I'm trying to convert a string of my dataset to a float type. Here some context:
import pandas as pd
import numpy as np
import xlrd
file_location = "/Users/sekr2/Desktop/Jari/Leistungen/leistungen2_2017.xlsx"
workbook = xlrd.open_workbook(file_location)
sheet = workbook.sheet_by_index(0)
df = pd.read_excel("/Users/.../bla.xlsx")
df.head()
Leistungserbringer Anzahl Leistung AL TL TaxW Taxpunkte
0 McGregor Sarah 12 'Konsilium' 147.28 87.47 KVG 234.75
1 McGregor Sarah 12 'Grundberatung' 47.00 67.47 KVG 114.47
2 McGregor Sarah 12 'Extra 5min' 87.28 87.47 KVG 174.75
3 McGregor Sarah 12 'Respirator' 147.28 102.01 KVG 249.29
4 McGregor Sarah 12 'Besuch' 167.28 87.45 KVG 254.73
To keep working on this I need to find a way to create a new column:
df['Leistungswert'] = df['Taxpunkte'] * df['Anzahl'] * df['TaxW'].
TaxW shows the string 'KVG' for each entry. I know from the data that 'KVG' = 0.89. I have hit a wall with trying to convert the string into a float. I cannot just create a new column with the float type because this code should work with further inputs. In the column TaxW there are about 7 different entries with all different values.
I'm thankful for all information on this matter.
Assuming 'KVG' isn't the only possible string value in TaxW, you should store a mapping of strings to their float equivalent, like this:
map_ = {'KVG' : 0.89, ... } # add more fields here
Then, you can use Series.map:
In [424]: df['Leistungswert'] = df['Taxpunkte'] * df['Anzahl'] * df['TaxW'].map(map_); df['Leistungswert']
Out[424]:
0 2507.1300
1 1222.5396
2 1866.3300
3 2662.4172
4 2720.5164
Name: Leistungswert, dtype: float64
Alternatively, you can use df.transform:
In [435]: df['Leistungswert'] = df.transform(lambda x: x['Taxpunkte'] * x['Anzahl'] * map_[x['TaxW']], axis=1); df['Lei
...: stungswert']
Out[435]:
0 2507.1300
1 1222.5396
2 1866.3300
3 2662.4172
4 2720.5164
Name: Leistungswert, dtype: float64
Alternative solution which uses map_ mapping from #COLDSPEED:
In [237]: df.assign(TaxW=df['TaxW'].map(map_)) \
.eval("Leistungswert = Taxpunkte * Anzahl * TaxW", inplace=False)
Out[237]:
Leistungserbringer Anzahl Leistung AL TL TaxW Taxpunkte Leistungswert
0 McGregor Sarah 12 Konsilium 147.28 87.47 0.89 234.75 2507.1300
1 McGregor Sarah 12 Grundberatung 47.00 67.47 0.89 114.47 1222.5396
2 McGregor Sarah 12 Extra 5min 87.28 87.47 0.89 174.75 1866.3300
3 McGregor Sarah 12 Respirator 147.28 102.01 0.89 249.29 2662.4172
4 McGregor Sarah 12 Besuch 167.28 87.45 0.89 254.73 2720.5164
Related
I am facing a problem. I have created a new column in my csv file and I am trying to add values in the column but don't know what functions to use. The column is called 'Discounted_Price' and I have to mentioned that for Ford and Chevrolet, the prices have a ten percent discount.
This is the code up to this point:
CarPrices_discount=pd.read_csv('C:\\Users\\Jon\\Desktop\\data science\\car_prices.csv')
CarPrices_discount
CarPrices_discount.insert(15,'Discounted_Price',np.nan)
CarPrices_discount.head()
Ford_Chev=CarPrices_discount[(CarPrices_discount.make=='Ford')|(CarPrices_discount.make=='Chevrolet')]
#Ford_Chev['Discounted_Price']=Ford_Chev['sellingprice']*0.9
CarPrices_discount.loc[CarPrices_discount.Ford_Chev['Discounted_Price']=Ford_Chev['sellingprice']*0.9
I know the last line is wrong but I do not how to insert it with dataframe.loc.
Data:
>>> import pandas as pd
>>> import numpy as np
>>> CarPrices_discount = pd.DataFrame({"make" : ['Chevrolet', 'a', 'b', 'Ford', 'Chevrolet', 'Ford'],
"sellingprice" : [900, 10,20,20,40,30]})
>>> CarPrices_discount
make sellingprice
0 Chevrolet 900
1 a 10
2 b 20
3 Ford 20
4 Chevrolet 40
5 Ford 30
>>> CarPrices_discount['Discounted_Price'] = CarPrices_discount.apply(lambda x:x.sellingprice*0.9 if x.make in ['Ford', 'Chevrolet'] else np.nan, axis=1)
>>> CarPrices_discount
make sellingprice Discounted_Price
0 Chevrolet 900 810.0
1 a 10 NaN
2 b 20 NaN
3 Ford 20 18.0
4 Chevrolet 40 36.0
5 Ford 30 27.0
Ok, I found an answer of some sort but it is highly flawed:
Ford_Chev=CarPrices_discount[(CarPrices_discount.make=='Ford'(CarPrices_discount.make=='Chevrolet')] print(Ford_Chev)
Ford_Chev['Discounted_Price']=Ford_Chev["sellingprice"]*0.9
print(Ford_Chev)
Let's say that I have this dataframe with three column : "Name", "Account" and "Ccy".
import pandas as pd
Name = ['Dan', 'Mike', 'Dan', 'Dan', 'Sara', 'Charles', 'Mike', 'Karl']
Account = ['100', '30', '50', '200', '90', '20', '65', '230']
Ccy = ['EUR','EUR','USD','USD','','CHF', '','DKN']
df = pd.DataFrame({'Name':Name, 'Account' : Account, 'Ccy' : Ccy})
Name Account Ccy
0 Dan 100 EUR
1 Mike 30 EUR
2 Dan 50 USD
3 Dan 200 USD
4 Sara 90
5 Charles 20 CHF
6 Mike 65
7 Karl 230 DKN
I would like to reprensent this data differently. I would like to write a script that find all the duplicates in the column name and regroup them wit the different account and if there are an currency "Ccy", it add a new column next to it with all the currency associated.
So something like that :
Dan Ccy1 Mike Ccy2 Sara Charles Ccy3 Karl Ccy4
0 100 EUR 30 EUR 90 20 CHF 230 DKN
1 50 USD 65
2 200 USD
I dont' really know how to start that ! So I simplify the problem to do step y step. I try to regroup the dupicates by the name with a list however it did not identify the duplicates.
x_len, y_len = df.shape
new_data = []
for i in range(x_len) :
if df.iloc[i,0] not in new_data :
print(str(df.iloc[i,0]) + '\t'+ str(df.iloc[i,1])+ '\t' + str(bool(df.iloc[i,0] not in new_data)))
new_data.append([df.iloc[i,0],df.iloc[i,1]])
else:
new_data[str(df.iloc[i,0])].append(df.iloc[i,1])
Then I thought that it was easier to use a dictionary. So I try this loop but there is an error and maybe it is not the best way to go to the expected final result
from collections import defaultdict
dico=defaultdict(list)
x_len, y_len = df.shape
for i in range(x_len) :
if df.iloc[i,0] not in dico :
print(str(df.iloc[i,0]) + '\t'+ str(df.iloc[i,1])+ '\t' + str(bool(df.iloc[i,0] not in dico)))
dico[str(df.iloc[i,0])] = df.iloc[i,1]
print(dico)
else :
dico[df.iloc[i,0]].append(df.iloc[i,1])
Anyone has an idea how to start or to do the code if it is simple ?
Thank you
Use GroupBy.cumcount for counter, reshape by DataFrame.set_index and DataFrame.unstack and last flatten columns names:
g = df.groupby(['Name']).cumcount()
df = df.set_index([g,'Name']).unstack().sort_index(level=1, axis=1)
df.columns = df.columns.map(lambda x: f'{x[0]}_{x[1]}')
print (df)
Account_Charles Ccy_Charles Account_Dan Ccy_Dan Account_Karl Ccy_Karl \
0 20 CHF 100 EUR 230 DKN
1 NaN NaN 50 USD NaN NaN
2 NaN NaN 200 USD NaN NaN
Account_Mike Ccy_Mike Account_Sara Ccy_Sara
0 30 EUR 90
1 65 NaN NaN
2 NaN NaN NaN NaN
If need custom columns names use if-else in list comprehension:
g = df.groupby(['Name']).cumcount()
df = df.set_index([g,'Name']).unstack().sort_index(level=1, axis=1)
L = [b if a == 'Account' else f'{a}{i // 2}' for i, (a, b) in enumerate(df.columns)]
df.columns = L
print (df)
Charles Ccy0 Dan Ccy1 Karl Ccy2 Mike Ccy3 Sara Ccy4
0 20 CHF 100 EUR 230 DKN 30 EUR 90
1 NaN NaN 50 USD NaN NaN 65 NaN NaN
2 NaN NaN 200 USD NaN NaN NaN NaN NaN NaN
I am new in this field and stuck on this problem. I have two datasets
all_batsman_df, this df has 5 columns('years','team','pos','name','salary')
years team pos name salary
0 1991 SF 1B Will Clark 3750000.0
1 1991 NYY 1B Don Mattingly 3420000.0
2 1991 BAL 1B Glenn Davis 3275000.0
3 1991 MIL DH Paul Molitor 3233333.0
4 1991 TOR 3B Kelly Gruber 3033333.0
all_batting_statistics_df, this df has 31 columns
Year Rk Name Age Tm Lg G PA AB R ... SLG OPS OPS+ TB GDP HBP SH SF IBB Pos Summary
0 1988 1 Glen Davis 22 SDP NL 37 89 83 6 ... 0.289 0.514 48.0 24 1 1 0 1 1 987
1 1988 2 Jim Acker 29 ATL NL 21 6 5 0 ... 0.400 0.900 158.0 2 0 0 0 0 0 1
2 1988 3 Jim Adduci* 28 MIL AL 44 97 94 8 ... 0.383 0.641 77.0 36 1 0 0 3 0 7D/93
3 1988 4 Juan Agosto* 30 HOU NL 75 6 5 0 ... 0.000 0.000 -100.0 0 0 0 1 0 0 1
4 1988 5 Luis Aguayo 29 TOT MLB 99 260 237 21 ... 0.354 0.663 88.0 84 6 1 1 1 3 564
I want to merge these two datasets on 'year', 'name'. But the problem is, these both data frames has different names like in the first dataset, it has name 'Glenn Davis' but in second dataset it has 'Glen Davis'.
Now, I want to know that How can I merge both of them using difflib library even it has different names?
Any help will be appreciated ...
Thanks in advance.
I have used this code which I got in a question asked at this platform but it is not working for me. I am adding a new column after matching names in both of the datasets. I know this is not a good approach. Kindly suggest, If i can do it in a better way.
df_a = all_batting_statistics_df
df_b = all_batters
df_a = df_a.astype(str)
df_b = df_b.astype(str)
df_a['merge_year'] = df_a['Year'] # we will use these as the merge keys
df_a['merge_name'] = df_a['Name']
for comp_a, addr_a in df_a[['Year','Name']].values:
for ixb, (comp_b, addr_b) in enumerate(df_b[['years','name']].values):
if cdifflib.CSequenceMatcher(None,comp_a,comp_b).ratio() > .6:
df_b.loc[ixb,'merge_year'] = comp_a # creates a merge key in df_b
if cdifflib.CSequenceMatcher(None,addr_a, addr_b).ratio() > .6:
df_b.loc[ixb,'merge_name'] = addr_a # creates a merge key in df_b
merged_df = pd.merge(df_a,df_b,on=['merge_name','merge_years'],how='inner')
You can do
import difflib
df_b['name'] = df_b['name'].apply(lambda x: \
difflib.get_close_matches(x, df_a['name'])[0])
to replace names in df_b with closest match from df_a, then do your merge. See also this post.
Let me get to your problem by assuming that you have to make a data set with 2 columns and the 2 columns being 1. 'year' and 2. 'name'
okay
1. we will 1st rename all the names which are wrong
I hope you know all the wrong names from all_batting_statistics_df using this
all_batting_statistics_df.replace(regex=r'^Glen.$', value='Glenn Davis')
once you have corrected all the spellings, choose the smaller one which has the names you know, so it doesn't take long
2. we need both data sets to have the same columns i.e. only 'year' and 'name'
use this to drop the columns we don't need
all_batsman_df_1 = all_batsman_df.drop(['team','pos','salary'])
all_batting_statistics_df_1 = all_batting_statistics_df.drop(['Rk','Name','Age','Tm','Lg','G','PA','AB','R','Summary'], axis=1)
I cannot see all the 31 columns so I left them, you have to add to the above code
3. we need to change the column names to look the same i.e. 'year' and 'name' using python dataframe rename
df_new_1 = all_batting_statistics_df(colums={'Year': 'year', 'Name':'name'})
4. next, to merge them
we will use this
all_batsman_df.merge(df_new_1, left_on='year', right_on='name')
FINAL THOUGHTS:
If you don't want to do all this find a way to export the data set to google sheets or microsoft excel and use edit them with those advanced software, if you like pandas then its not that difficult you will find a way, all the best!
Working through Pandas Cookbook. Counting the Total Number of Flights Between Cities.
import pandas as pd
import numpy as np
# import matplotlib.pyplot as plt
print('NumPy: {}'.format(np.__version__))
print('Pandas: {}'.format(pd.__version__))
print('-----')
desired_width = 320
pd.set_option('display.width', desired_width)
pd.options.display.max_rows = 50
pd.options.display.max_columns = 14
# pd.options.display.float_format = '{:,.2f}'.format
file = "e:\\packt\\data_analysis_and_exploration_with_pandas\\section07\\data\\flights.csv"
flights = pd.read_csv(file)
print(flights.head(10))
print()
# This returns the total number of rows for each group.
flights_ct = flights.groupby(['ORG_AIR', 'DEST_AIR']).size()
print(flights_ct.head(10))
print()
# Get the number of flights between Atlanta and Houston in both directions.
print(flights_ct.loc[[('ATL', 'IAH'), ('IAH', 'ATL')]])
print()
# Sort the origin and destination cities:
# flights_sort = flights.sort_values(by=['ORG_AIR', 'DEST_AIR'], axis=1)
flights_sort = flights[['ORG_AIR', 'DEST_AIR']].apply(sorted, axis=1)
print(flights_sort.head(10))
print()
# Passing just the first row.
print(sorted(flights.loc[0, ['ORG_AIR', 'DEST_AIR']]))
print()
# Once each row is independently sorted, the column name are no longer correct.
# We will rename them to something generic, then again find the total number of flights between all cities.
rename_dict = {'ORG_AIR': 'AIR1', 'DEST_AIR': 'AIR2'}
flights_sort = flights_sort.rename(columns=rename_dict)
flights_ct2 = flights_sort.groupby(['AIR1', 'AIR2']).size()
print(flights_ct2.head(10))
print()
When I get to this line of code my output differs from the authors:
```flights_sort = flights[['ORG_AIR', 'DEST_AIR']].apply(sorted, axis=1)```
My output does not contain any column names. As a result, when I get to:
```flights_ct2 = flights_sort.groupby(['AIR1', 'AIR2']).size()```
it throws a KeyError. This makes sense, as I am trying to rename columns when no column names exist.
My question is, why are the column names gone? All other output matches the authors output exactly:
Connected to pydev debugger (build 191.7141.48)
NumPy: 1.16.3
Pandas: 0.24.2
-----
MONTH DAY WEEKDAY AIRLINE ORG_AIR DEST_AIR SCHED_DEP DEP_DELAY AIR_TIME DIST SCHED_ARR ARR_DELAY DIVERTED CANCELLED
0 1 1 4 WN LAX SLC 1625 58.0 94.0 590 1905 65.0 0 0
1 1 1 4 UA DEN IAD 823 7.0 154.0 1452 1333 -13.0 0 0
2 1 1 4 MQ DFW VPS 1305 36.0 85.0 641 1453 35.0 0 0
3 1 1 4 AA DFW DCA 1555 7.0 126.0 1192 1935 -7.0 0 0
4 1 1 4 WN LAX MCI 1720 48.0 166.0 1363 2225 39.0 0 0
5 1 1 4 UA IAH SAN 1450 1.0 178.0 1303 1620 -14.0 0 0
6 1 1 4 AA DFW MSY 1250 84.0 64.0 447 1410 83.0 0 0
7 1 1 4 F9 SFO PHX 1020 -7.0 91.0 651 1315 -6.0 0 0
8 1 1 4 AA ORD STL 1845 -5.0 44.0 258 1950 -5.0 0 0
9 1 1 4 UA IAH SJC 925 3.0 215.0 1608 1136 -14.0 0 0
ORG_AIR DEST_AIR
ATL ABE 31
ABQ 16
ABY 19
ACY 6
AEX 40
AGS 83
ALB 33
ANC 2
ASE 1
ATW 10
dtype: int64
ORG_AIR DEST_AIR
ATL IAH 121
IAH ATL 148
dtype: int64
*** No columns names *** Why?
0 [LAX, SLC]
1 [DEN, IAD]
2 [DFW, VPS]
3 [DCA, DFW]
4 [LAX, MCI]
5 [IAH, SAN]
6 [DFW, MSY]
7 [PHX, SFO]
8 [ORD, STL]
9 [IAH, SJC]
dtype: object
The author's output. Note the columns names are present.
sorted returns a list object and obliterates the columns:
In [11]: df = pd.DataFrame([[1, 2], [3, 4]], columns=["A", "B"])
In [12]: df.apply(sorted, axis=1)
Out[12]:
0 [1, 2]
1 [3, 4]
dtype: object
In [13]: type(df.apply(sorted, axis=1).iloc[0])
Out[13]: list
It's possible that this wouldn't have been the case in earlier pandas... but it would still be bad code.
You can do this by passing the columns explicitly:
In [14]: df.apply(lambda x: pd.Series(sorted(x), df.columns), axis=1)
Out[14]:
A B
0 1 2
1 3 4
A more efficient way to do this is to sort the sort the underlying numpy array:
In [21]: df = pd.DataFrame([[1, 2], [3, 1]], columns=["A", "B"])
In [22]: df
Out[22]:
A B
0 1 2
1 3 1
In [23]: arr = df[["A", "B"]].values
In [24]: arr.sort(axis=1)
In [25]: df[["A", "B"]] = arr
In [26]: df
Out[26]:
A B
0 1 2
1 1 3
As you can see this sorts each row.
A final note. I just applied #AndyHayden numpy based solution from above.
flights_sort = flights[["ORG_AIR", "DEST_AIR"]].values
flights_sort.sort(axis=1)
flights[["ORG_AIR", "DEST_AIR"]] = flights_sort
All I can say is … Wow. What an enormous performance difference. I get the exact same
correct answer and I get it as soon as I click the mouse as compared to the pandas lambda solution also provided by #AndyHayden which takes about 20 seconds to perform the sort. That dataset is 58,000+ rows. The numpy solution returns the sort instantly.
I have a dataframe that looks like this:
I want to create another column called "engaged_percent" for each state which is basically the number of unique engaged_count divided by the user_count of each particular state.
I tried doing the following:
def f(x):
engaged_percent = x['engaged_count'].nunique()/x['user_count']
return pd.Series({'engaged_percent': engaged_percent})
by = df3.groupby(['user_state']).apply(f)
by
But it gave me the following result:
What I want is something like this:
user_state engaged_percent
---------------------------------
California 2/21 = 0.09
Florida 2/7 = 0.28
I think my approach is correct , however I am not sure why my result shows up like the one seen in the second picture.
Any help would be much appreciated! Thanks in advance!
How about:
user_count=df3.groupby('user_state')['user_count'].mean()
#(or however you think a value for each state should be calculated)
engaged_unique=df3.groupby('user_state')['engaged_count'].nunique()
engaged_pct=engaged_unique/user_count
(you could also do this in one line in a bunch of different ways)
Your original solution was almost fine except that you were dividing a value by the entire user count series. So you were getting a Series instead of a value. You could try this slight variation:
def f(x):
engaged_percent = x['engaged_count'].nunique()/x['user_count'].mean()
return engaged_percent
by = df3.groupby(['user_state']).apply(f)
by
I would just use groupby and apply directly
df3['engaged_percent'] = df3.groupby('user_state')
.apply(lambda s: s.engaged_count.nunique()/s.user_count).values
Demo
>>> df3
engaged_count user_count user_state
0 3 21 California
1 3 21 California
2 3 21 California
...
19 4 7 Florida
20 4 7 Florida
21 4 7 Florida
>>> df3['engaged_percent'] = df3.groupby('user_state').apply(lambda s: s.engaged_count.nunique()/s.user_count).values
>>> df3
engaged_count user_count user_state engaged_percent
0 3 21 California 0.095238
1 3 21 California 0.095238
2 3 21 California 0.095238
...
19 4 7 Florida 0.285714
20 4 7 Florida 0.285714
21 4 7 Florida 0.285714
titanic.groupby('Sex')['Fare'].mean()
you can try this example just put your example in that