=0)
We are telling read_csv to read the data in the standard way, but for the stats column use our custom parsers. This will make the stats column a dict
From here, we can use a little hack to directly append these columns in one step with the appropriate column names. This will only work for regular data (the json object needs to have 3 values or at least missing values need to be handled in our CustomParser)
df[sorted(df['stats'][0].keys())] = df['stats'].apply(pandas.Series)
On the Left Hand Side, we get the new column names from the keys of the element of the stats column. Each element in the stats column is a dictionary. So we are doing a bulk assign. On the Right Hand Side, we break up the 'stats' column using apply to make a data frame out of each key/value pair.
Option 1
If you dumped the column with json.dumps before you wrote it to csv, you can read it back in with:
import json
import pandas as pd
df = pd.read_csv('data/file.csv', converters={'json_column_name': json.loads})
Option 2
If you didn't then you might need to use this:
import json
import pandas as pd
df = pd.read_csv('data/file.csv', converters={'json_column_name': eval})
Option 3
For more complicated situations you can write a custom converter like this:
import json
import pandas as pd
def parse_column(data):
try:
return json.loads(data)
except Exception as e:
print(e)
return None
df = pd.read_csv('data/file.csv', converters={'json_column_name': parse_column})
Paul's original answer was very nice but not correct in general, because there is no assurance that the ordering of columns is the same on the left-hand side and the right-hand side of the last line. (In fact, it does not seem to work on the test data in the question, instead erroneously switching the height and weight columns.)
We can fix this by ensuring that the list of dict keys on the LHS is sorted. This works because the apply on the RHS automatically sorts by the index, which in this case is the list of column names.
def CustomParser(data):
import json
j1 = json.loads(data)
return j1
df = pandas.read_csv(f1, converters={'stats':CustomParser},header=0)
df[sorted(df['stats'][0].keys())] = df['stats'].apply(pandas.Series)
json_normalize function in pandas.io.json package helps to do this without using custom function.
(assuming you are loading the data from a file)
from pandas.io.json import json_normalize
df = pd.read_csv(file_path, header=None)
stats_df = json_normalize(data['stats'].apply(ujson.loads).tolist())
stats_df.set_index(df.index, inplace=True)
df.join(stats_df)
del df.drop(df.columns[2], inplace=True)
If you have DateTime values in your .csv file, df[sorted(df['stats'][0].keys())] = df['stats'].apply(pandas.Series) will mess up the date time values
This link has some tip how to read the csv file
with json strings into the dataframe.
You could do the following to read csv file with json string column and convert your json string into columns.
Read your csv into the dataframe (read_df)
read_df = pd.read_csv('yourFile.csv', converters={'state':json.loads}, header=0, quotechar="'")
Convert the json string column to a new dataframe
state_df = read_df['state'].apply(pd.Series)
Merge the 2 dataframe with index number.
df = pd.merge(read_df, state_df, left_index=True, right_index=True)
Related
I am importing study data into a Pandas data frame using read_csv.
My subject codes are 6 numbers coding, among others, the day of birth. For some of my subjects this results in a code with a leading zero (e.g. "010816").
When I import into Pandas, the leading zero is stripped of and the column is formatted as int64.
Is there a way to import this column unchanged maybe as a string?
I tried using a custom converter for the column, but it does not work - it seems as if the custom conversion takes place before Pandas converts to int.
As indicated in this answer by Lev Landau, there could be a simple solution to use converters option for a certain column in read_csv function.
converters={'column_name': str}
Let's say I have csv file projects.csv like below:
project_name,project_id
Some Project,000245
Another Project,000478
As for example below code is trimming leading zeros:
from pandas import read_csv
dataframe = read_csv('projects.csv')
print dataframe
Result:
project_name project_id
0 Some Project 245
1 Another Project 478
Solution code example:
from pandas import read_csv
dataframe = read_csv('projects.csv', converters={'project_id': str})
print dataframe
Required result:
project_name project_id
0 Some Project 000245
1 Another Project 000478
To have all columns as str:
pd.read_csv('sample.csv', dtype=str)
To have certain columns as str:
# column names which need to be string
lst_str_cols = ['prefix', 'serial']
dict_dtypes = {x: 'str' for x in lst_str_cols}
pd.read_csv('sample.csv', dtype=dict_dtypes)
here is a shorter, robust and fully working solution:
simply define a mapping (dictionary) between variable names and desired data type:
dtype_dic= {'subject_id': str,
'subject_number' : 'float'}
use that mapping with pd.read_csv():
df = pd.read_csv(yourdata, dtype = dtype_dic)
et voila!
If you have a lot of columns and you don't know which ones contain leading zeros that might be missed, or you might just need to automate your code. You can do the following:
df = pd.read_csv("your_file.csv", nrows=1) # Just take the first row to extract the columns' names
col_str_dic = {column:str for column in list(df)}
df = pd.read_csv("your_file.csv", dtype=col_str_dic) # Now you can read the compete file
You could also do:
df = pd.read_csv("your_file.csv", dtype=str)
By doing this you will have all your columns as strings and you won't lose any leading zeros.
You Can do This , Works On all Versions of Pandas
pd.read_csv('filename.csv', dtype={'zero_column_name': object})
You can use converters to convert number to fixed width if you know the width.
For example, if the width is 5, then
data = pd.read_csv('text.csv', converters={'column1': lambda x: f"{x:05}"})
This will do the trick. It works for pandas==0.23.0 and also read_excel.
Python3.6 or higher required.
I don't think you can specify a column type the way you want (if there haven't been changes reciently and if the 6 digit number is not a date that you can convert to datetime). You could try using np.genfromtxt() and create the DataFrame from there.
EDIT: Take a look at Wes Mckinney's blog, there might be something for you. It seems to be that there is a new parser from pandas 0.10 coming in November.
As an example, consider the following my_data.txt file:
id,A
03,5
04,6
To preserve the leading zeros for the id column:
df = pd.read_csv("my_data.txt", dtype={"id":"string"})
df
id A
0 03 5
1 04 6
I'm banging my head against the wall. I'm working with the GeoDeepDive API, and trying to "tidy" the data.
My code:
import requests
import pandas as pd
response = requests.get("https://geodeepdive.org/api/articles?pubname_like=Geochronology")
data = response.json()
df = pd.json_normalize(data)
df = df['success.data']
dic = df[0]
df1 = pd.DataFrame.from_dict(dic)
df1.to_csv("output_file.csv")
The result is almost perfect, but nested json's are causing an issue where I get data like this:
CSV output with top two rows edited manually
CSV top 2 rows are the output I want to have, and the bottom two are what I get. I need to somehow "dig" into the dictionaries.
I'm trying to iterate through those specific dataframe columns and either pick just the url, or turn the names, into a list of names. I keep getting errors with whatever I try though, and I'm thinking there may even be a better way to do this. Any thoughts?
Could you try if this
...
df1 = pd.DataFrame.from_dict(dic)
df1.link = df1.link.apply(lambda l: l[0]['url'])
df1.author = df1.author.apply(lambda l: ';'.join(d['name'] for d in l))
df1.to_csv("output_file.csv")
fits your needs?
This is the 'aired' column in the csv file:
as
Link to the csv file:
https://drive.google.com/file/d/1w7kIJ5O6XIStiimowC5TLsOCUEJxuy6x/view?usp=sharing
I want to extract the date and the month (in words) from the date following the 'from' word and store it in a separate column in another csv file. The 'from' is an obstruction since had it been just the date it would have been easily extracted as a timestamp format.
You are starting from a string and want to break out the data within it. The single quotes is a clue that this is a dict structure in string form. The Python standard libraries include the ast (Abstract Syntax Trees) module whose literal_eval method can read a string into a dict, gleaned from this SO answer: Convert a String representation of a Dictionary to a dictionary?
You want to apply that to your column to get the dict, at which point you expand it into separate columns using .apply(pd.Series), based on this SO answer: Splitting dictionary/list inside a Pandas Column into Separate Columns
Try the following
import pandas as pd
import ast
df = pd.read_csv('AnimeList.csv')
# turn the pd.Series of strings into a pd.Series of dicts
aired_dict = df['aired'].apply(ast.literal_eval)
# turn the pd.Series of dicts into a pd.Series of pd.Series objects
aired_df = aired_dict.apply(pd.Series)
# pandas automatically translates that into a pd.DataFrame
# concatenate the remainder of the dataframe with the new data
df_aired = pd.concat([df.drop(['aired'], axis=1), aired_df], axis=1)
# convert the date strings to datetime values
df_aired['aired_from'] = pd.to_datetime(df_aired['from'])
df_aired['aired_to'] = pd.to_datetime(df_aired['to'])
import pandas as pd
file = pd.read_csv('file.csv')
result = []
for cell in file['aired']:
date = cell[8:22]
date_ts = pd.to_datetime(date, format='%Y-%m-%d')
result.append((date_ts.month_name(), date_ts))
df = pd.DataFrame(result, columns=['month', 'date'])
df.to_csv('result_file.csv')
I have constructed a matrix with integer values for columns and index. The matrix is acutally hierachical for each month. My problem is that the indexing and selecting of data does not work anymore as before when I write the data to csv and then load as pandas dataframe.
Selecting data before writing and reading data to file:
matrix.ix[1][4][3] would for example give 123
In words select, month January and get me the (travel) flow from origin 4 to destination 3.
After writing and reading the data to csv and back into pandas, the original referencing fails but if I convert the column indexing to string it works:
matrix.ix[1]['4'][3]
... the column names have automatically been tranformed from integer into string. But I would prefer the original indexing.
Any suggestions?
My current quick fix for handling the data after loading from csv is:
#Writing df to file
mulitindex_df_Travel_monthly.to_csv(r'result/Final_monthly_FlightData_countrylevel_v4.csv')
#Loading df from csv
test_matrix = pd.read_csv(filepath_inputdata+'/Final_monthly_FlightData_countrylevel_v4.csv',
index_col=[0, 1])
test_matrix.rename(columns = int, inplace = True) #Thx, #ayhan
CSV FILE:
https://www.dropbox.com/s/4u2opzh65zwcn81/travel_matrix_SO.csv?dl=0
I used something like this:
df = df.rename(columns={str(c): c for c in columns})
where:
df is pandas dataframe and columns are column to change
You could also do
df.columns = df.columns.astype(int)
or
df.columns = df.columns.map(int)
Related: what is difference between .map(str) and .astype(str) in dataframe
I am importing study data into a Pandas data frame using read_csv.
My subject codes are 6 numbers coding, among others, the day of birth. For some of my subjects this results in a code with a leading zero (e.g. "010816").
When I import into Pandas, the leading zero is stripped of and the column is formatted as int64.
Is there a way to import this column unchanged maybe as a string?
I tried using a custom converter for the column, but it does not work - it seems as if the custom conversion takes place before Pandas converts to int.
As indicated in this answer by Lev Landau, there could be a simple solution to use converters option for a certain column in read_csv function.
converters={'column_name': str}
Let's say I have csv file projects.csv like below:
project_name,project_id
Some Project,000245
Another Project,000478
As for example below code is trimming leading zeros:
from pandas import read_csv
dataframe = read_csv('projects.csv')
print dataframe
Result:
project_name project_id
0 Some Project 245
1 Another Project 478
Solution code example:
from pandas import read_csv
dataframe = read_csv('projects.csv', converters={'project_id': str})
print dataframe
Required result:
project_name project_id
0 Some Project 000245
1 Another Project 000478
To have all columns as str:
pd.read_csv('sample.csv', dtype=str)
To have certain columns as str:
# column names which need to be string
lst_str_cols = ['prefix', 'serial']
dict_dtypes = {x: 'str' for x in lst_str_cols}
pd.read_csv('sample.csv', dtype=dict_dtypes)
here is a shorter, robust and fully working solution:
simply define a mapping (dictionary) between variable names and desired data type:
dtype_dic= {'subject_id': str,
'subject_number' : 'float'}
use that mapping with pd.read_csv():
df = pd.read_csv(yourdata, dtype = dtype_dic)
et voila!
If you have a lot of columns and you don't know which ones contain leading zeros that might be missed, or you might just need to automate your code. You can do the following:
df = pd.read_csv("your_file.csv", nrows=1) # Just take the first row to extract the columns' names
col_str_dic = {column:str for column in list(df)}
df = pd.read_csv("your_file.csv", dtype=col_str_dic) # Now you can read the compete file
You could also do:
df = pd.read_csv("your_file.csv", dtype=str)
By doing this you will have all your columns as strings and you won't lose any leading zeros.
You Can do This , Works On all Versions of Pandas
pd.read_csv('filename.csv', dtype={'zero_column_name': object})
You can use converters to convert number to fixed width if you know the width.
For example, if the width is 5, then
data = pd.read_csv('text.csv', converters={'column1': lambda x: f"{x:05}"})
This will do the trick. It works for pandas==0.23.0 and also read_excel.
Python3.6 or higher required.
I don't think you can specify a column type the way you want (if there haven't been changes reciently and if the 6 digit number is not a date that you can convert to datetime). You could try using np.genfromtxt() and create the DataFrame from there.
EDIT: Take a look at Wes Mckinney's blog, there might be something for you. It seems to be that there is a new parser from pandas 0.10 coming in November.
As an example, consider the following my_data.txt file:
id,A
03,5
04,6
To preserve the leading zeros for the id column:
df = pd.read_csv("my_data.txt", dtype={"id":"string"})
df
id A
0 03 5
1 04 6