Imported Library considered as a variable in python - python

When I run this code, I get the error:
"UnboundLocalError: local variable 'tf' referenced before assignment"
In the Line where I Declare the weights . Why is tf being considered as a variable which is not being assigned ?
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/",one_hot = True)
n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500
n_classes = 10
batch_size = 128
x = tf.placeholder('float',[None,784]) #THrows error if the matrix is not 784-dim vec
y = tf.placeholder('float')
def convolutional_neural_network_model(x):
#The Line with the Error
weights = {'W_conv1':tf.Variable(tf.random_normal([5,5,1,32])),
'W_conv2':tf.Variable(tf.random_normal([5,5,32,64])),
'W_fc':tf.Variable(tf.random_normal([7*7*64,1024])),
'out':tf.Variable(tf.random_normal([1024, n_classes]))}
biases = {'b_conv1':tf.Variable(tf.random_normal([32])),
'b_conv2':tf.Variable(tf.random_normal([64])),
'b_fc':tf.Variable(tf.random_normal([1024])),
'out':tf.Variable(tf.random_normal([n_classes]))}
x = tf.reshape(x,shape=[-1,28,28,1])
conv1 = conv2d(x,weights['W_conv1'])
conv1 = maxpool2d(conv1)
conv2 = conv2d(conv1,weights['W_conv2'])
conv2 = maxpool2d(conv2)
fc = tf.reshape(conv2,[-1,7*7*64])
tf = tf.nn.relu(tf.matmul(fc,weights['W_fc']) + biases['b_fc'])
output = tf.matmul(fc,weights['out']) + biases['out']
return output
def train_neural_network(x):
prediction = convolutional_neural_network_model(x)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = prediction,labels = y))
# learning_rate = 0.001
optimizer = tf.train.AdamOptimizer().minimize(cost)
#
hm_epochs = 10
#
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
#
for epoch in range(hm_epochs):
epoch_loss = 0
for _ in range(int(mnist.train.num_examples/batch_size)):
epoch_x,epoch_y = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer,cost], feed_dict={x: epoch_x, y:epoch_y})
epoch_loss += c
print('Epoch',epoch,'/',hm_epochs,' loss :',epoch_loss)
#
correct = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))
#
accuracy = tf.reduce_mean(tf.cast(correct,'float'))
print('Accuracy :',accuracy.eval({x:mnist.test.images,y:mnist.test.labels}))
#
def conv2d(x,W):
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
def maxpool2d(x):
return tf.nn.max_pool(x,ksize = [1,2,2,1],strides=[1,2,2,1],padding='SAME')
if __name__ == '__main__':
print('Begin')
train_neural_network(x)
print('Done')

After importing tensorflow as tf, you redefine tf in the following line:
tf = tf.nn.relu(tf.matmul(fc,weights['W_fc']) + biases['b_fc'])
Changing the name of this variable will fix the problem.

tf = tf.nn.relu(tf.matmul(fc,weights['W_fc']) + biases['b_fc'])
You shouldn't use tf as the name of a variable if you import tensorflow as tf; it is unclear whether you are referring to the variable or the module.

Related

pytorch move model to gpu causes runtime error ('self' as cpu device type)

Solved by adding .to(device) for each weights and bias like t.Tensor(w_txt[0]).to(device)) and it works perfectly on gpu!
My network works well on cpu, and I try to move my network to gpu by adding some commented lines as follows.
import torch as t
import torch.nn as nn
from torch.autograd import Variable
import pandas as pd
import numpy as np
import torch.nn.functional as F
device = t.device("cuda:0" if t.cuda.is_available() else "cpu")
def mapminmax(data,dim):
min = np.min(data,axis=dim)
max = np.max(data,axis=dim)
return (data-min)/(max-min)
w_h1 = np.loadtxt('hidden1weight.txt')
w_h2 = np.loadtxt('hidden2weight.txt')
w_h3 = np.loadtxt('hidden3weight.txt')
w_h4 = np.loadtxt('predictweight.txt')
w_txt = np.array([w_h1,w_h2,w_h3,w_h4])
b_h1 = np.loadtxt('hidden1bias.txt')
b_h2 = np.loadtxt('hidden2bias.txt')
b_h3 = np.loadtxt('hidden3bias.txt')
b_h4 = np.loadtxt('predictbias.txt')
b_txt = np.array([b_h1,b_h2,b_h3,b_h4])
def parameter_init_self():
model.hidden1.weight = t.nn.Parameter(t.Tensor(w_txt[0]))
model.hidden2.weight = t.nn.Parameter(t.Tensor(w_txt[1]))
model.hidden3.weight = t.nn.Parameter(t.Tensor(w_txt[2]))
model.predict.weight = t.nn.Parameter(t.Tensor(w_txt[3]))
model.hidden1.bias = t.nn.Parameter(t.Tensor(b_txt[0]))
model.hidden2.bias = t.nn.Parameter(t.Tensor(b_txt[1]))
model.hidden3.bias = t.nn.Parameter(t.Tensor(b_txt[2]))
model.predict.bias = t.nn.Parameter(t.Tensor(b_txt[3]))
class DNNF(nn.Module):
def __init__(self, input_size, hidden_size1, hidden_size2, hidden_size3, output_size):
super(DNNF, self).__init__()
self.hidden1 = t.nn.Linear(input_size, hidden1_size)
self.hidden2 = t.nn.Linear(hidden1_size, hidden2_size)
self.hidden3 = t.nn.Linear(hidden2_size, hidden3_size)
self.predict = t.nn.Linear(hidden3_size, output_size)
# self = self.cuda()
def forward(self, x):
x = t.tanh(self.hidden1(x)) # line 88
x = t.tanh(self.hidden2(x))
x = t.tanh(self.hidden3(x))
y_pred = self.predict(x)
return y_pred
x_df = pd.read_csv('InputData_Train.csv', header=None)
y_df = pd.read_csv('OutputData_Train.csv', header=None)
x = t.tensor(x_df.values).float()
y = t.tensor(y_df.values).float()
M = x.size()[0]
input_size = x.size()[1]
output_size = y.size()[1]
hidden1_size, hidden2_size, hidden3_size = 50, 50, 50
x_np = x.numpy()
y_np = y.numpy()
x_norm_np = mapminmax(x_np,0)
y_norm_np = mapminmax(y_np,0)
x = t.from_numpy(x_norm_np)
y = t.from_numpy(y_norm_np)
x = Variable(x, requires_grad=False)
y = Variable(y, requires_grad=False)
# x, y = x.to(device), y.to(device) # move to gpu
loss_fn = nn.MSELoss(reduction='mean')
lr = 1e-2
mm = 0.9
EPOCH = 300
model = DNNF(input_size, hidden1_size, hidden2_size, hidden3_size, output_size)
# model = model.to(device) # move to gpu
parameter_init_self()
param = {}
for name, para in model.named_parameters():
param[name] = para.detach().numpy()
optimizer = t.optim.Rprop(model.parameters(), lr=lr) # lr=1e-2
DISPINTERVAL = 10
for epoch in range(EPOCH):
y_pred = model(x) # line 172
loss = loss_fn(y_pred, y)
if (epoch + 1) % DISPINTERVAL == 0:
print('Epoch[{}/{}], loss:{:.10f}'.format(epoch+1, EPOCH, loss.item()))
optimizer.zero_grad()
loss.backward()
optimizer.step()
y_pred = model(x)
E = y - y_pred
SE = E*E
MSE = t.mean(SE)
loss = loss_fn(y_pred, y)
print('MSE: ', MSE.item())
print('loss: ', loss.item())
However I got this error
Expected object of device type cuda but got device type cpu for argument #1 'self' in call to _th_addmm
File "E:\MachineLearning\PyTorch\a2MLP_V6_GPU.py", line 88, in forward
x = t.tanh(self.hidden1(x))
File "E:\MachineLearning\PyTorch\a2MLP_V6_GPU.py", line 172, in <module>
y_pred = model(x)
I tried to search on google but got no answer, the most mentioned thing is that there may be parameters defined within the model that are not moved to gpu. But as far as I can see, there is no such parameter in my model.
The error indicates that the problem is around self parameter and I don't know about it since it is not a parameter defined by me. Anyone know what's wrong?

Tensorflow save/load frozen tf.graph and run classification on loaded graph

as I have mentioned in the topic I would like to save my tf.graph into a frozen_graph.pb file. This should save space later I will try to run it an a jetson tx2. I have made a short MNIST example describing my problem. I run tf 1.7 on python 3.5.
Question1: As far as I understood my freeze_graph method takes a checkpoint file transfers all variables to constants except the ones i define with the second parameter. When I try to get the correct tensorname I wrote loggits.name but I get an error no Tensor with that name found in graph.
Question2: After that I would be able to extract a frozen graph, how can i load it back and run an classification on that.
My Code is attached and should work in a single py file.
Thank you very much in advance
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
import os
import time
import tensorflow as tf
import os
import argparse
#METHODS I WANT TO TEST
#TAKE THE CHECKPOINT FILE AND DELETE ALL NOTES THAT ARE NOT USEFUL
def freeze_graph(checkpoint_directory,output_node_names):
#checkpoint = tf.train.get_checkpoint_state(checkpoint_directory)
print(checkpoint_directory)
checkpoint = tf.train.get_checkpoint_state(checkpoint_directory)
input_checkpoint = checkpoint.model_checkpoint_path
absolute_model_dir = str(os.sep).join(input_checkpoint.split(os.sep)[:-1])
output_graph = absolute_model_dir + "/frozen_model.pb"
clear_devices = True
with tf.Session(graph = tf.Graph()) as sess:
#import the metagraph in default graph
saver = tf.train.import_meta_graph(input_checkpoint + '.meta',clear_devices=clear_devices)
#restore the weights
saver.restore(sess,input_checkpoint)
#wrap variables to constants
[print(n.name) for n in tf.get_default_graph().as_graph_def().node]
output_graph_def = tf.graph_util.convert_variables_to_constants(sess, tf.get_default_graph().as_graph_def(),output_node_names.split(","))
with tf.gfile.GFile(output_graph, "wb") as f:
f.write(output_graph_def.SerializeToString())
print("%d ops in the final graph." %len(output_graph_def.node))
return output_graph_def
#HERE IS THE METHOD THAT ALLOWS ME TO LOAD MY FROZEN GRAPH AS GRAPH
def load_graph(frozen_graph_filename):
with tf.gfile.GFile(frozen_graph_filename,"rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
with tf.Graph().as_default() as graph:
tf.import_graph_def(graph_def, name = "prefix")
return graph
#get the data
mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)
#NETWORK PARAMETERS
learning_rate = 0.01
dropout = 0.75
display_step = 1
filter_height = 5
filter_width = 5
depth_in = 1
depth_out1 = 64
depth_out2 = 128
#PARAMETERS OF THE DATASET
input_height = 28
input_width = 28
n_classes = 10
#TRAINING PARAMETERS
epochs = 1
batch_size = 256
num_batches = int(mnist.train.num_examples/batch_size)
x = tf.placeholder(tf.float32,[None,28*28],name = "input")
y = tf.placeholder(tf.float32,[None,n_classes])
keep_prob = tf.placeholder(tf.float32)
weights = {'wc1': tf.Variable(tf.random_normal([filter_height,filter_width,depth_in,depth_out1])),
'wc2': tf.Variable(tf.random_normal([filter_height, filter_width, depth_out1, depth_out2])),
'wd1': tf.Variable(tf.random_normal([int(input_height/4)*int(input_height/4)*depth_out2,1024])),
'out': tf.Variable(tf.random_normal([1024,n_classes]))}
biases = {'bc1': tf.Variable(tf.random_normal([depth_out1])),
'bc2': tf.Variable(tf.random_normal([depth_out2])),
'bd1': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([n_classes]))}
#DEFINE YOUR NEURAL NETWORKS LAYER OPERATIONS
def ops_conv2d(x,W,b,strides = 1, add_bias = True, activation = tf.nn.relu, use_activation = True):
x = tf.nn.conv2d(x,W,strides = [1,strides,strides,1],padding = 'SAME')
x = tf.nn.bias_add(x,b)
if use_activation:
return activation(x)
else:
return x
def ops_maxpool2d(x,stride=2):
return tf.nn.max_pool(x,ksize=[1,stride,stride,1],strides = [1,stride,stride,1], padding = 'SAME' )
def ops_dropout(input_fully_connected,dropout):
return tf.nn.dropout(input_fully_connected,dropout)
def ops_fullyconnected(input, activation = tf.nn.relu, use_activation = True):
fc = tf.reshape(input,[-1,weights['wd1'].get_shape().as_list()[0]])
fc = tf.add(tf.matmul(fc,weights['wd1']),biases['bd1'])
if use_activation:
return activation(fc)
else:
return fc
#DEFINE NETWORK ARCHTEKTURE (FORWARDPASS)
def build_network(x,weights,biases,dropout):
x = tf.reshape(x,shape=(-1,28,28,1))
conv_layer_1 = ops_conv2d(x,weights['wc1'],biases['bc1'],activation=tf.nn.relu, use_activation=True)
conv_layer_1 = ops_maxpool2d(conv_layer_1,2)
conv_layer_2 = ops_conv2d(conv_layer_1,weights['wc2'],biases['bc2'],activation=tf.nn.relu, use_activation=True)
conv_layer_2 = ops_maxpool2d(conv_layer_2,2)
fc1 = ops_fullyconnected(conv_layer_2, activation=tf.nn.relu, use_activation=True)
fc1 = ops_dropout(fc1,dropout)
logits = tf.add(tf.matmul(fc1,weights['out']),biases['out'],name = "logits")
return logits
#DEFINE TENSORFLOW BACKPROPAGATION OBJECTS (BACKWARDPASS)
logits = build_network(x,weights,biases,keep_prob)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = logits,labels = y))
#CHOSE AN OPTIMIZER
optimizer = tf.train.AdadeltaOptimizer(learning_rate=learning_rate).minimize(loss=loss)
predicted_labels = tf.equal(tf.argmax(logits,1),tf.argmax(y,1))
#EVALUATION PARAMETERS
acc = tf.reduce_mean(tf.cast(predicted_labels,tf.float32))
#NOW INITIALIZE ALL TF VARIABLES
init = tf.global_variables_initializer()
saver = tf.train.Saver(max_to_keep=10)
#NOW START THE SESSION AND EXECUTE THE GRAPH
with tf.Session() as sess:
sess.run(init)
for i in range(epochs):
save_path = saver.save(sess, os.curdir + "checkpoints/MNIST_TEST.ckpt")
for j in range(num_batches):
batch_x, batch_y = mnist.train.next_batch(batch_size)
sess.run(optimizer, feed_dict={x:batch_x,y:batch_y,keep_prob:dropout})
losses,accs = sess.run([loss,acc],feed_dict={x:batch_x,y:batch_y,keep_prob:1.})
if epochs % display_step == 0:
print("EPOCH:",'%04d' % (i+1),
"loss =", "{:.9f}".format(losses),
"acc =", "{:.5f}".format(accs))
print("TRAINING COMPLETED")
#START PREDICTIONS
predicted_label = sess.run(logits,feed_dict={x:mnist.test.images[:256],keep_prob:1.})
test_classes = np.argmax(predicted_label,1)
print("TEST ACCURACY:",sess.run(acc,feed_dict={x:mnist.test.images[:256], y:mnist.test.labels[:256],keep_prob:1.}))
f,a = plt.subplots(1,10,figsize = (10,2))
for i in range(10):
a[i].imshow(np.reshape(mnist.test.images[i],(28,28)))
print( test_classes[i])
print("TOTAL EXAMPLE FINNISHED")
freeze_graph(os.curdir + "checkpoints" + os.sep, logits.name)
graph = load_graph(os.curdir + os.sep + "checkpoints" + os.sep + "frozen_model.pb")
with tf.Session(graph) as sess:
sess.run(init)
predicted_label = sess.run(logits, feed_dict={x: mnist.test.images[:256], keep_prob: 1.})
print(predicted_label)
if anybody has the same problem here is a description how i solved it.
Saving and Loading the data:
First of all note that I have now a different pipeline. First of all I save the session in a saver (ckpt files). Afterwards I construct a metagaph (graph.pb). This graph is then transfered into a frozen graph (frozen.pb). To load the frozen graph I use the load_frozen_graph_from_session method. Inside that method I also test a forward pass through my network.
Running an inference on the loaded graph:
First I name my tensors x (name = "input") this will result in a tensorname ("input:0")
so when you try to fill this placeholder in the new session you need predicted_label = sess.run("output:0", feed_dict={"input:0":mnist.test.images[:256], "keep_prob:0": 1.})
The output is the logit and not the prediction inside my network. This is because if you run the session it will run until it hits the variable you want to fetch. would I take the prediction I need also the placeholder for my y (name=label).
Here is the full code:
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
import os
import time
import tensorflow as tf
import os
import argparse
from tensorflow.python.platform import gfile
from tensorflow.python.framework.graph_util import convert_variables_to_constants
#METHODS I WANT TO TEST
def freeze_graph_from_Session(sess,saver):
# convert_variables_to_constants(sess, input_graph_def, output_node_names, variable_names_whitelist=None)
save_graph(sess,saver)
with gfile.FastGFile("./tmp/" + "graph.pb", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
frozen_graph_def = convert_variables_to_constants(sess, graph_def, ["output"])
with tf.gfile.GFile("./tmp/" + "frozen.pb", "wb") as f:
f.write(frozen_graph_def.SerializeToString())
def save_graph(sess, saver):
saver.save(sess, "./tmp/model", write_meta_graph=True, global_step=1)
with open("./tmp/" + "graph.pb", 'wb') as f:
f.write(sess.graph_def.SerializeToString())
#sess.close()
def load_frozen_graph_from_session():
filename = "./tmp/" + "frozen.pb"
print("LOADING GRAPH")
with tf.gfile.GFile(filename, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
print("OPEN GRAPH")
with tf.Graph().as_default() as graph:
print("DEFINE INPUT")
new_input = tf.placeholder(tf.float32, [None, 28 * 28], name="new_input")
print("DEFINE INPUT MAP")
tf.import_graph_def(
graph_def,
# usually, during training you use queues, but at inference time use placeholders
# this turns into "input
input_map={"input:0": new_input},
return_elements=None,
# if input_map is not None, needs a name
name="bla",
op_dict=None,
producer_op_list=None
)
checkpoint_path = tf.train.latest_checkpoint("./tmp/")
with tf.Session(graph=graph) as sess:
saver = tf.train.import_meta_graph(checkpoint_path + ".meta", import_scope=None)
saver.restore(sess, checkpoint_path)
print("TRY FORWARD RUN THROUGH LOADED GRAPH")
predicted_label = sess.run("output:0", feed_dict={"input:0":mnist.test.images[:256], "keep_prob:0": 1.})
print("output", predicted_label)
f, a = plt.subplots(1, 10, figsize=(10, 2))
test_classes = np.argmax(predicted_label, 1)
for i in range(10):
a[i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
print(test_classes[i])
print ("output:", test_classes)
#TAKE THE CHECKPOINT FILE AND DELETE ALL NOTES THAT ARE NOT USEFUL
def freeze_graph(checkpoint_directory,output_node_names):
#checkpoint = tf.train.get_checkpoint_state(checkpoint_directory)
print(checkpoint_directory)
checkpoint = tf.train.get_checkpoint_state(checkpoint_directory)
input_checkpoint = checkpoint.model_checkpoint_path
absolute_model_dir = str(os.sep).join(input_checkpoint.split(os.sep)[:-1])
output_graph = absolute_model_dir + "/frozen_model.pb"
clear_devices = True
with tf.Session(graph = tf.Graph()) as sess:
#import the metagraph in default graph
saver = tf.train.import_meta_graph(input_checkpoint + '.meta',clear_devices=clear_devices)
#restore the weights
saver.restore(sess,input_checkpoint)
#wrap variables to constants
[print(n.name) for n in tf.get_default_graph().as_graph_def().node]
output_graph_def = tf.graph_util.convert_variables_to_constants(sess, tf.get_default_graph().as_graph_def(),output_node_names.split(","))
with tf.gfile.GFile(output_graph, "wb") as f:
f.write(output_graph_def.SerializeToString())
print("%d ops in the final graph." %len(output_graph_def.node))
return output_graph_def
#HERE IS THE METHOD THAT ALLOWS ME TO LOAD MY FROZEN GRAPH AS GRAPH
def load_graph(frozen_graph_filename):
with tf.gfile.GFile(frozen_graph_filename,"rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
with tf.Graph().as_default() as graph:
tf.import_graph_def(graph_def, name = "prefix")
return graph
#get the data
mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)
print(mnist.test.labels[:256])
print("load_freeze_graph_from_session: STARTED")
load_frozen_graph_from_session()
print("load_freeze_graph_from_session: ENDED")
exit()
#NETWORK PARAMETERS
learning_rate = 0.01
dropout = 0.75
display_step = 1
filter_height = 5
filter_width = 5
depth_in = 1
depth_out1 = 64
depth_out2 = 128
#PARAMETERS OF THE DATASET
input_height = 28
input_width = 28
n_classes = 10
#TRAINING PARAMETERS
epochs = 1
batch_size = 256
num_batches = int(mnist.train.num_examples/batch_size)
x = tf.placeholder(tf.float32,[None,28*28],name="input")
y = tf.placeholder(tf.float32,[None,n_classes],name = "label")
keep_prob = tf.placeholder(tf.float32,name = "keep_prob")
weights = {'wc1': tf.Variable(tf.random_normal([filter_height,filter_width,depth_in,depth_out1])),
'wc2': tf.Variable(tf.random_normal([filter_height, filter_width, depth_out1, depth_out2])),
'wd1': tf.Variable(tf.random_normal([int(input_height/4)*int(input_height/4)*depth_out2,1024])),
'out': tf.Variable(tf.random_normal([1024,n_classes]))}
biases = {'bc1': tf.Variable(tf.random_normal([depth_out1])),
'bc2': tf.Variable(tf.random_normal([depth_out2])),
'bd1': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([n_classes]))}
#DEFINE YOUR NEURAL NETWORKS LAYER OPERATIONS
def ops_conv2d(x,W,b,strides = 1, add_bias = True, activation = tf.nn.relu, use_activation = True):
x = tf.nn.conv2d(x,W,strides = [1,strides,strides,1],padding = 'SAME')
x = tf.nn.bias_add(x,b)
if use_activation:
return activation(x)
else:
return x
def ops_maxpool2d(x,stride=2):
return tf.nn.max_pool(x,ksize=[1,stride,stride,1],strides = [1,stride,stride,1], padding = 'SAME' )
def ops_dropout(input_fully_connected,dropout):
return tf.nn.dropout(input_fully_connected,dropout)
def ops_fullyconnected(input, activation = tf.nn.relu, use_activation = True):
fc = tf.reshape(input,[-1,weights['wd1'].get_shape().as_list()[0]])
fc = tf.add(tf.matmul(fc,weights['wd1']),biases['bd1'])
if use_activation:
return activation(fc)
else:
return fc
#DEFINE NETWORK ARCHTEKTURE (FORWARDPASS)
def build_network(x,weights,biases,dropout):
x = tf.reshape(x,shape=(-1,28,28,1))
conv_layer_1 = ops_conv2d(x,weights['wc1'],biases['bc1'],activation=tf.nn.relu, use_activation=True)
conv_layer_1 = ops_maxpool2d(conv_layer_1,2)
conv_layer_2 = ops_conv2d(conv_layer_1,weights['wc2'],biases['bc2'],activation=tf.nn.relu, use_activation=True)
conv_layer_2 = ops_maxpool2d(conv_layer_2,2)
fc1 = ops_fullyconnected(conv_layer_2, activation=tf.nn.relu, use_activation=True)
fc1 = ops_dropout(fc1,dropout)
logits = tf.add(tf.matmul(fc1,weights['out']),biases['out'],name = "output")
return logits
#DEFINE TENSORFLOW BACKPROPAGATION OBJECTS (BACKWARDPASS)
logits = build_network(x,weights,biases,keep_prob)
#freeze_graph(os.curdir + "checkpoints" + os.sep, logits.name)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = logits,labels = y))
#CHOSE AN OPTIMIZER
optimizer = tf.train.AdadeltaOptimizer(learning_rate=learning_rate).minimize(loss=loss)
predicted_labels = tf.equal(tf.argmax(logits,1),tf.argmax(y,1))
#EVALUATION PARAMETERS
acc = tf.reduce_mean(tf.cast(predicted_labels,tf.float32))
#NOW INITIALIZE ALL TF VARIABLES
init = tf.global_variables_initializer()
saver = tf.train.Saver(max_to_keep=10)
#NOW START THE SESSION AND EXECUTE THE GRAPH
with tf.Session() as sess:
sess.run(init)
for i in range(epochs):
save_path = saver.save(sess, os.curdir + "checkpoints/MNIST_TEST.ckpt")
for j in range(num_batches):
batch_x, batch_y = mnist.train.next_batch(batch_size)
sess.run(optimizer, feed_dict={x:batch_x,y:batch_y,keep_prob:dropout})
losses,accs = sess.run([loss,acc],feed_dict={x:batch_x,y:batch_y,keep_prob:1.})
if epochs % display_step == 0:
print("EPOCH:",'%04d' % (i+1),
"loss =", "{:.9f}".format(losses),
"acc =", "{:.5f}".format(accs))
print("TRAINING COMPLETED")
#START PREDICTIONS
predicted_label = sess.run(logits,feed_dict={x:mnist.test.images[:256],keep_prob:1.})
test_classes = np.argmax(predicted_label,1)
print("TEST ACCURACY:",sess.run(acc,feed_dict={x:mnist.test.images[:256], y:mnist.test.labels[:256],keep_prob:1.}))
f,a = plt.subplots(1,10,figsize = (10,2))
for i in range(10):
a[i].imshow(np.reshape(mnist.test.images[i],(28,28)))
print( test_classes[i])
print("TOTAL EXAMPLE FINNISHED")
#freeze_graph(os.curdir + "checkpoints"+os.sep,logits)
print("freeze_graph_from_session: STARTED")
freeze_graph_from_Session(sess,saver)
print("freeze_graph_from_session: ENDED")
print("load_freeze_graph_from_session: STARTED")
load_frozen_graph_from_session()
print("load_freeze_graph_from_session: ENDED")
#with tf.Session() as sess:
#
# sess.run(init)
# graph = load_graph(os.curdir + os.sep + "checkpoints" + os.sep + "frozen_model.pb")
# predicted_label = sess.run(logits, feed_dict={x: mnist.test.images[:256], keep_prob: 1.})
# print(predicted_label)
Thanks goes out to my self. :)

TensorFlow Ai not progressing, gym breakout-ram-v4

I need help because when i run these line of code, my ai is not learning.
Could someone help me getting it to learn, i think the probleme is in the reward systeme but im not sure, thank you for your help.
can you help by or telling me how do make it better of by fixing it directly?
imports
import tensorflow as tf
import gym
import os
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
#Load an environment
env = gym.make('Breakout-ram-v4')
making my agent
class Agent:
def __init__(self, num_actions, state_size):
initializer = tf.contrib.layers.xavier_initializer()
self.input_layer = tf.placeholder(dtype=tf.float32, shape=[None, state_size])
# Neural net starts here
hidden_layer = tf.layers.dense(self.input_layer, 64, activation=tf.nn.relu, kernel_initializer=initializer)
hidden_layer_2 = tf.layers.dense(hidden_layer, 32, activation=tf.nn.relu, kernel_initializer=initializer)
dropout1 = tf.layers.dropout(hidden_layer_2, rate=0.1, training=True)
hidden_layer_3 = tf.layers.dense(dropout1, 16, activation=tf.nn.relu, kernel_initializer=initializer)
dropout = tf.layers.dropout(hidden_layer_3, rate=0.2, training=True)
# Output of neural net
out = tf.layers.dense(dropout, num_actions, activation=None)
self.outputs = tf.nn.softmax(out)
self.choice = tf.argmax(self.outputs, axis=1)
# Training Procedure
self.rewards = tf.placeholder(shape=[None, ], dtype=tf.float32)
self.actions = tf.placeholder(shape=[None, ], dtype=tf.int32)
one_hot_actions = tf.one_hot(self.actions, num_actions)
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=out, labels=one_hot_actions)
self.loss = tf.reduce_mean(cross_entropy * self.rewards)
self.gradients = tf.gradients(self.loss, tf.trainable_variables())
# Create a placeholder list for gradients
self.gradients_to_apply = []
for index, variable in enumerate(tf.trainable_variables()):
gradient_placeholder = tf.placeholder(tf.float32)
self.gradients_to_apply.append(gradient_placeholder)
# Create the operation to update gradients with the gradients placeholder.
optimizer = tf.train.AdamOptimizer(learning_rate=0.1)
self.update_gradients = optimizer.apply_gradients(zip(self.gradients_to_apply, tf.trainable_variables()))
Reward systeme
discount_rate = 0.95
#its to make the reward
def discount_normalize_rewards(rewards):
discount_rewards = np.zeros_like(rewards)
total_rewards = 0
for i in reversed(range(len(rewards))):
total_rewards = total_rewards * discount_rate + rewards[i]
discount_rewards[i] = total_rewards
if discount_rewards[i] == 0:
return discount_rewards
else:
discount_rewards /= np.std(discount_rewards)
discount_rewards -= np.mean(discount_rewards)
return discount_rewards
Trainning the ai
tf.reset_default_graph()
# Modify these to match shape of actions and states in your environment
num_actions = 4
state_size = 128
path = "./breakout-pg/"
training_episodes = 10000
max_steps_per_episode = 100000
episode_batch_size = 5
agent = Agent(num_actions, state_size)
init = tf.global_variables_initializer()
saver = tf.train.Saver(max_to_keep=2)
if not os.path.exists(path):
os.makedirs(path)
with tf.Session() as sess:
sess.run(init)
total_episode_rewards = []
# Create a buffer of 0'd gradients
gradient_buffer = sess.run(tf.trainable_variables())
for index, gradient in enumerate(gradient_buffer):
gradient_buffer[index] = gradient * 0
for episode in range(training_episodes):
state = env.reset()
episode_history = []
episode_rewards = 0
for step in range(max_steps_per_episode):
env.render()
# Get weights for each action
action_probabilities = sess.run(agent.outputs, feed_dict={agent.input_layer: [state]})
action_choice = np.random.choice(range(num_actions), p=action_probabilities[0])
state_next, reward, done, _ = env.step(action_choice)
episode_history.append([state, action_choice, reward, state_next])
state = state_next
episode_rewards += reward
if done or step + 1 == max_steps_per_episode:
total_episode_rewards.append(episode_rewards)
episode_history = np.array(episode_history)
episode_history[:,2] = discount_normalize_rewards(episode_history[:,2])
ep_gradients = sess.run(agent.gradients, feed_dict={agent.input_layer: np.vstack(episode_history[:, 0]),
agent.actions: episode_history[:, 1],
agent.rewards: episode_history[:, 2]})
# add the gradients to the grad buffer:
for index, gradient in enumerate(ep_gradients):
gradient_buffer[index] += gradient
break
if episode % episode_batch_size == 0:
feed_dict_gradients = dict(zip(agent.gradients_to_apply, gradient_buffer))
sess.run(agent.update_gradients, feed_dict=feed_dict_gradients)
for index, gradient in enumerate(gradient_buffer):
gradient_buffer[index] = gradient * 0
#more frequent plz
if episode % 10 == 0:
saver.save(sess, path + "pg-checkpoint", episode)
print("stage: " + str(episode) + "||| Average reward / 10 eps: " + str(np.mean(total_episode_rewards[-10:])))
print("done!")

Neural network showing same result for different inputs

I am new to tensorflow. I am training my cnn model for digit recognition using tensorflow. Although, it is showing accuracy of 99% during training. But it keeps on displaying same result when tested on my image set e.g. sometimes 8 for all images, sometimes 2 for all images, sometimes 3 for all images.
Please help!
I am attaching code for reference
File trainer.py:
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
def layer(input,weight_shape,bias_shape):
w_stddev = (2.0/weight_shape[0])**0.5
w_init = tf.random_normal_initializer(stddev = w_stddev)
b_init = tf.constant_initializer(0)
W = tf.get_variable('W',weight_shape,initializer = w_init)
b = tf.get_variable('B',bias_shape,initializer = b_init)
output = tf.matmul(input,W)+b
return tf.nn.relu(output)
def conv2d(input,weight_shape,bias_shape):
inp = weight_shape[0]*weight_shape[1]*weight_shape[2]
w_init = tf.random_normal_initializer(stddev = (2.0/inp)**0.5)
W = tf.get_variable('W',weight_shape,initializer = w_init)
b_init = tf.constant_initializer(0)
b = tf.get_variable('b',bias_shape,initializer = b_init)
conv_out = tf.nn.conv2d(input,W,strides = [1,1,1,1], padding = 'SAME')
return tf.nn.relu(tf.nn.bias_add(conv_out,b))
def max_pool(input,k=2):
return tf.nn.max_pool(input,ksize = [1,k,k,1], strides = [1,k,k,1],padding = 'SAME')
def inference(x,keep_prob):
x = tf.reshape(x,shape = [-1,28,28,1])
keep_prob = keep_prob[0]
with tf.variable_scope("conv_1"):
conv_1 = conv2d(x,[5,5,1,32],[32])
pool_1 = max_pool(conv_1)
with tf.variable_scope("conv_2"):
conv_2 = conv2d(pool_1,[5,5,32,64],[64])
pool_2 = max_pool(conv_2)
with tf.variable_scope("fc"):
pool_2_flat = tf.reshape(pool_2,[-1,7*7*64])
fc_1 = layer(pool_2_flat,[7*7*64,1024],[1024])
fc_1_drop = tf.nn.dropout(fc_1,keep_prob)
with tf.variable_scope("output"):
output = layer(fc_1_drop,[1024,10],[10])
return output
def evaluate(output,y):
correct_prediction = tf.equal(tf.argmax(output,1),tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
return accuracy
def training(cost,global_step):
tf.summary.scalar("cost",cost)
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train_op = optimizer.minimize(cost,global_step = global_step)
return train_op
def loss(output,y):
xentropy = tf.nn.softmax_cross_entropy_with_logits(labels = y,logits = output)
loss = tf.reduce_mean(xentropy)
return loss
learning_rate = 0.01
display_step = 1
batch_size = 100
training_epoch = 2
mnist = input_data.read_data_sets('MNIST_data/',one_hot = True)
with tf.Graph().as_default():
x = tf.placeholder('float',[None,784],name="x")
y = tf.placeholder('float',[None,10],name="y")
keep_prob = tf.placeholder('float',[1],name="keep_prob")
global_step = tf.Variable(0,name = 'global_step',trainable = False)
output = inference(x,keep_prob)
#print(output.name)
cost_op = loss(output,y)
eval_op = evaluate(output,y)
print(eval_op.name)
train_op = training(cost_op,global_step)
summary_op = tf.summary.merge_all()
saver = tf.train.Saver()
sess = tf.Session()
writer = tf.summary.FileWriter('logistics_logs/',graph_def = sess.graph_def)
init_op = tf.global_variables_initializer()
sess.run(init_op)
for epoch in range(training_epoch):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
for i in range(total_batch):
mbatch_x,mbatch_y = mnist.train.next_batch(batch_size)
feed_dict = {
x: mbatch_x,
y: mbatch_y,
keep_prob: np.asarray([0.5])
}
sess.run(train_op,feed_dict = feed_dict)
mbatch_cost = sess.run(cost_op,feed_dict = feed_dict)
avg_cost += mbatch_cost/total_batch
if epoch % display_step == 0:
val_feed_dict = {
x: mnist.validation.images,
y: mnist.validation.labels,
keep_prob: np.asarray([1])
}
accuracy = sess.run(eval_op,feed_dict = val_feed_dict)
print(epoch+1,'Validation Accuracy : ',accuracy*100,'%')
summary_str = sess.run(summary_op,feed_dict = val_feed_dict)
writer.add_summary(summary_str,sess.run(global_step))
saver.save(sess,'logistics_logs/model_checkpoint/',global_step)
print('Optimization finished')
test_feed_dict = {
x: mnist.test.images,
y: mnist.test.labels,
keep_prob: np.asarray([1])
}
accuracy = sess.run(eval_op,feed_dict = test_feed_dict)
print('Test Accuracy : ',accuracy*100,'%')
File model.py:
import tensorflow as tf
import numpy as np
import os
import cv2
from PIL import Image
from scipy import misc
#img = Image.open('character.bmp')
#a = np.asarray(img).flatten()
#test_data = np.subtract(a,0.,dtype=np.float32)
#test_data = np.reshape(test_data,(784))
#test_data = 255*test_data
#print(test_data)
#print(test_data.shape)
image = cv2.imread('character.jpg')
image = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
image = cv2.resize(image,(28,28),cv2.INTER_LINEAR)
images= np.array(image,dtype=np.uint8)
images=images.astype('float32')
images=np.multiply(images,1.0/255.0)
images = np.asarray(images).flatten()
test_data=[images]
#print(test_data)
restore_path = os.path.join(os.path.abspath('./'),"logistics_logs\\model_checkpoint\\")
meta_file_location = os.path.join(restore_path,"-550.meta")
sess = tf.Session()
saver = tf.train.import_meta_graph(meta_file_location)
saver.restore(sess,tf.train.latest_checkpoint(restore_path))
graph = tf.get_default_graph()
x = graph.get_tensor_by_name("x:0")
keep_prob = graph.get_tensor_by_name("keep_prob:0")
feed_dict = {x:test_data,keep_prob:np.asarray([1])}
op = graph.get_tensor_by_name("output/Relu:0")
digit = sess.run(tf.argmax(op,1),feed_dict = feed_dict)
print(int(digit))
Although I'm not quite following your code from one file to the other easily, I'm pretty sure your problem is here:
init_op = tf.global_variables_initializer()
sess.run(init_op)
I suspect that code is being run after you load the network with this code:
saver = tf.train.import_meta_graph(meta_file_location)
saver.restore(sess,tf.train.latest_checkpoint(restore_path))
If that's the case what you're doing is overwriting your model with a random initialization. You should not run the init op when you load the model from disk.
An output of a single value regardless of input is a common result from a randomly initialized network, which is what leads me to this suspicion.

train two seperate tensorflow models at once

I am new in tensorflow, i am trying to train to tensorflow models which are connected with a dot product output layer. The input are two 2048 float vectors.
When I run the script I always get these errors:
Traceback (most recent call last):
File "classifier.py", line 120, in
_, summary = sess.run([optimizer, merged], feed_dict={x1: batch_x1s, x2: batch_x2s})
File "/Users/Joachim/work/tensorflow/virtualenv/tensorflow/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 789, in run
run_metadata_ptr)
File "/Users/Joachim/work/tensorflow/virtualenv/tensorflow/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 968, in _run
np_val = np.asarray(subfeed_val, dtype=subfeed_dtype)
File "/Users/Joachim/work/tensorflow/virtualenv/tensorflow/lib/python3.6/site-packages/numpy/core/numeric.py", line 531, in asarray
return array(a, dtype, copy=False, order=order)
ValueError: setting an array element with a sequence.
Here is my code:
import tensorflow as tf
import sys
import math
import os
import numpy as np
import json
import argparse
from sklearn.model_selection import train_test_split
from tqdm import tqdm
from tensorflow.python.platform import gfile
from progress.bar import Bar
bottleneck_dir = 'bottlenecks'
### LOAD DATA FROM BOTTLENECKS
data_inputs = []
data_labels = []
data_expected_result=[]
bottleneck_list = []
file_glob = os.path.join(bottleneck_dir, '*.txt')
bottleneck_list.extend(gfile.Glob(file_glob))
for bottleneck_file in bottleneck_list:
bottleneck = open(bottleneck_file)
bottleneck_string = bottleneck.read()
bottleneck_values = [float(x) for x in bottleneck_string.split(',')]
imageName=bottleneck_file.split('.')[0]
helper=False
for i in range(len(data_labels)):
if imageName==data_labels[i]:
if 'search' in bottleneck_file:
data_inputs[i][0]=bottleneck_values
else:
data_inputs[i][1]=bottleneck_values
helper=true
if helper!=True:
if 'search' in bottleneck_file:
data_inputs.append([bottleneck_values,[]])
else:
data_inputs.append([[],bottleneck_values])
data_expected_result.append(1);
data_inputs_x1 = [i[0] for i in data_inputs]
data_inputs_x2 = [i[1] for i in data_inputs]
# Setting hyperparameters
learning_rate = 0.01
batch_size = 4
epochs = 1
log_batch_step = 50
n_features = np.size(data_inputs, 1)
tf.reset_default_graph()
graph = tf.get_default_graph()
inputVectorSize=2048
outputVectorSize=2048
x1 = tf.placeholder(tf.float32, [None, inputVectorSize], name='x1')#input layer
x2 = tf.placeholder(tf.float32, [None, inputVectorSize], name='x2')#input layer
dense1 = tf.layers.dense(inputs=x1, units=inputVectorSize, activation=tf.nn.relu)
logits1 = tf.layers.dense(inputs=dense1, units=outputVectorSize, activation=tf.nn.relu)
logits1_normalized=tf.nn.softmax(logits1)
dense2 = tf.layers.dense(inputs=x2, units=inputVectorSize, activation=tf.nn.relu)
logits2 = tf.layers.dense(inputs=dense2, units=outputVectorSize, activation=tf.nn.relu)
logits2_normalized=tf.nn.softmax(logits2)
output = tf.reduce_sum( tf.multiply( logits1_normalized, logits2_normalized), 1, keep_dims=True )
# Defining loss of network
loss = data_expected_result-output
tf.summary.scalar('loss', loss)
# Setting optimiser
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)
# Define accuracy
accuracy = loss
tf.summary.scalar('accuracy', accuracy)
# For saving checkpoint after training
saver = tf.train.Saver()
merged = tf.summary.merge_all()
# use in command line: tensorboard --logdir=path/to/log --> to view tensorboard
# Run tensorflow session
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
train_writer = tf.summary.FileWriter('log', sess.graph)
tf.train.write_graph(sess.graph_def, '', 'savedgraph.pbtxt', as_text=False)
# Running the training in batches
batch_count = int(math.ceil(len(data_inputs)/batch_size))
for epoch_i in range(epochs):
batches_pbar = tqdm(range(batch_count), desc='Epoch {:>2}/{}'.format(epoch_i+1, epochs), unit='batches')
# The training cycle
for batch_i in batches_pbar:
# Get a batch of training features and labels
batch_start = batch_i*batch_size
batch_x1s = data_inputs_x1[batch_start:batch_start + batch_size]
batch_x2s = data_inputs_x2[batch_start:batch_start + batch_size]
# Run optimizer
_, summary = sess.run([optimizer, merged], feed_dict={x1: batch_x1s, x2: batch_x2s})
train_writer.add_summary(summary, batch_i)
# Check accuracy against validation data
val_accuracy, val_loss = sess.run([accuracy, loss], feed_dict={x1: data_inputs_x1[0:len(data_inputs-1)], x2: data_inputs_x2[0:len(data_inputs-1)]})
print("After epoch {}, Loss: {}, Accuracy: {}".format(epoch_i+1, val_loss, val_accuracy))
test_accuracy, test_loss = sess.run([accuracy, loss], feed_dict={x1: data_inputs_x1[0:len(data_inputs-1)], x2: data_inputs_x2[0:len(data_inputs-1)]})
print ("TEST LOSS: {}, TEST ACCURACY: {}".format(test_loss, test_accuracy))
g = tf.get_default_graph()
saver.save(sess, 'savedgraph')
Can anyone show my what to do to fix the problem?
You need to feed array not list. change the lines where used list as feed_dict input.
batch_x1s = np.asarray(data_inputs_x1[batch_start:batch_start + batch_size])
batch_x2s = np.asarray(data_inputs_x2[batch_start:batch_start + batch_size])
...
test_accuracy, test_loss = sess.run([accuracy, loss], feed_dict=
{x1:np.asarray(data_inputs_x1[0:len(data_inputs-1)]), x2:
np.asarray(data_inputs_x2[0:len(data_inputs-1)])})
I found the Problem, it was a problem with the input data.
import tensorflow as tf
import sys
import math
import os
import numpy as np
import json
import argparse
from sklearn.model_selection import train_test_split
from tqdm import tqdm
from tensorflow.python.platform import gfile
from progress.bar import Bar
bottleneck_dir = 'bottlenecks'
### LOAD DATA FROM BOTTLENECKS
data_inputs = []
data_labels = []
data_expected_result=[]
bottleneck_list = []
file_glob = os.path.join(bottleneck_dir, '*.txt')
bottleneck_list.extend(gfile.Glob(file_glob))
for bottleneck_file in bottleneck_list:
bottleneck = open(bottleneck_file)
bottleneck_string = bottleneck.read()
bottleneck_values = [float(x) for x in bottleneck_string.split(',')]
imageName=bottleneck_file.split('.')[0]
helper=False
for i in range(len(data_labels)):
if imageName==data_labels[i]:
if 'search' in bottleneck_file:
data_inputs[i][0]=np.asarray(bottleneck_values)
else:
data_inputs[i][1]=np.asarray(bottleneck_values)
helper=True
if helper!=True:
if 'search' in bottleneck_file:
data_inputs.append([bottleneck_values,[]])
else:
data_inputs.append([[],bottleneck_values])
data_expected_result.append(1);
data_labels.append(imageName);
data_inputs_x1 = [i[0] for i in data_inputs]
data_inputs_x2 = [i[1] for i in data_inputs]
for i in range(len(data_inputs_x2)):
print(len(data_inputs_x2[i]))
# Setting hyperparameters
learning_rate = 0.01
batch_size = 4
epochs = 1
log_batch_step = 50
n_features = np.size(data_inputs, 1)
tf.reset_default_graph()
graph = tf.get_default_graph()
inputVectorSize=2048
outputVectorSize=2048
x1 = tf.placeholder(tf.float32, [None, inputVectorSize], name='x1')#input layer
x2 = tf.placeholder(tf.float32, [None, inputVectorSize], name='x2')#input layer
dense1 = tf.layers.dense(inputs=x1, units=inputVectorSize, activation=tf.nn.relu)
logits1 = tf.layers.dense(inputs=dense1, units=outputVectorSize, activation=tf.nn.relu)
logits1_normalized=tf.nn.softmax(logits1)
dense2 = tf.layers.dense(inputs=x2, units=inputVectorSize, activation=tf.nn.relu)
logits2 = tf.layers.dense(inputs=dense2, units=outputVectorSize, activation=tf.nn.relu)
logits2_normalized=tf.nn.softmax(logits2)
output = tf.reduce_sum( tf.multiply( logits1_normalized, logits2_normalized), 1, keep_dims=True )
# Defining loss of network
loss = tf.reduce_sum(tf.subtract(1.0,output));
tf.summary.scalar('loss', loss)
# Setting optimiser
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)
# Define accuracy
accuracy = loss
tf.summary.scalar('accuracy', accuracy)
# For saving checkpoint after training
saver = tf.train.Saver()
merged = tf.summary.merge_all()
# use in command line: tensorboard --logdir=path/to/log --> to view tensorboard
# Run tensorflow session
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
train_writer = tf.summary.FileWriter('log', sess.graph)
tf.train.write_graph(sess.graph_def, '', 'savedgraph.pbtxt', as_text=False)
# Running the training in batches
batch_count = int(math.ceil(len(data_inputs)/batch_size))
for epoch_i in range(epochs):
batches_pbar = tqdm(range(batch_count), desc='Epoch {:>2}/{}'.format(epoch_i+1, epochs), unit='batches')
# The training cycle
for batch_i in batches_pbar:
# Get a batch of training features and labels
batch_start = batch_i*batch_size
batch_x1s = np.asarray(data_inputs_x1[batch_start:batch_start + batch_size])
batch_x2s = np.asarray(data_inputs_x2[batch_start:batch_start + batch_size])
# Run optimizer
_, summary = sess.run([optimizer, merged], feed_dict={x1: batch_x1s, x2: batch_x2s})
train_writer.add_summary(summary, batch_i)
# Check accuracy against validation data
val_accuracy, val_loss = sess.run([accuracy, loss], feed_dict={x1: np.asarray(data_inputs_x1), x2: np.asarray(data_inputs_x2)})
print("After epoch {}, Loss: {}, Accuracy: {}".format(epoch_i+1, val_loss, val_accuracy))
test_accuracy, test_loss = sess.run([accuracy, loss], feed_dict={x1: np.asarray(data_inputs_x1), x2: np.asarray(data_inputs_x2)})
print ("TEST LOSS: {}, TEST ACCURACY: {}".format(test_loss, test_accuracy))
g = tf.get_default_graph()
saver.save(sess, 'savedgraph')

Categories