In Python 2 there was an error when return was together with yield in a function definition. But for this code in Python 3.3:
def f():
return 3
yield 2
x = f()
print(x.__next__())
there is no error that return is used in function with yield. However when the function __next__ is called then there is thrown exception StopIteration. Why there is not just returned value 3? Is this return somehow ignored?
This is a new feature in Python 3.3. Much like return in a generator has long been equivalent to raise StopIteration(), return <something> in a generator is now equivalent to raise StopIteration(<something>). For that reason, the exception you're seeing should be printed as StopIteration: 3, and the value is accessible through the attribute value on the exception object. If the generator is delegated to using the (also new) yield from syntax, it is the result. See PEP 380 for details.
def f():
return 1
yield 2
def g():
x = yield from f()
print(x)
# g is still a generator so we need to iterate to run it:
for _ in g():
pass
This prints 1, but not 2.
The return value is not ignored, but generators only yield values, a return just ends the generator, in this case early. Advancing the generator never reaches the yield statement in that case.
Whenever a iterator reaches the 'end' of the values to yield, a StopIteration must be raised. Generators are no exception. As of Python 3.3 however, any return expression becomes the value of the exception:
>>> def gen():
... return 3
... yield 2
...
>>> try:
... next(gen())
... except StopIteration as ex:
... e = ex
...
>>> e
StopIteration(3,)
>>> e.value
3
Use the next() function to advance iterators, instead of calling .__next__() directly:
print(next(x))
Related
Since Python 3.3, if a generator function returns a value, that becomes the value for the StopIteration exception that is raised. This can be collected a number of ways:
The value of a yield from expression, which implies the enclosing function is also a generator.
Wrapping a call to next() or .send() in a try/except block.
However, if I'm simply wanting to iterate over the generator in a for loop - the easiest way - there doesn't appear to be a way to collect the value of the StopIteration exception, and thus the return value. Im using a simple example where the generator yields values, and returns some kind of summary at the end (running totals, averages, timing statistics, etc).
for i in produce_values():
do_something(i)
values_summary = ....??
One way is to handle the loop myself:
values_iter = produce_values()
try:
while True:
i = next(values_iter)
do_something(i)
except StopIteration as e:
values_summary = e.value
But this throws away the simplicity of the for loop. I can't use yield from since that requires the calling code to be, itself, a generator. Is there a simpler way than the roll-ones-own for loop shown above?
You can think of the value attribute of StopIteration (and arguably StopIteration itself) as implementation details, not designed to be used in "normal" code.
Have a look at PEP 380 that specifies the yield from feature of Python 3.3: It discusses that some alternatives of using StopIteration to carry the return value where considered.
Since you are not supposed to get the return value in an ordinary for loop, there is no syntax for it. The same way as you are not supposed to catch the StopIteration explicitly.
A nice solution for your situation would be a small utility class (might be useful enough for the standard library):
class Generator:
def __init__(self, gen):
self.gen = gen
def __iter__(self):
self.value = yield from self.gen
This wraps any generator and catches its return value to be inspected later:
>>> def test():
... yield 1
... return 2
...
>>> gen = Generator(test())
>>> for i in gen:
... print(i)
...
1
>>> print(gen.value)
2
You could make a helper wrapper, that would catch the StopIteration and extract the value for you:
from functools import wraps
class ValueKeepingGenerator(object):
def __init__(self, g):
self.g = g
self.value = None
def __iter__(self):
self.value = yield from self.g
def keep_value(f):
#wraps(f)
def g(*args, **kwargs):
return ValueKeepingGenerator(f(*args, **kwargs))
return g
#keep_value
def f():
yield 1
yield 2
return "Hi"
v = f()
for x in v:
print(x)
print(v.value)
A light-weight way to handle the return value (one that doesn't involve instantiating an auxiliary class) is to use dependency injection.
Namely, one can pass in the function to handle / act on the return value using the following wrapper / helper generator function:
def handle_return(generator, func):
returned = yield from generator
func(returned)
For example, the following--
def generate():
yield 1
yield 2
return 3
def show_return(value):
print('returned: {}'.format(value))
for x in handle_return(generate(), show_return):
print(x)
results in--
1
2
returned: 3
The most obvious method I can think of for this would be a user defined type that would remember the summary for you..
>>> import random
>>> class ValueProducer:
... def produce_values(self, n):
... self._total = 0
... for i in range(n):
... r = random.randrange(n*100)
... self._total += r
... yield r
... self.value_summary = self._total/n
... return self.value_summary
...
>>> v = ValueProducer()
>>> for i in v.produce_values(3):
... print(i)
...
25
55
179
>>> print(v.value_summary)
86.33333333333333
>>>
Another light weight way sometimes appropriate is to yield the running summary in every generator step in addition to your primary value in a tuple. The loop stays simple with an extra binding which is still available afterwards:
for i, summary in produce_values():
do_something(i)
show_summary(summary)
This is especially useful if someone could use more than just the last summary value, e. g. updating a progress view.
In Python 2 there was an error when return was together with yield in a function definition. But for this code in Python 3.3:
def f():
return 3
yield 2
x = f()
print(x.__next__())
there is no error that return is used in function with yield. However when the function __next__ is called then there is thrown exception StopIteration. Why there is not just returned value 3? Is this return somehow ignored?
This is a new feature in Python 3.3. Much like return in a generator has long been equivalent to raise StopIteration(), return <something> in a generator is now equivalent to raise StopIteration(<something>). For that reason, the exception you're seeing should be printed as StopIteration: 3, and the value is accessible through the attribute value on the exception object. If the generator is delegated to using the (also new) yield from syntax, it is the result. See PEP 380 for details.
def f():
return 1
yield 2
def g():
x = yield from f()
print(x)
# g is still a generator so we need to iterate to run it:
for _ in g():
pass
This prints 1, but not 2.
The return value is not ignored, but generators only yield values, a return just ends the generator, in this case early. Advancing the generator never reaches the yield statement in that case.
Whenever a iterator reaches the 'end' of the values to yield, a StopIteration must be raised. Generators are no exception. As of Python 3.3 however, any return expression becomes the value of the exception:
>>> def gen():
... return 3
... yield 2
...
>>> try:
... next(gen())
... except StopIteration as ex:
... e = ex
...
>>> e
StopIteration(3,)
>>> e.value
3
Use the next() function to advance iterators, instead of calling .__next__() directly:
print(next(x))
Since Python 3.3, if a generator function returns a value, that becomes the value for the StopIteration exception that is raised. This can be collected a number of ways:
The value of a yield from expression, which implies the enclosing function is also a generator.
Wrapping a call to next() or .send() in a try/except block.
However, if I'm simply wanting to iterate over the generator in a for loop - the easiest way - there doesn't appear to be a way to collect the value of the StopIteration exception, and thus the return value. Im using a simple example where the generator yields values, and returns some kind of summary at the end (running totals, averages, timing statistics, etc).
for i in produce_values():
do_something(i)
values_summary = ....??
One way is to handle the loop myself:
values_iter = produce_values()
try:
while True:
i = next(values_iter)
do_something(i)
except StopIteration as e:
values_summary = e.value
But this throws away the simplicity of the for loop. I can't use yield from since that requires the calling code to be, itself, a generator. Is there a simpler way than the roll-ones-own for loop shown above?
You can think of the value attribute of StopIteration (and arguably StopIteration itself) as implementation details, not designed to be used in "normal" code.
Have a look at PEP 380 that specifies the yield from feature of Python 3.3: It discusses that some alternatives of using StopIteration to carry the return value where considered.
Since you are not supposed to get the return value in an ordinary for loop, there is no syntax for it. The same way as you are not supposed to catch the StopIteration explicitly.
A nice solution for your situation would be a small utility class (might be useful enough for the standard library):
class Generator:
def __init__(self, gen):
self.gen = gen
def __iter__(self):
self.value = yield from self.gen
This wraps any generator and catches its return value to be inspected later:
>>> def test():
... yield 1
... return 2
...
>>> gen = Generator(test())
>>> for i in gen:
... print(i)
...
1
>>> print(gen.value)
2
You could make a helper wrapper, that would catch the StopIteration and extract the value for you:
from functools import wraps
class ValueKeepingGenerator(object):
def __init__(self, g):
self.g = g
self.value = None
def __iter__(self):
self.value = yield from self.g
def keep_value(f):
#wraps(f)
def g(*args, **kwargs):
return ValueKeepingGenerator(f(*args, **kwargs))
return g
#keep_value
def f():
yield 1
yield 2
return "Hi"
v = f()
for x in v:
print(x)
print(v.value)
A light-weight way to handle the return value (one that doesn't involve instantiating an auxiliary class) is to use dependency injection.
Namely, one can pass in the function to handle / act on the return value using the following wrapper / helper generator function:
def handle_return(generator, func):
returned = yield from generator
func(returned)
For example, the following--
def generate():
yield 1
yield 2
return 3
def show_return(value):
print('returned: {}'.format(value))
for x in handle_return(generate(), show_return):
print(x)
results in--
1
2
returned: 3
The most obvious method I can think of for this would be a user defined type that would remember the summary for you..
>>> import random
>>> class ValueProducer:
... def produce_values(self, n):
... self._total = 0
... for i in range(n):
... r = random.randrange(n*100)
... self._total += r
... yield r
... self.value_summary = self._total/n
... return self.value_summary
...
>>> v = ValueProducer()
>>> for i in v.produce_values(3):
... print(i)
...
25
55
179
>>> print(v.value_summary)
86.33333333333333
>>>
Another light weight way sometimes appropriate is to yield the running summary in every generator step in addition to your primary value in a tuple. The loop stays simple with an extra binding which is still available afterwards:
for i, summary in produce_values():
do_something(i)
show_summary(summary)
This is especially useful if someone could use more than just the last summary value, e. g. updating a progress view.
In Python 2 there was an error when return was together with yield in a function definition. But for this code in Python 3.3:
def f():
return 3
yield 2
x = f()
print(x.__next__())
there is no error that return is used in function with yield. However when the function __next__ is called then there is thrown exception StopIteration. Why there is not just returned value 3? Is this return somehow ignored?
This is a new feature in Python 3.3. Much like return in a generator has long been equivalent to raise StopIteration(), return <something> in a generator is now equivalent to raise StopIteration(<something>). For that reason, the exception you're seeing should be printed as StopIteration: 3, and the value is accessible through the attribute value on the exception object. If the generator is delegated to using the (also new) yield from syntax, it is the result. See PEP 380 for details.
def f():
return 1
yield 2
def g():
x = yield from f()
print(x)
# g is still a generator so we need to iterate to run it:
for _ in g():
pass
This prints 1, but not 2.
The return value is not ignored, but generators only yield values, a return just ends the generator, in this case early. Advancing the generator never reaches the yield statement in that case.
Whenever a iterator reaches the 'end' of the values to yield, a StopIteration must be raised. Generators are no exception. As of Python 3.3 however, any return expression becomes the value of the exception:
>>> def gen():
... return 3
... yield 2
...
>>> try:
... next(gen())
... except StopIteration as ex:
... e = ex
...
>>> e
StopIteration(3,)
>>> e.value
3
Use the next() function to advance iterators, instead of calling .__next__() directly:
print(next(x))
Since Python 3.3, if a generator function returns a value, that becomes the value for the StopIteration exception that is raised. This can be collected a number of ways:
The value of a yield from expression, which implies the enclosing function is also a generator.
Wrapping a call to next() or .send() in a try/except block.
However, if I'm simply wanting to iterate over the generator in a for loop - the easiest way - there doesn't appear to be a way to collect the value of the StopIteration exception, and thus the return value. Im using a simple example where the generator yields values, and returns some kind of summary at the end (running totals, averages, timing statistics, etc).
for i in produce_values():
do_something(i)
values_summary = ....??
One way is to handle the loop myself:
values_iter = produce_values()
try:
while True:
i = next(values_iter)
do_something(i)
except StopIteration as e:
values_summary = e.value
But this throws away the simplicity of the for loop. I can't use yield from since that requires the calling code to be, itself, a generator. Is there a simpler way than the roll-ones-own for loop shown above?
You can think of the value attribute of StopIteration (and arguably StopIteration itself) as implementation details, not designed to be used in "normal" code.
Have a look at PEP 380 that specifies the yield from feature of Python 3.3: It discusses that some alternatives of using StopIteration to carry the return value where considered.
Since you are not supposed to get the return value in an ordinary for loop, there is no syntax for it. The same way as you are not supposed to catch the StopIteration explicitly.
A nice solution for your situation would be a small utility class (might be useful enough for the standard library):
class Generator:
def __init__(self, gen):
self.gen = gen
def __iter__(self):
self.value = yield from self.gen
This wraps any generator and catches its return value to be inspected later:
>>> def test():
... yield 1
... return 2
...
>>> gen = Generator(test())
>>> for i in gen:
... print(i)
...
1
>>> print(gen.value)
2
You could make a helper wrapper, that would catch the StopIteration and extract the value for you:
from functools import wraps
class ValueKeepingGenerator(object):
def __init__(self, g):
self.g = g
self.value = None
def __iter__(self):
self.value = yield from self.g
def keep_value(f):
#wraps(f)
def g(*args, **kwargs):
return ValueKeepingGenerator(f(*args, **kwargs))
return g
#keep_value
def f():
yield 1
yield 2
return "Hi"
v = f()
for x in v:
print(x)
print(v.value)
A light-weight way to handle the return value (one that doesn't involve instantiating an auxiliary class) is to use dependency injection.
Namely, one can pass in the function to handle / act on the return value using the following wrapper / helper generator function:
def handle_return(generator, func):
returned = yield from generator
func(returned)
For example, the following--
def generate():
yield 1
yield 2
return 3
def show_return(value):
print('returned: {}'.format(value))
for x in handle_return(generate(), show_return):
print(x)
results in--
1
2
returned: 3
The most obvious method I can think of for this would be a user defined type that would remember the summary for you..
>>> import random
>>> class ValueProducer:
... def produce_values(self, n):
... self._total = 0
... for i in range(n):
... r = random.randrange(n*100)
... self._total += r
... yield r
... self.value_summary = self._total/n
... return self.value_summary
...
>>> v = ValueProducer()
>>> for i in v.produce_values(3):
... print(i)
...
25
55
179
>>> print(v.value_summary)
86.33333333333333
>>>
Another light weight way sometimes appropriate is to yield the running summary in every generator step in addition to your primary value in a tuple. The loop stays simple with an extra binding which is still available afterwards:
for i, summary in produce_values():
do_something(i)
show_summary(summary)
This is especially useful if someone could use more than just the last summary value, e. g. updating a progress view.